1 | //
|
---|
2 | // pointgrp.h
|
---|
3 | //
|
---|
4 | // Modifications are
|
---|
5 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
6 | //
|
---|
7 | // Author: Edward Seidl <seidl@janed.com>
|
---|
8 | // Maintainer: LPS
|
---|
9 | //
|
---|
10 | // This file is part of the SC Toolkit.
|
---|
11 | //
|
---|
12 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
13 | // it under the terms of the GNU Library General Public License as published by
|
---|
14 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
15 | // any later version.
|
---|
16 | //
|
---|
17 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
18 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
20 | // GNU Library General Public License for more details.
|
---|
21 | //
|
---|
22 | // You should have received a copy of the GNU Library General Public License
|
---|
23 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
24 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
25 | //
|
---|
26 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
27 | //
|
---|
28 |
|
---|
29 | /* pointgrp.h -- definition of the point group classes
|
---|
30 | *
|
---|
31 | * THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A
|
---|
32 | * "UNITED STATES GOVERNMENT WORK". IT WAS WRITTEN AS A PART OF THE
|
---|
33 | * AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE. THIS MEANS IT
|
---|
34 | * CANNOT BE COPYRIGHTED. THIS SOFTWARE IS FREELY AVAILABLE TO THE
|
---|
35 | * PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO
|
---|
36 | * RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY.
|
---|
37 | *
|
---|
38 | * Author:
|
---|
39 | * E. T. Seidl
|
---|
40 | * Bldg. 12A, Rm. 2033
|
---|
41 | * Computer Systems Laboratory
|
---|
42 | * Division of Computer Research and Technology
|
---|
43 | * National Institutes of Health
|
---|
44 | * Bethesda, Maryland 20892
|
---|
45 | * Internet: seidl@alw.nih.gov
|
---|
46 | * June, 1993
|
---|
47 | */
|
---|
48 |
|
---|
49 | #ifdef __GNUC__
|
---|
50 | #pragma interface
|
---|
51 | #endif
|
---|
52 |
|
---|
53 | #ifndef _math_symmetry_pointgrp_h
|
---|
54 | #define _math_symmetry_pointgrp_h
|
---|
55 |
|
---|
56 | #include <iostream>
|
---|
57 |
|
---|
58 | #include <util/class/class.h>
|
---|
59 | #include <util/state/state.h>
|
---|
60 | #include <util/keyval/keyval.h>
|
---|
61 | #include <math/scmat/vector3.h>
|
---|
62 |
|
---|
63 | namespace sc {
|
---|
64 |
|
---|
65 | // //////////////////////////////////////////////////////////////////
|
---|
66 |
|
---|
67 | /** The SymmetryOperation class provides a 3 by 3 matrix
|
---|
68 | representation of a symmetry operation, such as a rotation or reflection.
|
---|
69 | */
|
---|
70 | class SymmetryOperation {
|
---|
71 | private:
|
---|
72 | double d[3][3];
|
---|
73 |
|
---|
74 | public:
|
---|
75 | SymmetryOperation();
|
---|
76 | SymmetryOperation(const SymmetryOperation &);
|
---|
77 | ~SymmetryOperation();
|
---|
78 |
|
---|
79 | /// returns the trace of the transformation matrix
|
---|
80 | double trace() const { return d[0][0]+d[1][1]+d[2][2]; }
|
---|
81 |
|
---|
82 | /// returns the i'th row of the transformation matrix
|
---|
83 | double* operator[](int i) { return d[i]; }
|
---|
84 |
|
---|
85 | /// const version of the above
|
---|
86 | const double* operator[](int i) const { return d[i]; }
|
---|
87 |
|
---|
88 | /** returns a reference to the (i,j)th element of the transformation
|
---|
89 | matrix */
|
---|
90 | double& operator()(int i, int j) { return d[i][j]; }
|
---|
91 |
|
---|
92 | /// const version of the above
|
---|
93 | double operator()(int i, int j) const { return d[i][j]; }
|
---|
94 |
|
---|
95 | /// zero out the symop
|
---|
96 | void zero() { memset(d,0,sizeof(double)*9); }
|
---|
97 |
|
---|
98 | /// This operates on this with r (i.e. return r * this).
|
---|
99 | SymmetryOperation operate(const SymmetryOperation& r) const;
|
---|
100 |
|
---|
101 | /// This performs the transform r * this * r~
|
---|
102 | SymmetryOperation transform(const SymmetryOperation& r) const;
|
---|
103 |
|
---|
104 | /// Set equal to a unit matrix
|
---|
105 | void unit() { zero(); d[0][0] = d[1][1] = d[2][2] = 1.0; }
|
---|
106 |
|
---|
107 | /// Set equal to E
|
---|
108 | void E() { unit(); }
|
---|
109 |
|
---|
110 | /// Set equal to an inversion
|
---|
111 | void i() { zero(); d[0][0] = d[1][1] = d[2][2] = -1.0; }
|
---|
112 |
|
---|
113 | /// Set equal to reflection in xy plane
|
---|
114 | void sigma_h() { unit(); d[2][2] = -1.0; }
|
---|
115 |
|
---|
116 | /// Set equal to reflection in xz plane
|
---|
117 | void sigma_xz() { unit(); d[1][1] = -1.0; }
|
---|
118 |
|
---|
119 | /// Set equal to reflection in yz plane
|
---|
120 | void sigma_yz() { unit(); d[0][0] = -1.0; }
|
---|
121 |
|
---|
122 | /// Set equal to a clockwise rotation by 2pi/n
|
---|
123 | void rotation(int n);
|
---|
124 | void rotation(double theta);
|
---|
125 |
|
---|
126 | /// Set equal to C2 about the x axis
|
---|
127 | void c2_x() { i(); d[0][0] = 1.0; }
|
---|
128 |
|
---|
129 | /// Set equal to C2 about the x axis
|
---|
130 | void c2_y() { i(); d[1][1] = 1.0; }
|
---|
131 |
|
---|
132 | void transpose();
|
---|
133 |
|
---|
134 | /// print the matrix
|
---|
135 | void print(std::ostream& =ExEnv::out0()) const;
|
---|
136 | };
|
---|
137 |
|
---|
138 | // //////////////////////////////////////////////////////////////////
|
---|
139 |
|
---|
140 | /** The SymRep class provides an n dimensional matrix representation of a
|
---|
141 | symmetry operation, such as a rotation or reflection. The trace of a
|
---|
142 | SymRep can be used as the character for that symmetry operation. d is
|
---|
143 | hardwired to 5x5 since the H irrep in Ih is 5 dimensional.
|
---|
144 | */
|
---|
145 | class SymRep {
|
---|
146 | private:
|
---|
147 | int n;
|
---|
148 | double d[5][5];
|
---|
149 |
|
---|
150 | public:
|
---|
151 | SymRep(int =0);
|
---|
152 | SymRep(const SymmetryOperation&);
|
---|
153 | ~SymRep();
|
---|
154 |
|
---|
155 | /// Cast to a SymmetryOperation.
|
---|
156 | operator SymmetryOperation() const;
|
---|
157 |
|
---|
158 | /// returns the trace of the transformation matrix
|
---|
159 | inline double trace() const;
|
---|
160 |
|
---|
161 | /// set the dimension of d
|
---|
162 | void set_dim(int i) { n=i; }
|
---|
163 |
|
---|
164 | /// returns the i'th row of the transformation matrix
|
---|
165 | double* operator[](int i) { return d[i]; }
|
---|
166 | /// const version of the above
|
---|
167 | const double* operator[](int i) const { return d[i]; }
|
---|
168 |
|
---|
169 | /** returns a reference to the (i,j)th element of the transformation
|
---|
170 | matrix */
|
---|
171 | double& operator()(int i, int j) { return d[i][j]; }
|
---|
172 | /// const version of double& operator()(int i, int j)
|
---|
173 | double operator()(int i, int j) const { return d[i][j]; }
|
---|
174 |
|
---|
175 | /// zero out the symop
|
---|
176 | void zero() { memset(d,0,sizeof(double)*25); }
|
---|
177 |
|
---|
178 | /// This operates on this with r (i.e. return r * this).
|
---|
179 | SymRep operate(const SymRep& r) const;
|
---|
180 |
|
---|
181 | /// This performs the transform r * this * r~
|
---|
182 | SymRep transform(const SymRep& r) const;
|
---|
183 |
|
---|
184 | /// Set equal to a unit matrix
|
---|
185 | void unit() {
|
---|
186 | zero(); d[0][0] = d[1][1] = d[2][2] = d[3][3] = d[4][4] = 1.0;
|
---|
187 | }
|
---|
188 |
|
---|
189 | /// Set equal to the identity
|
---|
190 | void E() { unit(); }
|
---|
191 |
|
---|
192 | /// Set equal to an inversion
|
---|
193 | void i() { zero(); d[0][0] = d[1][1] = d[2][2] = d[3][3] = d[4][4] = -1.0;}
|
---|
194 |
|
---|
195 | /// Set equal to reflection in xy plane
|
---|
196 | void sigma_h();
|
---|
197 |
|
---|
198 | /// Set equal to reflection in xz plane
|
---|
199 | void sigma_xz();
|
---|
200 |
|
---|
201 | /// Set equal to reflection in yz plane
|
---|
202 | void sigma_yz();
|
---|
203 |
|
---|
204 | /// Set equal to a clockwise rotation by 2pi/n
|
---|
205 | void rotation(int n);
|
---|
206 | void rotation(double theta);
|
---|
207 |
|
---|
208 | /// Set equal to C2 about the x axis
|
---|
209 | void c2_x();
|
---|
210 |
|
---|
211 | /// Set equal to C2 about the x axis
|
---|
212 | void c2_y();
|
---|
213 |
|
---|
214 | /// print the matrix
|
---|
215 | void print(std::ostream& =ExEnv::out0()) const;
|
---|
216 | };
|
---|
217 |
|
---|
218 | inline double
|
---|
219 | SymRep::trace() const
|
---|
220 | {
|
---|
221 | double r=0;
|
---|
222 | for (int i=0; i < n; i++)
|
---|
223 | r += d[i][i];
|
---|
224 | return r;
|
---|
225 | }
|
---|
226 |
|
---|
227 | // //////////////////////////////////////////////////////////////////
|
---|
228 |
|
---|
229 |
|
---|
230 | class CharacterTable;
|
---|
231 |
|
---|
232 | /** The IrreducibleRepresentation class provides information associated
|
---|
233 | with a particular irreducible representation of a point group. This
|
---|
234 | includes the Mulliken symbol for the irrep, the degeneracy of the
|
---|
235 | irrep, the characters which represent the irrep, and the number of
|
---|
236 | translations and rotations in the irrep. The order of the point group
|
---|
237 | is also provided (this is equal to the number of characters in an
|
---|
238 | irrep). */
|
---|
239 | class IrreducibleRepresentation {
|
---|
240 | friend class CharacterTable;
|
---|
241 |
|
---|
242 | private:
|
---|
243 | int g; // the order of the group
|
---|
244 | int degen; // the degeneracy of the irrep
|
---|
245 | int nrot_; // the number of rotations in this irrep
|
---|
246 | int ntrans_; // the number of translations in this irrep
|
---|
247 | int complex_; // true if this irrep has a complex representation
|
---|
248 | char *symb; // mulliken symbol for this irrep
|
---|
249 | char *csymb; // mulliken symbol for this irrep w/o special characters
|
---|
250 |
|
---|
251 | SymRep *rep; // representation matrices for the symops
|
---|
252 |
|
---|
253 | public:
|
---|
254 | IrreducibleRepresentation();
|
---|
255 | IrreducibleRepresentation(const IrreducibleRepresentation&);
|
---|
256 | /** This constructor takes as arguments the order of the point group,
|
---|
257 | the degeneracy of the irrep, and the Mulliken symbol of the irrep.
|
---|
258 | The Mulliken symbol is copied internally. */
|
---|
259 | IrreducibleRepresentation(int,int,const char*,const char* =0);
|
---|
260 |
|
---|
261 | ~IrreducibleRepresentation();
|
---|
262 |
|
---|
263 | IrreducibleRepresentation& operator=(const IrreducibleRepresentation&);
|
---|
264 |
|
---|
265 | /// Initialize the order, degeneracy, and Mulliken symbol of the irrep.
|
---|
266 | void init(int =0, int =0, const char* =0, const char* =0);
|
---|
267 |
|
---|
268 | /// Returns the order of the group.
|
---|
269 | int order() const { return g; }
|
---|
270 |
|
---|
271 | /// Returns the degeneracy of the irrep.
|
---|
272 | int degeneracy() const { return degen; }
|
---|
273 |
|
---|
274 | /// Returns the value of complex_.
|
---|
275 | int complex() const { return complex_; }
|
---|
276 |
|
---|
277 | /// Returns the number of projection operators for the irrep.
|
---|
278 | int nproj() const { return degen*degen; }
|
---|
279 |
|
---|
280 | /// Returns the number of rotations associated with the irrep.
|
---|
281 | int nrot() const { return nrot_; }
|
---|
282 |
|
---|
283 | /// Returns the number of translations associated with the irrep.
|
---|
284 | int ntrans() const { return ntrans_; }
|
---|
285 |
|
---|
286 | /// Returns the Mulliken symbol for the irrep.
|
---|
287 | const char * symbol() const { return symb; }
|
---|
288 |
|
---|
289 | /** Returns the Mulliken symbol for the irrep without special
|
---|
290 | characters.
|
---|
291 | */
|
---|
292 | const char * symbol_ns() const { return (csymb?csymb:symb); }
|
---|
293 |
|
---|
294 | /** Returns the character for the i'th symmetry operation of the point
|
---|
295 | group. */
|
---|
296 | double character(int i) const {
|
---|
297 | return complex_ ? 0.5*rep[i].trace() : rep[i].trace();
|
---|
298 | }
|
---|
299 |
|
---|
300 | /// Returns the element (x1,x2) of the i'th representation matrix.
|
---|
301 | double p(int x1, int x2, int i) const { return rep[i](x1,x2); }
|
---|
302 |
|
---|
303 | /** Returns the character for the d'th contribution to the i'th
|
---|
304 | representation matrix. */
|
---|
305 | double p(int d, int i) const {
|
---|
306 | int dc=d/degen; int dr=d%degen;
|
---|
307 | return rep[i](dr,dc);
|
---|
308 | }
|
---|
309 |
|
---|
310 | /** This prints the irrep to the given file, or stdout if none is
|
---|
311 | given. The second argument is an optional string of spaces to offset
|
---|
312 | by. */
|
---|
313 | void print(std::ostream& =ExEnv::out0()) const;
|
---|
314 | };
|
---|
315 |
|
---|
316 | // ///////////////////////////////////////////////////////////
|
---|
317 | /** The CharacterTable class provides a workable character table
|
---|
318 | for all of the non-cubic point groups. While I have tried to match the
|
---|
319 | ordering in Cotton's book, I don't guarantee that it is always followed.
|
---|
320 | It shouldn't matter anyway. Also note that I don't lump symmetry
|
---|
321 | operations of the same class together. For example, in C3v there are two
|
---|
322 | distinct C3 rotations and 3 distinct reflections, each with a separate
|
---|
323 | character. Thus symop has 6 elements rather than the 3 you'll find in
|
---|
324 | most published character tables. */
|
---|
325 | class CharacterTable {
|
---|
326 | public:
|
---|
327 | enum pgroups {C1, CS, CI, CN, CNV, CNH, DN, DND, DNH, SN, T, TH, TD, O,
|
---|
328 | OH, I, IH};
|
---|
329 |
|
---|
330 | private:
|
---|
331 | int g; // the order of the point group
|
---|
332 | int nt; // order of the princ rot axis
|
---|
333 | pgroups pg; // the class of the point group
|
---|
334 | int nirrep_; // the number of irreps in this pg
|
---|
335 | IrreducibleRepresentation *gamma_; // an array of irreps
|
---|
336 | SymmetryOperation *symop; // the matrices describing sym ops
|
---|
337 | int *_inv; // index of the inverse symop
|
---|
338 | char *symb; // the Schoenflies symbol for the pg
|
---|
339 |
|
---|
340 | /// this determines what type of point group we're dealing with
|
---|
341 | int parse_symbol();
|
---|
342 | /// this fills in the irrep and symop arrays.
|
---|
343 | int make_table();
|
---|
344 |
|
---|
345 | // these create the character tables for the cubic groups
|
---|
346 | void t();
|
---|
347 | void th();
|
---|
348 | void td();
|
---|
349 | void o();
|
---|
350 | void oh();
|
---|
351 | void i();
|
---|
352 | void ih();
|
---|
353 |
|
---|
354 | public:
|
---|
355 | CharacterTable();
|
---|
356 | /** This constructor takes the Schoenflies symbol of a point group as
|
---|
357 | input. */
|
---|
358 | CharacterTable(const char*);
|
---|
359 | /** This is like the above, but it also takes a reference to a
|
---|
360 | SymmetryOperation which is the frame of reference. All symmetry
|
---|
361 | operations are transformed to this frame of reference. */
|
---|
362 | CharacterTable(const char*,const SymmetryOperation&);
|
---|
363 |
|
---|
364 | CharacterTable(const CharacterTable&);
|
---|
365 | ~CharacterTable();
|
---|
366 |
|
---|
367 | CharacterTable& operator=(const CharacterTable&);
|
---|
368 |
|
---|
369 | /// Returns the number of irreps.
|
---|
370 | int nirrep() const { return nirrep_; }
|
---|
371 | /// Returns the order of the point group
|
---|
372 | int order() const { return g; }
|
---|
373 | /// Returns the Schoenflies symbol for the point group
|
---|
374 | const char * symbol() const { return symb; }
|
---|
375 | /// Returns the i'th irrep.
|
---|
376 | IrreducibleRepresentation& gamma(int i) { return gamma_[i]; }
|
---|
377 | /// Returns the i'th symmetry operation.
|
---|
378 | SymmetryOperation& symm_operation(int i) { return symop[i]; }
|
---|
379 |
|
---|
380 | /** Cn, Cnh, Sn, T, and Th point groups have complex representations.
|
---|
381 | This function returns 1 if the point group has a complex
|
---|
382 | representation, 0 otherwise. */
|
---|
383 | int complex() const {
|
---|
384 | if (pg==CN || pg==SN || pg==CNH || pg==T || pg==TH)
|
---|
385 | return 1;
|
---|
386 | return 0;
|
---|
387 | }
|
---|
388 |
|
---|
389 | /// Returns the index of the symop which is the inverse of symop[i].
|
---|
390 | int inverse(int i) const { return _inv[i]; }
|
---|
391 |
|
---|
392 | int ncomp() const {
|
---|
393 | int ret=0;
|
---|
394 | for (int i=0; i < nirrep_; i++) {
|
---|
395 | int nc = (gamma_[i].complex()) ? 1 : gamma_[i].degen;
|
---|
396 | ret += nc;
|
---|
397 | }
|
---|
398 | return ret;
|
---|
399 | }
|
---|
400 |
|
---|
401 | /// Returns the irrep component i belongs to.
|
---|
402 | int which_irrep(int i) {
|
---|
403 | for (int ir=0, cn=0; ir < nirrep_; ir++) {
|
---|
404 | int nc = (gamma_[ir].complex()) ? 1 : gamma_[ir].degen;
|
---|
405 | for (int c=0; c < nc; c++,cn++)
|
---|
406 | if (cn==i)
|
---|
407 | return ir;
|
---|
408 | }
|
---|
409 | return -1;
|
---|
410 | }
|
---|
411 |
|
---|
412 | /// Returns which component i is.
|
---|
413 | int which_comp(int i) {
|
---|
414 | for (int ir=0, cn=0; ir < nirrep_; ir++) {
|
---|
415 | int nc = (gamma_[ir].complex()) ? 1 : gamma_[ir].degen;
|
---|
416 | for (int c=0; c < nc; c++,cn++)
|
---|
417 | if (cn==i)
|
---|
418 | return c;
|
---|
419 | }
|
---|
420 | return -1;
|
---|
421 | }
|
---|
422 |
|
---|
423 | /// This prints the irrep to the given file, or stdout if none is given.
|
---|
424 | void print(std::ostream& =ExEnv::out0()) const;
|
---|
425 | };
|
---|
426 |
|
---|
427 | // ///////////////////////////////////////////////////////////
|
---|
428 |
|
---|
429 | /** The PointGroup class is really a place holder for a CharacterTable. It
|
---|
430 | contains a string representation of the Schoenflies symbol of a point
|
---|
431 | group, a frame of reference for the symmetry operation transformation
|
---|
432 | matrices, and a point of origin. The origin is not respected by the
|
---|
433 | symmetry operations, so if you want to use a point group with a nonzero
|
---|
434 | origin, first translate all your coordinates to the origin and then set
|
---|
435 | the origin to zero. */
|
---|
436 | class PointGroup: public SavableState {
|
---|
437 | private:
|
---|
438 | char *symb;
|
---|
439 | SymmetryOperation frame;
|
---|
440 | SCVector3 origin_;
|
---|
441 |
|
---|
442 | public:
|
---|
443 | PointGroup();
|
---|
444 | /** This constructor takes a string containing the Schoenflies symbol
|
---|
445 | of the point group as its only argument. */
|
---|
446 | PointGroup(const char*);
|
---|
447 | /** Like the above, but this constructor also takes a frame of reference
|
---|
448 | as an argument. */
|
---|
449 | PointGroup(const char*,SymmetryOperation&);
|
---|
450 | /** Like the above, but this constructor also takes a point of origin
|
---|
451 | as an argument. */
|
---|
452 | PointGroup(const char*,SymmetryOperation&,const SCVector3&);
|
---|
453 | /** The PointGroup KeyVal constructor looks for three keywords:
|
---|
454 | symmetry, symmetry_frame, and origin. symmetry is a string
|
---|
455 | containing the Schoenflies symbol of the point group. origin is an
|
---|
456 | array of doubles which gives the x, y, and z coordinates of the
|
---|
457 | origin of the symmetry frame. symmetry_frame is a 3 by 3 array of
|
---|
458 | arrays of doubles which specify the principal axes for the
|
---|
459 | transformation matrices as a unitary rotation.
|
---|
460 |
|
---|
461 | For example, a simple input which will use the default origin and
|
---|
462 | symmetry_frame ((0,0,0) and the unit matrix, respectively), might
|
---|
463 | look like this:
|
---|
464 |
|
---|
465 | <pre>
|
---|
466 | pointgrp<PointGroup>: (
|
---|
467 | symmetry = "c2v"
|
---|
468 | )
|
---|
469 | </pre>
|
---|
470 |
|
---|
471 | By default, the principal rotation axis is taken to be the z axis.
|
---|
472 | If you already have a set of coordinates which assume that the
|
---|
473 | rotation axis is the x axis, then you'll have to rotate your frame
|
---|
474 | of reference with symmetry_frame:
|
---|
475 |
|
---|
476 | <pre>
|
---|
477 | pointgrp<PointGroup>: (
|
---|
478 | symmetry = "c2v"
|
---|
479 | symmetry_frame = [
|
---|
480 | [ 0 0 1 ]
|
---|
481 | [ 0 1 0 ]
|
---|
482 | [ 1 0 0 ]
|
---|
483 | ]
|
---|
484 | )
|
---|
485 | </pre>
|
---|
486 | */
|
---|
487 | PointGroup(const Ref<KeyVal>&);
|
---|
488 |
|
---|
489 | PointGroup(StateIn&);
|
---|
490 | PointGroup(const PointGroup&);
|
---|
491 | PointGroup(const Ref<PointGroup>&);
|
---|
492 | ~PointGroup();
|
---|
493 |
|
---|
494 | PointGroup& operator=(const PointGroup&);
|
---|
495 |
|
---|
496 | /// Returns 1 if the point groups are equivalent, 0 otherwise.
|
---|
497 | int equiv(const Ref<PointGroup> &, double tol = 1.0e-6) const;
|
---|
498 |
|
---|
499 | /// Returns the CharacterTable for this point group.
|
---|
500 | CharacterTable char_table() const;
|
---|
501 | /// Returns the Schoenflies symbol for this point group.
|
---|
502 | const char * symbol() const { return symb; }
|
---|
503 | /// Returns the frame of reference for this point group.
|
---|
504 | SymmetryOperation& symm_frame() { return frame; }
|
---|
505 | /// A const version of the above
|
---|
506 | const SymmetryOperation& symm_frame() const { return frame; }
|
---|
507 | /// Returns the origin of the symmetry frame.
|
---|
508 | SCVector3& origin() { return origin_; }
|
---|
509 | const SCVector3& origin() const { return origin_; }
|
---|
510 |
|
---|
511 | /// Sets (or resets) the Schoenflies symbol.
|
---|
512 | void set_symbol(const char*);
|
---|
513 |
|
---|
514 | void save_data_state(StateOut& so);
|
---|
515 |
|
---|
516 | void print(std::ostream&o=ExEnv::out0()) const;
|
---|
517 | };
|
---|
518 |
|
---|
519 | }
|
---|
520 |
|
---|
521 | #endif
|
---|
522 |
|
---|
523 | // Local Variables:
|
---|
524 | // mode: c++
|
---|
525 | // c-file-style: "ETS"
|
---|
526 | // End:
|
---|