source: ThirdParty/mpqc_open/src/lib/math/symmetry/pointgrp.h@ b7e5b0

Action_Thermostats Add_AtomRandomPerturbation Add_RotateAroundBondAction Add_SelectAtomByNameAction Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_StructOpt_integration_tests AutomationFragmentation_failures Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_ChronosMutex Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion GeometryObjects Gui_displays_atomic_force_velocity IndependentFragmentGrids_IntegrationTest JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks RotateToPrincipalAxisSystem_UndoRedo StoppableMakroAction Subpackage_levmar Subpackage_vmg ThirdParty_MPQC_rebuilt_buildsystem TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps Ubuntu_1604_changes stable
Last change on this file since b7e5b0 was 860145, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '0b990dfaa8c6007a996d030163a25f7f5fc8a7e7' as 'ThirdParty/mpqc_open'

  • Property mode set to 100644
File size: 17.1 KB
Line 
1//
2// pointgrp.h
3//
4// Modifications are
5// Copyright (C) 1996 Limit Point Systems, Inc.
6//
7// Author: Edward Seidl <seidl@janed.com>
8// Maintainer: LPS
9//
10// This file is part of the SC Toolkit.
11//
12// The SC Toolkit is free software; you can redistribute it and/or modify
13// it under the terms of the GNU Library General Public License as published by
14// the Free Software Foundation; either version 2, or (at your option)
15// any later version.
16//
17// The SC Toolkit is distributed in the hope that it will be useful,
18// but WITHOUT ANY WARRANTY; without even the implied warranty of
19// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20// GNU Library General Public License for more details.
21//
22// You should have received a copy of the GNU Library General Public License
23// along with the SC Toolkit; see the file COPYING.LIB. If not, write to
24// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25//
26// The U.S. Government is granted a limited license as per AL 91-7.
27//
28
29/* pointgrp.h -- definition of the point group classes
30 *
31 * THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A
32 * "UNITED STATES GOVERNMENT WORK". IT WAS WRITTEN AS A PART OF THE
33 * AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE. THIS MEANS IT
34 * CANNOT BE COPYRIGHTED. THIS SOFTWARE IS FREELY AVAILABLE TO THE
35 * PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO
36 * RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY.
37 *
38 * Author:
39 * E. T. Seidl
40 * Bldg. 12A, Rm. 2033
41 * Computer Systems Laboratory
42 * Division of Computer Research and Technology
43 * National Institutes of Health
44 * Bethesda, Maryland 20892
45 * Internet: seidl@alw.nih.gov
46 * June, 1993
47 */
48
49#ifdef __GNUC__
50#pragma interface
51#endif
52
53#ifndef _math_symmetry_pointgrp_h
54#define _math_symmetry_pointgrp_h
55
56#include <iostream>
57
58#include <util/class/class.h>
59#include <util/state/state.h>
60#include <util/keyval/keyval.h>
61#include <math/scmat/vector3.h>
62
63namespace sc {
64
65// //////////////////////////////////////////////////////////////////
66
67/** The SymmetryOperation class provides a 3 by 3 matrix
68 representation of a symmetry operation, such as a rotation or reflection.
69*/
70class SymmetryOperation {
71 private:
72 double d[3][3];
73
74 public:
75 SymmetryOperation();
76 SymmetryOperation(const SymmetryOperation &);
77 ~SymmetryOperation();
78
79 /// returns the trace of the transformation matrix
80 double trace() const { return d[0][0]+d[1][1]+d[2][2]; }
81
82 /// returns the i'th row of the transformation matrix
83 double* operator[](int i) { return d[i]; }
84
85 /// const version of the above
86 const double* operator[](int i) const { return d[i]; }
87
88 /** returns a reference to the (i,j)th element of the transformation
89 matrix */
90 double& operator()(int i, int j) { return d[i][j]; }
91
92 /// const version of the above
93 double operator()(int i, int j) const { return d[i][j]; }
94
95 /// zero out the symop
96 void zero() { memset(d,0,sizeof(double)*9); }
97
98 /// This operates on this with r (i.e. return r * this).
99 SymmetryOperation operate(const SymmetryOperation& r) const;
100
101 /// This performs the transform r * this * r~
102 SymmetryOperation transform(const SymmetryOperation& r) const;
103
104 /// Set equal to a unit matrix
105 void unit() { zero(); d[0][0] = d[1][1] = d[2][2] = 1.0; }
106
107 /// Set equal to E
108 void E() { unit(); }
109
110 /// Set equal to an inversion
111 void i() { zero(); d[0][0] = d[1][1] = d[2][2] = -1.0; }
112
113 /// Set equal to reflection in xy plane
114 void sigma_h() { unit(); d[2][2] = -1.0; }
115
116 /// Set equal to reflection in xz plane
117 void sigma_xz() { unit(); d[1][1] = -1.0; }
118
119 /// Set equal to reflection in yz plane
120 void sigma_yz() { unit(); d[0][0] = -1.0; }
121
122 /// Set equal to a clockwise rotation by 2pi/n
123 void rotation(int n);
124 void rotation(double theta);
125
126 /// Set equal to C2 about the x axis
127 void c2_x() { i(); d[0][0] = 1.0; }
128
129 /// Set equal to C2 about the x axis
130 void c2_y() { i(); d[1][1] = 1.0; }
131
132 void transpose();
133
134 /// print the matrix
135 void print(std::ostream& =ExEnv::out0()) const;
136};
137
138// //////////////////////////////////////////////////////////////////
139
140/** The SymRep class provides an n dimensional matrix representation of a
141 symmetry operation, such as a rotation or reflection. The trace of a
142 SymRep can be used as the character for that symmetry operation. d is
143 hardwired to 5x5 since the H irrep in Ih is 5 dimensional.
144*/
145class SymRep {
146 private:
147 int n;
148 double d[5][5];
149
150 public:
151 SymRep(int =0);
152 SymRep(const SymmetryOperation&);
153 ~SymRep();
154
155 /// Cast to a SymmetryOperation.
156 operator SymmetryOperation() const;
157
158 /// returns the trace of the transformation matrix
159 inline double trace() const;
160
161 /// set the dimension of d
162 void set_dim(int i) { n=i; }
163
164 /// returns the i'th row of the transformation matrix
165 double* operator[](int i) { return d[i]; }
166 /// const version of the above
167 const double* operator[](int i) const { return d[i]; }
168
169 /** returns a reference to the (i,j)th element of the transformation
170 matrix */
171 double& operator()(int i, int j) { return d[i][j]; }
172 /// const version of double& operator()(int i, int j)
173 double operator()(int i, int j) const { return d[i][j]; }
174
175 /// zero out the symop
176 void zero() { memset(d,0,sizeof(double)*25); }
177
178 /// This operates on this with r (i.e. return r * this).
179 SymRep operate(const SymRep& r) const;
180
181 /// This performs the transform r * this * r~
182 SymRep transform(const SymRep& r) const;
183
184 /// Set equal to a unit matrix
185 void unit() {
186 zero(); d[0][0] = d[1][1] = d[2][2] = d[3][3] = d[4][4] = 1.0;
187 }
188
189 /// Set equal to the identity
190 void E() { unit(); }
191
192 /// Set equal to an inversion
193 void i() { zero(); d[0][0] = d[1][1] = d[2][2] = d[3][3] = d[4][4] = -1.0;}
194
195 /// Set equal to reflection in xy plane
196 void sigma_h();
197
198 /// Set equal to reflection in xz plane
199 void sigma_xz();
200
201 /// Set equal to reflection in yz plane
202 void sigma_yz();
203
204 /// Set equal to a clockwise rotation by 2pi/n
205 void rotation(int n);
206 void rotation(double theta);
207
208 /// Set equal to C2 about the x axis
209 void c2_x();
210
211 /// Set equal to C2 about the x axis
212 void c2_y();
213
214 /// print the matrix
215 void print(std::ostream& =ExEnv::out0()) const;
216};
217
218inline double
219SymRep::trace() const
220{
221 double r=0;
222 for (int i=0; i < n; i++)
223 r += d[i][i];
224 return r;
225}
226
227// //////////////////////////////////////////////////////////////////
228
229
230class CharacterTable;
231
232/** The IrreducibleRepresentation class provides information associated
233 with a particular irreducible representation of a point group. This
234 includes the Mulliken symbol for the irrep, the degeneracy of the
235 irrep, the characters which represent the irrep, and the number of
236 translations and rotations in the irrep. The order of the point group
237 is also provided (this is equal to the number of characters in an
238 irrep). */
239class IrreducibleRepresentation {
240 friend class CharacterTable;
241
242 private:
243 int g; // the order of the group
244 int degen; // the degeneracy of the irrep
245 int nrot_; // the number of rotations in this irrep
246 int ntrans_; // the number of translations in this irrep
247 int complex_; // true if this irrep has a complex representation
248 char *symb; // mulliken symbol for this irrep
249 char *csymb; // mulliken symbol for this irrep w/o special characters
250
251 SymRep *rep; // representation matrices for the symops
252
253 public:
254 IrreducibleRepresentation();
255 IrreducibleRepresentation(const IrreducibleRepresentation&);
256 /** This constructor takes as arguments the order of the point group,
257 the degeneracy of the irrep, and the Mulliken symbol of the irrep.
258 The Mulliken symbol is copied internally. */
259 IrreducibleRepresentation(int,int,const char*,const char* =0);
260
261 ~IrreducibleRepresentation();
262
263 IrreducibleRepresentation& operator=(const IrreducibleRepresentation&);
264
265 /// Initialize the order, degeneracy, and Mulliken symbol of the irrep.
266 void init(int =0, int =0, const char* =0, const char* =0);
267
268 /// Returns the order of the group.
269 int order() const { return g; }
270
271 /// Returns the degeneracy of the irrep.
272 int degeneracy() const { return degen; }
273
274 /// Returns the value of complex_.
275 int complex() const { return complex_; }
276
277 /// Returns the number of projection operators for the irrep.
278 int nproj() const { return degen*degen; }
279
280 /// Returns the number of rotations associated with the irrep.
281 int nrot() const { return nrot_; }
282
283 /// Returns the number of translations associated with the irrep.
284 int ntrans() const { return ntrans_; }
285
286 /// Returns the Mulliken symbol for the irrep.
287 const char * symbol() const { return symb; }
288
289 /** Returns the Mulliken symbol for the irrep without special
290 characters.
291 */
292 const char * symbol_ns() const { return (csymb?csymb:symb); }
293
294 /** Returns the character for the i'th symmetry operation of the point
295 group. */
296 double character(int i) const {
297 return complex_ ? 0.5*rep[i].trace() : rep[i].trace();
298 }
299
300 /// Returns the element (x1,x2) of the i'th representation matrix.
301 double p(int x1, int x2, int i) const { return rep[i](x1,x2); }
302
303 /** Returns the character for the d'th contribution to the i'th
304 representation matrix. */
305 double p(int d, int i) const {
306 int dc=d/degen; int dr=d%degen;
307 return rep[i](dr,dc);
308 }
309
310 /** This prints the irrep to the given file, or stdout if none is
311 given. The second argument is an optional string of spaces to offset
312 by. */
313 void print(std::ostream& =ExEnv::out0()) const;
314};
315
316// ///////////////////////////////////////////////////////////
317/** The CharacterTable class provides a workable character table
318 for all of the non-cubic point groups. While I have tried to match the
319 ordering in Cotton's book, I don't guarantee that it is always followed.
320 It shouldn't matter anyway. Also note that I don't lump symmetry
321 operations of the same class together. For example, in C3v there are two
322 distinct C3 rotations and 3 distinct reflections, each with a separate
323 character. Thus symop has 6 elements rather than the 3 you'll find in
324 most published character tables. */
325class CharacterTable {
326 public:
327 enum pgroups {C1, CS, CI, CN, CNV, CNH, DN, DND, DNH, SN, T, TH, TD, O,
328 OH, I, IH};
329
330 private:
331 int g; // the order of the point group
332 int nt; // order of the princ rot axis
333 pgroups pg; // the class of the point group
334 int nirrep_; // the number of irreps in this pg
335 IrreducibleRepresentation *gamma_; // an array of irreps
336 SymmetryOperation *symop; // the matrices describing sym ops
337 int *_inv; // index of the inverse symop
338 char *symb; // the Schoenflies symbol for the pg
339
340 /// this determines what type of point group we're dealing with
341 int parse_symbol();
342 /// this fills in the irrep and symop arrays.
343 int make_table();
344
345 // these create the character tables for the cubic groups
346 void t();
347 void th();
348 void td();
349 void o();
350 void oh();
351 void i();
352 void ih();
353
354 public:
355 CharacterTable();
356 /** This constructor takes the Schoenflies symbol of a point group as
357 input. */
358 CharacterTable(const char*);
359 /** This is like the above, but it also takes a reference to a
360 SymmetryOperation which is the frame of reference. All symmetry
361 operations are transformed to this frame of reference. */
362 CharacterTable(const char*,const SymmetryOperation&);
363
364 CharacterTable(const CharacterTable&);
365 ~CharacterTable();
366
367 CharacterTable& operator=(const CharacterTable&);
368
369 /// Returns the number of irreps.
370 int nirrep() const { return nirrep_; }
371 /// Returns the order of the point group
372 int order() const { return g; }
373 /// Returns the Schoenflies symbol for the point group
374 const char * symbol() const { return symb; }
375 /// Returns the i'th irrep.
376 IrreducibleRepresentation& gamma(int i) { return gamma_[i]; }
377 /// Returns the i'th symmetry operation.
378 SymmetryOperation& symm_operation(int i) { return symop[i]; }
379
380 /** Cn, Cnh, Sn, T, and Th point groups have complex representations.
381 This function returns 1 if the point group has a complex
382 representation, 0 otherwise. */
383 int complex() const {
384 if (pg==CN || pg==SN || pg==CNH || pg==T || pg==TH)
385 return 1;
386 return 0;
387 }
388
389 /// Returns the index of the symop which is the inverse of symop[i].
390 int inverse(int i) const { return _inv[i]; }
391
392 int ncomp() const {
393 int ret=0;
394 for (int i=0; i < nirrep_; i++) {
395 int nc = (gamma_[i].complex()) ? 1 : gamma_[i].degen;
396 ret += nc;
397 }
398 return ret;
399 }
400
401 /// Returns the irrep component i belongs to.
402 int which_irrep(int i) {
403 for (int ir=0, cn=0; ir < nirrep_; ir++) {
404 int nc = (gamma_[ir].complex()) ? 1 : gamma_[ir].degen;
405 for (int c=0; c < nc; c++,cn++)
406 if (cn==i)
407 return ir;
408 }
409 return -1;
410 }
411
412 /// Returns which component i is.
413 int which_comp(int i) {
414 for (int ir=0, cn=0; ir < nirrep_; ir++) {
415 int nc = (gamma_[ir].complex()) ? 1 : gamma_[ir].degen;
416 for (int c=0; c < nc; c++,cn++)
417 if (cn==i)
418 return c;
419 }
420 return -1;
421 }
422
423 /// This prints the irrep to the given file, or stdout if none is given.
424 void print(std::ostream& =ExEnv::out0()) const;
425};
426
427// ///////////////////////////////////////////////////////////
428
429/** The PointGroup class is really a place holder for a CharacterTable. It
430 contains a string representation of the Schoenflies symbol of a point
431 group, a frame of reference for the symmetry operation transformation
432 matrices, and a point of origin. The origin is not respected by the
433 symmetry operations, so if you want to use a point group with a nonzero
434 origin, first translate all your coordinates to the origin and then set
435 the origin to zero. */
436class PointGroup: public SavableState {
437 private:
438 char *symb;
439 SymmetryOperation frame;
440 SCVector3 origin_;
441
442 public:
443 PointGroup();
444 /** This constructor takes a string containing the Schoenflies symbol
445 of the point group as its only argument. */
446 PointGroup(const char*);
447 /** Like the above, but this constructor also takes a frame of reference
448 as an argument. */
449 PointGroup(const char*,SymmetryOperation&);
450 /** Like the above, but this constructor also takes a point of origin
451 as an argument. */
452 PointGroup(const char*,SymmetryOperation&,const SCVector3&);
453 /** The PointGroup KeyVal constructor looks for three keywords:
454 symmetry, symmetry_frame, and origin. symmetry is a string
455 containing the Schoenflies symbol of the point group. origin is an
456 array of doubles which gives the x, y, and z coordinates of the
457 origin of the symmetry frame. symmetry_frame is a 3 by 3 array of
458 arrays of doubles which specify the principal axes for the
459 transformation matrices as a unitary rotation.
460
461 For example, a simple input which will use the default origin and
462 symmetry_frame ((0,0,0) and the unit matrix, respectively), might
463 look like this:
464
465 <pre>
466 pointgrp<PointGroup>: (
467 symmetry = "c2v"
468 )
469 </pre>
470
471 By default, the principal rotation axis is taken to be the z axis.
472 If you already have a set of coordinates which assume that the
473 rotation axis is the x axis, then you'll have to rotate your frame
474 of reference with symmetry_frame:
475
476 <pre>
477 pointgrp<PointGroup>: (
478 symmetry = "c2v"
479 symmetry_frame = [
480 [ 0 0 1 ]
481 [ 0 1 0 ]
482 [ 1 0 0 ]
483 ]
484 )
485 </pre>
486 */
487 PointGroup(const Ref<KeyVal>&);
488
489 PointGroup(StateIn&);
490 PointGroup(const PointGroup&);
491 PointGroup(const Ref<PointGroup>&);
492 ~PointGroup();
493
494 PointGroup& operator=(const PointGroup&);
495
496 /// Returns 1 if the point groups are equivalent, 0 otherwise.
497 int equiv(const Ref<PointGroup> &, double tol = 1.0e-6) const;
498
499 /// Returns the CharacterTable for this point group.
500 CharacterTable char_table() const;
501 /// Returns the Schoenflies symbol for this point group.
502 const char * symbol() const { return symb; }
503 /// Returns the frame of reference for this point group.
504 SymmetryOperation& symm_frame() { return frame; }
505 /// A const version of the above
506 const SymmetryOperation& symm_frame() const { return frame; }
507 /// Returns the origin of the symmetry frame.
508 SCVector3& origin() { return origin_; }
509 const SCVector3& origin() const { return origin_; }
510
511 /// Sets (or resets) the Schoenflies symbol.
512 void set_symbol(const char*);
513
514 void save_data_state(StateOut& so);
515
516 void print(std::ostream&o=ExEnv::out0()) const;
517};
518
519}
520
521#endif
522
523// Local Variables:
524// mode: c++
525// c-file-style: "ETS"
526// End:
Note: See TracBrowser for help on using the repository browser.