| [0b990d] | 1 | // | 
|---|
|  | 2 | // pointgrp.h | 
|---|
|  | 3 | // | 
|---|
|  | 4 | // Modifications are | 
|---|
|  | 5 | // Copyright (C) 1996 Limit Point Systems, Inc. | 
|---|
|  | 6 | // | 
|---|
|  | 7 | // Author: Edward Seidl <seidl@janed.com> | 
|---|
|  | 8 | // Maintainer: LPS | 
|---|
|  | 9 | // | 
|---|
|  | 10 | // This file is part of the SC Toolkit. | 
|---|
|  | 11 | // | 
|---|
|  | 12 | // The SC Toolkit is free software; you can redistribute it and/or modify | 
|---|
|  | 13 | // it under the terms of the GNU Library General Public License as published by | 
|---|
|  | 14 | // the Free Software Foundation; either version 2, or (at your option) | 
|---|
|  | 15 | // any later version. | 
|---|
|  | 16 | // | 
|---|
|  | 17 | // The SC Toolkit is distributed in the hope that it will be useful, | 
|---|
|  | 18 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 19 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 20 | // GNU Library General Public License for more details. | 
|---|
|  | 21 | // | 
|---|
|  | 22 | // You should have received a copy of the GNU Library General Public License | 
|---|
|  | 23 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to | 
|---|
|  | 24 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | 
|---|
|  | 25 | // | 
|---|
|  | 26 | // The U.S. Government is granted a limited license as per AL 91-7. | 
|---|
|  | 27 | // | 
|---|
|  | 28 |  | 
|---|
|  | 29 | /* pointgrp.h -- definition of the point group classes | 
|---|
|  | 30 | * | 
|---|
|  | 31 | *      THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A | 
|---|
|  | 32 | *      "UNITED STATES GOVERNMENT WORK".  IT WAS WRITTEN AS A PART OF THE | 
|---|
|  | 33 | *      AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE.  THIS MEANS IT | 
|---|
|  | 34 | *      CANNOT BE COPYRIGHTED.  THIS SOFTWARE IS FREELY AVAILABLE TO THE | 
|---|
|  | 35 | *      PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO | 
|---|
|  | 36 | *      RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY. | 
|---|
|  | 37 | * | 
|---|
|  | 38 | *  Author: | 
|---|
|  | 39 | *      E. T. Seidl | 
|---|
|  | 40 | *      Bldg. 12A, Rm. 2033 | 
|---|
|  | 41 | *      Computer Systems Laboratory | 
|---|
|  | 42 | *      Division of Computer Research and Technology | 
|---|
|  | 43 | *      National Institutes of Health | 
|---|
|  | 44 | *      Bethesda, Maryland 20892 | 
|---|
|  | 45 | *      Internet: seidl@alw.nih.gov | 
|---|
|  | 46 | *      June, 1993 | 
|---|
|  | 47 | */ | 
|---|
|  | 48 |  | 
|---|
|  | 49 | #ifdef __GNUC__ | 
|---|
|  | 50 | #pragma interface | 
|---|
|  | 51 | #endif | 
|---|
|  | 52 |  | 
|---|
|  | 53 | #ifndef _math_symmetry_pointgrp_h | 
|---|
|  | 54 | #define _math_symmetry_pointgrp_h | 
|---|
|  | 55 |  | 
|---|
|  | 56 | #include <iostream> | 
|---|
|  | 57 |  | 
|---|
|  | 58 | #include <util/class/class.h> | 
|---|
|  | 59 | #include <util/state/state.h> | 
|---|
|  | 60 | #include <util/keyval/keyval.h> | 
|---|
|  | 61 | #include <math/scmat/vector3.h> | 
|---|
|  | 62 |  | 
|---|
|  | 63 | namespace sc { | 
|---|
|  | 64 |  | 
|---|
|  | 65 | // ////////////////////////////////////////////////////////////////// | 
|---|
|  | 66 |  | 
|---|
|  | 67 | /** The SymmetryOperation class provides a 3 by 3 matrix | 
|---|
|  | 68 | representation of a symmetry operation, such as a rotation or reflection. | 
|---|
|  | 69 | */ | 
|---|
|  | 70 | class SymmetryOperation { | 
|---|
|  | 71 | private: | 
|---|
|  | 72 | double d[3][3]; | 
|---|
|  | 73 |  | 
|---|
|  | 74 | public: | 
|---|
|  | 75 | SymmetryOperation(); | 
|---|
|  | 76 | SymmetryOperation(const SymmetryOperation &); | 
|---|
|  | 77 | ~SymmetryOperation(); | 
|---|
|  | 78 |  | 
|---|
|  | 79 | /// returns the trace of the transformation matrix | 
|---|
|  | 80 | double trace() const { return d[0][0]+d[1][1]+d[2][2]; } | 
|---|
|  | 81 |  | 
|---|
|  | 82 | /// returns the i'th row of the transformation matrix | 
|---|
|  | 83 | double* operator[](int i) { return d[i]; } | 
|---|
|  | 84 |  | 
|---|
|  | 85 | /// const version of the above | 
|---|
|  | 86 | const double* operator[](int i) const { return d[i]; } | 
|---|
|  | 87 |  | 
|---|
|  | 88 | /** returns a reference to the (i,j)th element of the transformation | 
|---|
|  | 89 | matrix */ | 
|---|
|  | 90 | double& operator()(int i, int j) { return d[i][j]; } | 
|---|
|  | 91 |  | 
|---|
|  | 92 | /// const version of the above | 
|---|
|  | 93 | double operator()(int i, int j) const { return d[i][j]; } | 
|---|
|  | 94 |  | 
|---|
|  | 95 | /// zero out the symop | 
|---|
|  | 96 | void zero() { memset(d,0,sizeof(double)*9); } | 
|---|
|  | 97 |  | 
|---|
|  | 98 | /// This operates on this with r (i.e. return r * this). | 
|---|
|  | 99 | SymmetryOperation operate(const SymmetryOperation& r) const; | 
|---|
|  | 100 |  | 
|---|
|  | 101 | /// This performs the transform r * this * r~ | 
|---|
|  | 102 | SymmetryOperation transform(const SymmetryOperation& r) const; | 
|---|
|  | 103 |  | 
|---|
|  | 104 | /// Set equal to a unit matrix | 
|---|
|  | 105 | void unit() { zero(); d[0][0] = d[1][1] = d[2][2] = 1.0; } | 
|---|
|  | 106 |  | 
|---|
|  | 107 | /// Set equal to E | 
|---|
|  | 108 | void E() { unit(); } | 
|---|
|  | 109 |  | 
|---|
|  | 110 | /// Set equal to an inversion | 
|---|
|  | 111 | void i() { zero(); d[0][0] = d[1][1] = d[2][2] = -1.0; } | 
|---|
|  | 112 |  | 
|---|
|  | 113 | /// Set equal to reflection in xy plane | 
|---|
|  | 114 | void sigma_h() { unit(); d[2][2] = -1.0; } | 
|---|
|  | 115 |  | 
|---|
|  | 116 | /// Set equal to reflection in xz plane | 
|---|
|  | 117 | void sigma_xz() { unit(); d[1][1] = -1.0; } | 
|---|
|  | 118 |  | 
|---|
|  | 119 | /// Set equal to reflection in yz plane | 
|---|
|  | 120 | void sigma_yz() { unit(); d[0][0] = -1.0; } | 
|---|
|  | 121 |  | 
|---|
|  | 122 | /// Set equal to a clockwise rotation by 2pi/n | 
|---|
|  | 123 | void rotation(int n); | 
|---|
|  | 124 | void rotation(double theta); | 
|---|
|  | 125 |  | 
|---|
|  | 126 | /// Set equal to C2 about the x axis | 
|---|
|  | 127 | void c2_x() { i(); d[0][0] = 1.0; } | 
|---|
|  | 128 |  | 
|---|
|  | 129 | /// Set equal to C2 about the x axis | 
|---|
|  | 130 | void c2_y() { i(); d[1][1] = 1.0; } | 
|---|
|  | 131 |  | 
|---|
|  | 132 | void transpose(); | 
|---|
|  | 133 |  | 
|---|
|  | 134 | /// print the matrix | 
|---|
|  | 135 | void print(std::ostream& =ExEnv::out0()) const; | 
|---|
|  | 136 | }; | 
|---|
|  | 137 |  | 
|---|
|  | 138 | // ////////////////////////////////////////////////////////////////// | 
|---|
|  | 139 |  | 
|---|
|  | 140 | /** The SymRep class provides an n dimensional matrix representation of a | 
|---|
|  | 141 | symmetry operation, such as a rotation or reflection.  The trace of a | 
|---|
|  | 142 | SymRep can be used as the character for that symmetry operation.  d is | 
|---|
|  | 143 | hardwired to 5x5 since the H irrep in Ih is 5 dimensional. | 
|---|
|  | 144 | */ | 
|---|
|  | 145 | class SymRep { | 
|---|
|  | 146 | private: | 
|---|
|  | 147 | int n; | 
|---|
|  | 148 | double d[5][5]; | 
|---|
|  | 149 |  | 
|---|
|  | 150 | public: | 
|---|
|  | 151 | SymRep(int =0); | 
|---|
|  | 152 | SymRep(const SymmetryOperation&); | 
|---|
|  | 153 | ~SymRep(); | 
|---|
|  | 154 |  | 
|---|
|  | 155 | /// Cast to a SymmetryOperation. | 
|---|
|  | 156 | operator SymmetryOperation() const; | 
|---|
|  | 157 |  | 
|---|
|  | 158 | /// returns the trace of the transformation matrix | 
|---|
|  | 159 | inline double trace() const; | 
|---|
|  | 160 |  | 
|---|
|  | 161 | /// set the dimension of d | 
|---|
|  | 162 | void set_dim(int i) { n=i; } | 
|---|
|  | 163 |  | 
|---|
|  | 164 | /// returns the i'th row of the transformation matrix | 
|---|
|  | 165 | double* operator[](int i) { return d[i]; } | 
|---|
|  | 166 | /// const version of the above | 
|---|
|  | 167 | const double* operator[](int i) const { return d[i]; } | 
|---|
|  | 168 |  | 
|---|
|  | 169 | /** returns a reference to the (i,j)th element of the transformation | 
|---|
|  | 170 | matrix */ | 
|---|
|  | 171 | double& operator()(int i, int j) { return d[i][j]; } | 
|---|
|  | 172 | /// const version of double& operator()(int i, int j) | 
|---|
|  | 173 | double operator()(int i, int j) const { return d[i][j]; } | 
|---|
|  | 174 |  | 
|---|
|  | 175 | /// zero out the symop | 
|---|
|  | 176 | void zero() { memset(d,0,sizeof(double)*25); } | 
|---|
|  | 177 |  | 
|---|
|  | 178 | /// This operates on this with r (i.e. return r * this). | 
|---|
|  | 179 | SymRep operate(const SymRep& r) const; | 
|---|
|  | 180 |  | 
|---|
|  | 181 | /// This performs the transform r * this * r~ | 
|---|
|  | 182 | SymRep transform(const SymRep& r) const; | 
|---|
|  | 183 |  | 
|---|
|  | 184 | /// Set equal to a unit matrix | 
|---|
|  | 185 | void unit() { | 
|---|
|  | 186 | zero(); d[0][0] = d[1][1] = d[2][2] = d[3][3] = d[4][4] = 1.0; | 
|---|
|  | 187 | } | 
|---|
|  | 188 |  | 
|---|
|  | 189 | /// Set equal to the identity | 
|---|
|  | 190 | void E() { unit(); } | 
|---|
|  | 191 |  | 
|---|
|  | 192 | /// Set equal to an inversion | 
|---|
|  | 193 | void i() { zero(); d[0][0] = d[1][1] = d[2][2] = d[3][3] = d[4][4] = -1.0;} | 
|---|
|  | 194 |  | 
|---|
|  | 195 | /// Set equal to reflection in xy plane | 
|---|
|  | 196 | void sigma_h(); | 
|---|
|  | 197 |  | 
|---|
|  | 198 | /// Set equal to reflection in xz plane | 
|---|
|  | 199 | void sigma_xz(); | 
|---|
|  | 200 |  | 
|---|
|  | 201 | /// Set equal to reflection in yz plane | 
|---|
|  | 202 | void sigma_yz(); | 
|---|
|  | 203 |  | 
|---|
|  | 204 | /// Set equal to a clockwise rotation by 2pi/n | 
|---|
|  | 205 | void rotation(int n); | 
|---|
|  | 206 | void rotation(double theta); | 
|---|
|  | 207 |  | 
|---|
|  | 208 | /// Set equal to C2 about the x axis | 
|---|
|  | 209 | void c2_x(); | 
|---|
|  | 210 |  | 
|---|
|  | 211 | /// Set equal to C2 about the x axis | 
|---|
|  | 212 | void c2_y(); | 
|---|
|  | 213 |  | 
|---|
|  | 214 | /// print the matrix | 
|---|
|  | 215 | void print(std::ostream& =ExEnv::out0()) const; | 
|---|
|  | 216 | }; | 
|---|
|  | 217 |  | 
|---|
|  | 218 | inline double | 
|---|
|  | 219 | SymRep::trace() const | 
|---|
|  | 220 | { | 
|---|
|  | 221 | double r=0; | 
|---|
|  | 222 | for (int i=0; i < n; i++) | 
|---|
|  | 223 | r += d[i][i]; | 
|---|
|  | 224 | return r; | 
|---|
|  | 225 | } | 
|---|
|  | 226 |  | 
|---|
|  | 227 | // ////////////////////////////////////////////////////////////////// | 
|---|
|  | 228 |  | 
|---|
|  | 229 |  | 
|---|
|  | 230 | class CharacterTable; | 
|---|
|  | 231 |  | 
|---|
|  | 232 | /** The IrreducibleRepresentation class provides information associated | 
|---|
|  | 233 | with a particular irreducible representation of a point group.  This | 
|---|
|  | 234 | includes the Mulliken symbol for the irrep, the degeneracy of the | 
|---|
|  | 235 | irrep, the characters which represent the irrep, and the number of | 
|---|
|  | 236 | translations and rotations in the irrep.  The order of the point group | 
|---|
|  | 237 | is also provided (this is equal to the number of characters in an | 
|---|
|  | 238 | irrep).  */ | 
|---|
|  | 239 | class IrreducibleRepresentation { | 
|---|
|  | 240 | friend class CharacterTable; | 
|---|
|  | 241 |  | 
|---|
|  | 242 | private: | 
|---|
|  | 243 | int g;         // the order of the group | 
|---|
|  | 244 | int degen;     // the degeneracy of the irrep | 
|---|
|  | 245 | int nrot_;     // the number of rotations in this irrep | 
|---|
|  | 246 | int ntrans_;   // the number of translations in this irrep | 
|---|
|  | 247 | int complex_;  // true if this irrep has a complex representation | 
|---|
|  | 248 | char *symb;    // mulliken symbol for this irrep | 
|---|
|  | 249 | char *csymb;    // mulliken symbol for this irrep w/o special characters | 
|---|
|  | 250 |  | 
|---|
|  | 251 | SymRep *rep;   // representation matrices for the symops | 
|---|
|  | 252 |  | 
|---|
|  | 253 | public: | 
|---|
|  | 254 | IrreducibleRepresentation(); | 
|---|
|  | 255 | IrreducibleRepresentation(const IrreducibleRepresentation&); | 
|---|
|  | 256 | /** This constructor takes as arguments the order of the point group, | 
|---|
|  | 257 | the degeneracy of the irrep, and the Mulliken symbol of the irrep. | 
|---|
|  | 258 | The Mulliken symbol is copied internally. */ | 
|---|
|  | 259 | IrreducibleRepresentation(int,int,const char*,const char* =0); | 
|---|
|  | 260 |  | 
|---|
|  | 261 | ~IrreducibleRepresentation(); | 
|---|
|  | 262 |  | 
|---|
|  | 263 | IrreducibleRepresentation& operator=(const IrreducibleRepresentation&); | 
|---|
|  | 264 |  | 
|---|
|  | 265 | /// Initialize the order, degeneracy, and Mulliken symbol of the irrep. | 
|---|
|  | 266 | void init(int =0, int =0, const char* =0, const char* =0); | 
|---|
|  | 267 |  | 
|---|
|  | 268 | /// Returns the order of the group. | 
|---|
|  | 269 | int order() const { return g; } | 
|---|
|  | 270 |  | 
|---|
|  | 271 | /// Returns the degeneracy of the irrep. | 
|---|
|  | 272 | int degeneracy() const { return degen; } | 
|---|
|  | 273 |  | 
|---|
|  | 274 | /// Returns the value of complex_. | 
|---|
|  | 275 | int complex() const { return complex_; } | 
|---|
|  | 276 |  | 
|---|
|  | 277 | /// Returns the number of projection operators for the irrep. | 
|---|
|  | 278 | int nproj() const { return degen*degen; } | 
|---|
|  | 279 |  | 
|---|
|  | 280 | /// Returns the number of rotations associated with the irrep. | 
|---|
|  | 281 | int nrot() const { return nrot_; } | 
|---|
|  | 282 |  | 
|---|
|  | 283 | /// Returns the number of translations associated with the irrep. | 
|---|
|  | 284 | int ntrans() const { return ntrans_; } | 
|---|
|  | 285 |  | 
|---|
|  | 286 | /// Returns the Mulliken symbol for the irrep. | 
|---|
|  | 287 | const char * symbol() const { return symb; } | 
|---|
|  | 288 |  | 
|---|
|  | 289 | /** Returns the Mulliken symbol for the irrep without special | 
|---|
|  | 290 | characters. | 
|---|
|  | 291 | */ | 
|---|
|  | 292 | const char * symbol_ns() const { return (csymb?csymb:symb); } | 
|---|
|  | 293 |  | 
|---|
|  | 294 | /** Returns the character for the i'th symmetry operation of the point | 
|---|
|  | 295 | group. */ | 
|---|
|  | 296 | double character(int i) const { | 
|---|
|  | 297 | return complex_ ? 0.5*rep[i].trace() : rep[i].trace(); | 
|---|
|  | 298 | } | 
|---|
|  | 299 |  | 
|---|
|  | 300 | /// Returns the element (x1,x2) of the i'th representation matrix. | 
|---|
|  | 301 | double p(int x1, int x2, int i) const { return rep[i](x1,x2); } | 
|---|
|  | 302 |  | 
|---|
|  | 303 | /** Returns the character for the d'th contribution to the i'th | 
|---|
|  | 304 | representation matrix. */ | 
|---|
|  | 305 | double p(int d, int i) const { | 
|---|
|  | 306 | int dc=d/degen; int dr=d%degen; | 
|---|
|  | 307 | return rep[i](dr,dc); | 
|---|
|  | 308 | } | 
|---|
|  | 309 |  | 
|---|
|  | 310 | /** This prints the irrep to the given file, or stdout if none is | 
|---|
|  | 311 | given.  The second argument is an optional string of spaces to offset | 
|---|
|  | 312 | by. */ | 
|---|
|  | 313 | void print(std::ostream& =ExEnv::out0()) const; | 
|---|
|  | 314 | }; | 
|---|
|  | 315 |  | 
|---|
|  | 316 | // /////////////////////////////////////////////////////////// | 
|---|
|  | 317 | /** The CharacterTable class provides a workable character table | 
|---|
|  | 318 | for all of the non-cubic point groups.  While I have tried to match the | 
|---|
|  | 319 | ordering in Cotton's book, I don't guarantee that it is always followed. | 
|---|
|  | 320 | It shouldn't matter anyway.  Also note that I don't lump symmetry | 
|---|
|  | 321 | operations of the same class together.  For example, in C3v there are two | 
|---|
|  | 322 | distinct C3 rotations and 3 distinct reflections, each with a separate | 
|---|
|  | 323 | character.  Thus symop has 6 elements rather than the 3 you'll find in | 
|---|
|  | 324 | most published character tables. */ | 
|---|
|  | 325 | class CharacterTable { | 
|---|
|  | 326 | public: | 
|---|
|  | 327 | enum pgroups {C1, CS, CI, CN, CNV, CNH, DN, DND, DNH, SN, T, TH, TD, O, | 
|---|
|  | 328 | OH, I, IH}; | 
|---|
|  | 329 |  | 
|---|
|  | 330 | private: | 
|---|
|  | 331 | int g;                               // the order of the point group | 
|---|
|  | 332 | int nt;                              // order of the princ rot axis | 
|---|
|  | 333 | pgroups pg;                          // the class of the point group | 
|---|
|  | 334 | int nirrep_;                         // the number of irreps in this pg | 
|---|
|  | 335 | IrreducibleRepresentation *gamma_;   // an array of irreps | 
|---|
|  | 336 | SymmetryOperation *symop;            // the matrices describing sym ops | 
|---|
|  | 337 | int *_inv;                           // index of the inverse symop | 
|---|
|  | 338 | char *symb;                          // the Schoenflies symbol for the pg | 
|---|
|  | 339 |  | 
|---|
|  | 340 | /// this determines what type of point group we're dealing with | 
|---|
|  | 341 | int parse_symbol(); | 
|---|
|  | 342 | /// this fills in the irrep and symop arrays. | 
|---|
|  | 343 | int make_table(); | 
|---|
|  | 344 |  | 
|---|
|  | 345 | // these create the character tables for the cubic groups | 
|---|
|  | 346 | void t(); | 
|---|
|  | 347 | void th(); | 
|---|
|  | 348 | void td(); | 
|---|
|  | 349 | void o(); | 
|---|
|  | 350 | void oh(); | 
|---|
|  | 351 | void i(); | 
|---|
|  | 352 | void ih(); | 
|---|
|  | 353 |  | 
|---|
|  | 354 | public: | 
|---|
|  | 355 | CharacterTable(); | 
|---|
|  | 356 | /** This constructor takes the Schoenflies symbol of a point group as | 
|---|
|  | 357 | input. */ | 
|---|
|  | 358 | CharacterTable(const char*); | 
|---|
|  | 359 | /** This is like the above, but it also takes a reference to a | 
|---|
|  | 360 | SymmetryOperation which is the frame of reference.  All symmetry | 
|---|
|  | 361 | operations are transformed to this frame of reference. */ | 
|---|
|  | 362 | CharacterTable(const char*,const SymmetryOperation&); | 
|---|
|  | 363 |  | 
|---|
|  | 364 | CharacterTable(const CharacterTable&); | 
|---|
|  | 365 | ~CharacterTable(); | 
|---|
|  | 366 |  | 
|---|
|  | 367 | CharacterTable& operator=(const CharacterTable&); | 
|---|
|  | 368 |  | 
|---|
|  | 369 | /// Returns the number of irreps. | 
|---|
|  | 370 | int nirrep() const { return nirrep_; } | 
|---|
|  | 371 | /// Returns the order of the point group | 
|---|
|  | 372 | int order() const { return g; } | 
|---|
|  | 373 | /// Returns the Schoenflies symbol for the point group | 
|---|
|  | 374 | const char * symbol() const { return symb; } | 
|---|
|  | 375 | /// Returns the i'th irrep. | 
|---|
|  | 376 | IrreducibleRepresentation& gamma(int i) { return gamma_[i]; } | 
|---|
|  | 377 | /// Returns the i'th symmetry operation. | 
|---|
|  | 378 | SymmetryOperation& symm_operation(int i) { return symop[i]; } | 
|---|
|  | 379 |  | 
|---|
|  | 380 | /** Cn, Cnh, Sn, T, and Th point groups have complex representations. | 
|---|
|  | 381 | This function returns 1 if the point group has a complex | 
|---|
|  | 382 | representation, 0 otherwise. */ | 
|---|
|  | 383 | int complex() const { | 
|---|
|  | 384 | if (pg==CN || pg==SN || pg==CNH || pg==T || pg==TH) | 
|---|
|  | 385 | return 1; | 
|---|
|  | 386 | return 0; | 
|---|
|  | 387 | } | 
|---|
|  | 388 |  | 
|---|
|  | 389 | /// Returns the index of the symop which is the inverse of symop[i]. | 
|---|
|  | 390 | int inverse(int i) const { return _inv[i]; } | 
|---|
|  | 391 |  | 
|---|
|  | 392 | int ncomp() const { | 
|---|
|  | 393 | int ret=0; | 
|---|
|  | 394 | for (int i=0; i < nirrep_; i++) { | 
|---|
|  | 395 | int nc = (gamma_[i].complex()) ? 1 : gamma_[i].degen; | 
|---|
|  | 396 | ret += nc; | 
|---|
|  | 397 | } | 
|---|
|  | 398 | return ret; | 
|---|
|  | 399 | } | 
|---|
|  | 400 |  | 
|---|
|  | 401 | /// Returns the irrep component i belongs to. | 
|---|
|  | 402 | int which_irrep(int i) { | 
|---|
|  | 403 | for (int ir=0, cn=0; ir < nirrep_; ir++) { | 
|---|
|  | 404 | int nc = (gamma_[ir].complex()) ? 1 : gamma_[ir].degen; | 
|---|
|  | 405 | for (int c=0; c < nc; c++,cn++) | 
|---|
|  | 406 | if (cn==i) | 
|---|
|  | 407 | return ir; | 
|---|
|  | 408 | } | 
|---|
|  | 409 | return -1; | 
|---|
|  | 410 | } | 
|---|
|  | 411 |  | 
|---|
|  | 412 | /// Returns which component i is. | 
|---|
|  | 413 | int which_comp(int i) { | 
|---|
|  | 414 | for (int ir=0, cn=0; ir < nirrep_; ir++) { | 
|---|
|  | 415 | int nc = (gamma_[ir].complex()) ? 1 : gamma_[ir].degen; | 
|---|
|  | 416 | for (int c=0; c < nc; c++,cn++) | 
|---|
|  | 417 | if (cn==i) | 
|---|
|  | 418 | return c; | 
|---|
|  | 419 | } | 
|---|
|  | 420 | return -1; | 
|---|
|  | 421 | } | 
|---|
|  | 422 |  | 
|---|
|  | 423 | /// This prints the irrep to the given file, or stdout if none is given. | 
|---|
|  | 424 | void print(std::ostream& =ExEnv::out0()) const; | 
|---|
|  | 425 | }; | 
|---|
|  | 426 |  | 
|---|
|  | 427 | // /////////////////////////////////////////////////////////// | 
|---|
|  | 428 |  | 
|---|
|  | 429 | /** The PointGroup class is really a place holder for a CharacterTable.  It | 
|---|
|  | 430 | contains a string representation of the Schoenflies symbol of a point | 
|---|
|  | 431 | group, a frame of reference for the symmetry operation transformation | 
|---|
|  | 432 | matrices, and a point of origin.  The origin is not respected by the | 
|---|
|  | 433 | symmetry operations, so if you want to use a point group with a nonzero | 
|---|
|  | 434 | origin, first translate all your coordinates to the origin and then set | 
|---|
|  | 435 | the origin to zero.  */ | 
|---|
|  | 436 | class PointGroup: public SavableState { | 
|---|
|  | 437 | private: | 
|---|
|  | 438 | char *symb; | 
|---|
|  | 439 | SymmetryOperation frame; | 
|---|
|  | 440 | SCVector3 origin_; | 
|---|
|  | 441 |  | 
|---|
|  | 442 | public: | 
|---|
|  | 443 | PointGroup(); | 
|---|
|  | 444 | /** This constructor takes a string containing the Schoenflies symbol | 
|---|
|  | 445 | of the point group as its only argument. */ | 
|---|
|  | 446 | PointGroup(const char*); | 
|---|
|  | 447 | /** Like the above, but this constructor also takes a frame of reference | 
|---|
|  | 448 | as an argument. */ | 
|---|
|  | 449 | PointGroup(const char*,SymmetryOperation&); | 
|---|
|  | 450 | /** Like the above, but this constructor also takes a point of origin | 
|---|
|  | 451 | as an argument. */ | 
|---|
|  | 452 | PointGroup(const char*,SymmetryOperation&,const SCVector3&); | 
|---|
|  | 453 | /** The PointGroup KeyVal constructor looks for three keywords: | 
|---|
|  | 454 | symmetry, symmetry_frame, and origin. symmetry is a string | 
|---|
|  | 455 | containing the Schoenflies symbol of the point group.  origin is an | 
|---|
|  | 456 | array of doubles which gives the x, y, and z coordinates of the | 
|---|
|  | 457 | origin of the symmetry frame.  symmetry_frame is a 3 by 3 array of | 
|---|
|  | 458 | arrays of doubles which specify the principal axes for the | 
|---|
|  | 459 | transformation matrices as a unitary rotation. | 
|---|
|  | 460 |  | 
|---|
|  | 461 | For example, a simple input which will use the default origin and | 
|---|
|  | 462 | symmetry_frame ((0,0,0) and the unit matrix, respectively), might | 
|---|
|  | 463 | look like this: | 
|---|
|  | 464 |  | 
|---|
|  | 465 | <pre> | 
|---|
|  | 466 | pointgrp<PointGroup>: ( | 
|---|
|  | 467 | symmetry = "c2v" | 
|---|
|  | 468 | ) | 
|---|
|  | 469 | </pre> | 
|---|
|  | 470 |  | 
|---|
|  | 471 | By default, the principal rotation axis is taken to be the z axis. | 
|---|
|  | 472 | If you already have a set of coordinates which assume that the | 
|---|
|  | 473 | rotation axis is the x axis, then you'll have to rotate your frame | 
|---|
|  | 474 | of reference with symmetry_frame: | 
|---|
|  | 475 |  | 
|---|
|  | 476 | <pre> | 
|---|
|  | 477 | pointgrp<PointGroup>: ( | 
|---|
|  | 478 | symmetry = "c2v" | 
|---|
|  | 479 | symmetry_frame = [ | 
|---|
|  | 480 | [ 0 0 1 ] | 
|---|
|  | 481 | [ 0 1 0 ] | 
|---|
|  | 482 | [ 1 0 0 ] | 
|---|
|  | 483 | ] | 
|---|
|  | 484 | ) | 
|---|
|  | 485 | </pre> | 
|---|
|  | 486 | */ | 
|---|
|  | 487 | PointGroup(const Ref<KeyVal>&); | 
|---|
|  | 488 |  | 
|---|
|  | 489 | PointGroup(StateIn&); | 
|---|
|  | 490 | PointGroup(const PointGroup&); | 
|---|
|  | 491 | PointGroup(const Ref<PointGroup>&); | 
|---|
|  | 492 | ~PointGroup(); | 
|---|
|  | 493 |  | 
|---|
|  | 494 | PointGroup& operator=(const PointGroup&); | 
|---|
|  | 495 |  | 
|---|
|  | 496 | /// Returns 1 if the point groups are equivalent, 0 otherwise. | 
|---|
|  | 497 | int equiv(const Ref<PointGroup> &, double tol = 1.0e-6) const; | 
|---|
|  | 498 |  | 
|---|
|  | 499 | /// Returns the CharacterTable for this point group. | 
|---|
|  | 500 | CharacterTable char_table() const; | 
|---|
|  | 501 | /// Returns the Schoenflies symbol for this point group. | 
|---|
|  | 502 | const char * symbol() const { return symb; } | 
|---|
|  | 503 | /// Returns the frame of reference for this point group. | 
|---|
|  | 504 | SymmetryOperation& symm_frame() { return frame; } | 
|---|
|  | 505 | /// A const version of the above | 
|---|
|  | 506 | const SymmetryOperation& symm_frame() const { return frame; } | 
|---|
|  | 507 | /// Returns the origin of the symmetry frame. | 
|---|
|  | 508 | SCVector3& origin() { return origin_; } | 
|---|
|  | 509 | const SCVector3& origin() const { return origin_; } | 
|---|
|  | 510 |  | 
|---|
|  | 511 | /// Sets (or resets) the Schoenflies symbol. | 
|---|
|  | 512 | void set_symbol(const char*); | 
|---|
|  | 513 |  | 
|---|
|  | 514 | void save_data_state(StateOut& so); | 
|---|
|  | 515 |  | 
|---|
|  | 516 | void print(std::ostream&o=ExEnv::out0()) const; | 
|---|
|  | 517 | }; | 
|---|
|  | 518 |  | 
|---|
|  | 519 | } | 
|---|
|  | 520 |  | 
|---|
|  | 521 | #endif | 
|---|
|  | 522 |  | 
|---|
|  | 523 | // Local Variables: | 
|---|
|  | 524 | // mode: c++ | 
|---|
|  | 525 | // c-file-style: "ETS" | 
|---|
|  | 526 | // End: | 
|---|