1 | //
|
---|
2 | // maketab.cc
|
---|
3 | //
|
---|
4 | // Modifications are
|
---|
5 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
6 | //
|
---|
7 | // Author: Edward Seidl <seidl@janed.com>
|
---|
8 | // Maintainer: LPS
|
---|
9 | //
|
---|
10 | // This file is part of the SC Toolkit.
|
---|
11 | //
|
---|
12 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
13 | // it under the terms of the GNU Library General Public License as published by
|
---|
14 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
15 | // any later version.
|
---|
16 | //
|
---|
17 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
18 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
20 | // GNU Library General Public License for more details.
|
---|
21 | //
|
---|
22 | // You should have received a copy of the GNU Library General Public License
|
---|
23 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
24 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
25 | //
|
---|
26 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
27 | //
|
---|
28 |
|
---|
29 | /* maketab.cc
|
---|
30 | *
|
---|
31 | * THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A
|
---|
32 | * "UNITED STATES GOVERNMENT WORK". IT WAS WRITTEN AS A PART OF THE
|
---|
33 | * AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE. THIS MEANS IT
|
---|
34 | * CANNOT BE COPYRIGHTED. THIS SOFTWARE IS FREELY AVAILABLE TO THE
|
---|
35 | * PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO
|
---|
36 | * RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY.
|
---|
37 | *
|
---|
38 | * Author:
|
---|
39 | * E. T. Seidl
|
---|
40 | * Bldg. 12A, Rm. 2033
|
---|
41 | * Computer Systems Laboratory
|
---|
42 | * Division of Computer Research and Technology
|
---|
43 | * National Institutes of Health
|
---|
44 | * Bethesda, Maryland 20892
|
---|
45 | * Internet: seidl@alw.nih.gov
|
---|
46 | * June, 1993
|
---|
47 | */
|
---|
48 |
|
---|
49 | #include <util/misc/math.h>
|
---|
50 | #include <stdio.h>
|
---|
51 | #include <string.h>
|
---|
52 |
|
---|
53 | #include <math/symmetry/pointgrp.h>
|
---|
54 | #include <util/misc/formio.h>
|
---|
55 |
|
---|
56 | using namespace std;
|
---|
57 | using namespace sc;
|
---|
58 |
|
---|
59 | /*
|
---|
60 | * This function will generate a character table for the point group.
|
---|
61 | * This character table is in the order that symmetry operations are
|
---|
62 | * generated, not in Cotton order. If this is a problem, tough.
|
---|
63 | * Also generate the transformation matrices.
|
---|
64 | */
|
---|
65 |
|
---|
66 | int CharacterTable::make_table()
|
---|
67 | {
|
---|
68 | int i,j,ei,gi;
|
---|
69 | char label[4];
|
---|
70 |
|
---|
71 | if (!g) return 0;
|
---|
72 |
|
---|
73 | gamma_ = new IrreducibleRepresentation[nirrep_];
|
---|
74 |
|
---|
75 | symop = new SymmetryOperation[g];
|
---|
76 | SymmetryOperation so;
|
---|
77 |
|
---|
78 | _inv = new int[g];
|
---|
79 |
|
---|
80 | // this array forms a reducible representation for rotations about x,y,z
|
---|
81 | double *rot = new double[g];
|
---|
82 | memset(rot,0,sizeof(double)*g);
|
---|
83 |
|
---|
84 | // this array forms a reducible representation for translations along x,y,z
|
---|
85 | double *trans = new double[g];
|
---|
86 | memset(trans,0,sizeof(double)*g);
|
---|
87 |
|
---|
88 | // the angle to rotate about the principal axis
|
---|
89 | double theta = (nt) ? 2.0*M_PI/nt : 2.0*M_PI;
|
---|
90 |
|
---|
91 | switch (pg) {
|
---|
92 |
|
---|
93 | case C1:
|
---|
94 | // no symmetry case
|
---|
95 | gamma_[0].init(1,1,"A");
|
---|
96 | gamma_[0].nrot_ = 3;
|
---|
97 | gamma_[0].ntrans_ = 3;
|
---|
98 | gamma_[0].rep[0][0][0] = 1.0;
|
---|
99 |
|
---|
100 | symop[0].E();
|
---|
101 |
|
---|
102 | break;
|
---|
103 |
|
---|
104 | case CI:
|
---|
105 | // equivalent to S2 about the z axis
|
---|
106 | gamma_[0].init(2,1,"Ag");
|
---|
107 | gamma_[0].rep[0][0][0] = 1.0;
|
---|
108 | gamma_[0].rep[1][0][0] = 1.0;
|
---|
109 | gamma_[0].nrot_=3;
|
---|
110 |
|
---|
111 | gamma_[1].init(2,1,"Au");
|
---|
112 | gamma_[1].rep[0][0][0] = 1.0;
|
---|
113 | gamma_[1].rep[1][0][0] = -1.0;
|
---|
114 | gamma_[1].ntrans_=3;
|
---|
115 |
|
---|
116 | symop[0].E();
|
---|
117 | symop[1].i();
|
---|
118 |
|
---|
119 | break;
|
---|
120 |
|
---|
121 | case CS: // reflection through the xy plane
|
---|
122 | gamma_[0].init(2,1,"A'","Ap");
|
---|
123 | gamma_[0].rep[0][0][0] = 1.0;
|
---|
124 | gamma_[0].rep[1][0][0] = 1.0;
|
---|
125 | gamma_[0].nrot_=1;
|
---|
126 | gamma_[0].ntrans_=2;
|
---|
127 |
|
---|
128 | gamma_[1].init(2,1,"A\"","App");
|
---|
129 | gamma_[1].rep[0][0][0] = 1.0;
|
---|
130 | gamma_[1].rep[1][0][0] = -1.0;
|
---|
131 | gamma_[1].nrot_=2;
|
---|
132 | gamma_[1].ntrans_=1;
|
---|
133 |
|
---|
134 | symop[0].E();
|
---|
135 | symop[1].sigma_h();
|
---|
136 |
|
---|
137 | break;
|
---|
138 |
|
---|
139 | case CN:
|
---|
140 | // clockwise rotation about z axis by theta*i radians
|
---|
141 | //
|
---|
142 | // for odd n, the irreps are A and E1...E(nir-1)
|
---|
143 | // for even n, the irreps are A, B, and E1...E(nir-2)
|
---|
144 | //
|
---|
145 | gamma_[0].init(g,1,"A");
|
---|
146 | for (gi=0; gi < g; gi++)
|
---|
147 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
148 |
|
---|
149 | i=1;
|
---|
150 |
|
---|
151 | if (!(nt%2)) {
|
---|
152 | gamma_[1].init(g,1,"B");
|
---|
153 | for (gi=0; gi < g; gi++)
|
---|
154 | gamma_[1].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0;
|
---|
155 |
|
---|
156 | i++;
|
---|
157 | }
|
---|
158 |
|
---|
159 | ei=1;
|
---|
160 | for (; i < nirrep_; i++, ei++) {
|
---|
161 | IrreducibleRepresentation& ir = gamma_[i];
|
---|
162 |
|
---|
163 | if (nt==3 || nt==4)
|
---|
164 | sprintf(label,"E");
|
---|
165 | else
|
---|
166 | sprintf(label,"E%d",ei);
|
---|
167 |
|
---|
168 | ir.init(g,2,label);
|
---|
169 | ir.complex_=1;
|
---|
170 |
|
---|
171 | // identity
|
---|
172 | ir.rep[0].E();
|
---|
173 |
|
---|
174 | // Cn
|
---|
175 | ir.rep[1].rotation(ei*theta);
|
---|
176 |
|
---|
177 | // the other n-1 Cn's
|
---|
178 | for (j=2; j < g; j++)
|
---|
179 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]);
|
---|
180 | }
|
---|
181 |
|
---|
182 | // identity
|
---|
183 | symop[0].E();
|
---|
184 |
|
---|
185 | // Cn
|
---|
186 | symop[1].rotation(theta);
|
---|
187 |
|
---|
188 | // the other n-2 Cn's
|
---|
189 | for (i=2; i < nt; i++)
|
---|
190 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
191 |
|
---|
192 | for (i=0; i < nt ; i++)
|
---|
193 | rot[i] = trans[i] = symop[i].trace();
|
---|
194 |
|
---|
195 | break;
|
---|
196 |
|
---|
197 | case CNV:
|
---|
198 | // clockwise rotation about z axis by theta*i radians, then
|
---|
199 | // reflect through the xz plane
|
---|
200 | //
|
---|
201 | // for odd n, the irreps are A1, A2, and E1...E(nir-2)
|
---|
202 | // for even n, the irreps are A1, A2, B1, B2, and E1...E(nir-4)
|
---|
203 | //
|
---|
204 |
|
---|
205 | gamma_[0].init(g,1,"A1");
|
---|
206 | gamma_[1].init(g,1,"A2");
|
---|
207 |
|
---|
208 | for (gi=0; gi < nt; gi++) {
|
---|
209 | // Cn's
|
---|
210 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
211 | gamma_[1].rep[gi][0][0] = 1.0;
|
---|
212 |
|
---|
213 | // sigma's
|
---|
214 | gamma_[0].rep[gi+nt][0][0] = 1.0;
|
---|
215 | gamma_[1].rep[gi+nt][0][0] = -1.0;
|
---|
216 | }
|
---|
217 |
|
---|
218 | if (!(nt%2)) {
|
---|
219 | gamma_[2].init(g,1,"B1");
|
---|
220 | gamma_[3].init(g,1,"B2");
|
---|
221 |
|
---|
222 | for (gi=0; gi < nt ; gi++) {
|
---|
223 | double ci = (gi%2) ? -1.0 : 1.0;
|
---|
224 |
|
---|
225 | // Cn's
|
---|
226 | gamma_[2].rep[gi][0][0] = ci;
|
---|
227 | gamma_[3].rep[gi][0][0] = ci;
|
---|
228 |
|
---|
229 | // sigma's
|
---|
230 | gamma_[2].rep[gi+nt][0][0] = ci;
|
---|
231 | gamma_[3].rep[gi+nt][0][0] = -ci;
|
---|
232 | }
|
---|
233 | }
|
---|
234 |
|
---|
235 | ei=1;
|
---|
236 | for (i = (nt%2) ? 2 : 4; i < nirrep_; i++, ei++) {
|
---|
237 | IrreducibleRepresentation& ir = gamma_[i];
|
---|
238 |
|
---|
239 | char lab[4];
|
---|
240 | if (nt==3 || nt==4)
|
---|
241 | sprintf(lab,"E");
|
---|
242 | else
|
---|
243 | sprintf(lab,"E%d",ei);
|
---|
244 |
|
---|
245 | ir.init(g,2,lab);
|
---|
246 |
|
---|
247 | // identity
|
---|
248 | ir.rep[0].E();
|
---|
249 |
|
---|
250 | // Cn
|
---|
251 | ir.rep[1].rotation(ei*theta);
|
---|
252 |
|
---|
253 | // the other n-2 Cn's
|
---|
254 | for (j=2; j < nt; j++)
|
---|
255 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]);
|
---|
256 |
|
---|
257 | // sigma xz
|
---|
258 | ir.rep[nt].sigma_xz();
|
---|
259 |
|
---|
260 | SymRep sr(2);
|
---|
261 | sr.rotation(ei*theta/2.0);
|
---|
262 |
|
---|
263 | // the other n-1 sigma's
|
---|
264 | for (j=nt+1; j < g; j++)
|
---|
265 | ir.rep[j] = ir.rep[j-1].transform(sr);
|
---|
266 | }
|
---|
267 |
|
---|
268 | // identity
|
---|
269 | symop[0].E();
|
---|
270 |
|
---|
271 | // Cn
|
---|
272 | symop[1].rotation(theta);
|
---|
273 |
|
---|
274 | // the other n-2 Cn's
|
---|
275 | for (i=2; i < nt; i++)
|
---|
276 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
277 |
|
---|
278 | // sigma xz
|
---|
279 | symop[nt].sigma_xz();
|
---|
280 |
|
---|
281 | so.rotation(theta/2.0);
|
---|
282 |
|
---|
283 | // the other n-1 sigma's
|
---|
284 | for (j=nt+1; j < g; j++)
|
---|
285 | symop[j] = symop[j-1].transform(so);
|
---|
286 |
|
---|
287 | for (i=0; i < nt ; i++) {
|
---|
288 | rot[i] = trans[i] = symop[i].trace();
|
---|
289 |
|
---|
290 | rot[i+nt] = -symop[i+nt].trace();
|
---|
291 | trans[i+nt] = symop[i+nt].trace();
|
---|
292 | }
|
---|
293 |
|
---|
294 | break;
|
---|
295 |
|
---|
296 | case CNH:
|
---|
297 | // lockwise rotation about z axis by theta*i radians,
|
---|
298 | // as well as rotation-reflection about same axis
|
---|
299 |
|
---|
300 | //
|
---|
301 | // for odd n, the irreps are A', A", E1'...E(nir/2-1)', E1"...E(nir/2-1)''
|
---|
302 | // for even n, the irreps are Ag, Bg, Au, Bu,
|
---|
303 | // E1g...E(nir/2-1)g, E1u...E(nir/2-1)u
|
---|
304 | //
|
---|
305 | gamma_[0].init(g,1, (nt%2) ? "A'" : "Ag", (nt%2) ? "Ap" : 0);
|
---|
306 | gamma_[nirrep_/2].init(g,1, (nt%2) ? "A\"" : "Au", (nt%2) ? "Ap" : 0);
|
---|
307 |
|
---|
308 | for (gi=0; gi < nt; gi++) {
|
---|
309 | // Cn's
|
---|
310 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
311 | gamma_[nirrep_/2].rep[gi][0][0] = 1.0;
|
---|
312 |
|
---|
313 | // Sn's
|
---|
314 | gamma_[0].rep[gi+nt][0][0] = 1.0;
|
---|
315 | gamma_[nirrep_/2].rep[gi+nt][0][0] = -1.0;
|
---|
316 | }
|
---|
317 |
|
---|
318 | if (!(nt%2)) {
|
---|
319 | gamma_[1].init(g,1,"Bg");
|
---|
320 | gamma_[1+nirrep_/2].init(g,1,"Bu");
|
---|
321 |
|
---|
322 | for (gi=0; gi < nt; gi++) {
|
---|
323 | double ci = (gi%2) ? -1.0 : 1.0;
|
---|
324 |
|
---|
325 | // Cn's
|
---|
326 | gamma_[1].rep[gi][0][0] = ci;
|
---|
327 | gamma_[1+nirrep_/2].rep[gi][0][0] = ci;
|
---|
328 |
|
---|
329 | // Sn's
|
---|
330 | gamma_[1].rep[gi+nt][0][0] = ci;
|
---|
331 | gamma_[1+nirrep_/2].rep[gi+nt][0][0] = -ci;
|
---|
332 | }
|
---|
333 | }
|
---|
334 |
|
---|
335 | ei=1;
|
---|
336 | for (i = (nt%2) ? 1 : 2; i < nirrep_/2 ; i++, ei++) {
|
---|
337 | IrreducibleRepresentation& ir1 = gamma_[i];
|
---|
338 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2];
|
---|
339 |
|
---|
340 | if (nt==3 || nt==4)
|
---|
341 | sprintf(label,(nt%2) ? "E'" : "Eg");
|
---|
342 | else
|
---|
343 | sprintf(label,"E%d%s", ei, (nt%2) ? "'" : "g");
|
---|
344 |
|
---|
345 | ir1.init(g,2,label);
|
---|
346 |
|
---|
347 | if (nt==3 || nt==4)
|
---|
348 | sprintf(label,(nt%2) ? "E\"" : "Eu");
|
---|
349 | else
|
---|
350 | sprintf(label,"E%d%s", ei, (nt%2) ? "\"" : "u");
|
---|
351 |
|
---|
352 | ir2.init(g,2,label);
|
---|
353 |
|
---|
354 | ir1.complex_=1;
|
---|
355 | ir2.complex_=1;
|
---|
356 |
|
---|
357 | // identity
|
---|
358 | ir1.rep[0].E();
|
---|
359 | ir2.rep[0].E();
|
---|
360 |
|
---|
361 | // Cn
|
---|
362 | ir1.rep[1].rotation(ei*theta);
|
---|
363 | ir2.rep[1].rotation(ei*theta);
|
---|
364 |
|
---|
365 | for (j=2; j < nt; j++) {
|
---|
366 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]);
|
---|
367 | ir2.rep[j] = ir2.rep[j-1].operate(ir2.rep[1]);
|
---|
368 | }
|
---|
369 |
|
---|
370 | // Sn's
|
---|
371 | SymRep sr(2);
|
---|
372 | sr.i();
|
---|
373 |
|
---|
374 | for (j=nt; j < g; j++) {
|
---|
375 | ir1.rep[j] = ir1.rep[j-nt];
|
---|
376 | ir2.rep[j] = ir2.rep[j-nt].operate(sr);
|
---|
377 | }
|
---|
378 | }
|
---|
379 |
|
---|
380 | // identity
|
---|
381 | symop[0].E();
|
---|
382 |
|
---|
383 | // Cn
|
---|
384 | symop[1].rotation(theta);
|
---|
385 |
|
---|
386 | // the other n-2 Cn's
|
---|
387 | for (i=2; i < nt; i++)
|
---|
388 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
389 |
|
---|
390 | // Sn's, for odd nt, operate on Cn's with sigma_h, for even nt,
|
---|
391 | // operate Cn's with i
|
---|
392 | if (nt%2)
|
---|
393 | so.sigma_h();
|
---|
394 | else
|
---|
395 | so.i();
|
---|
396 |
|
---|
397 | for (i=0; i < nt ; i++) {
|
---|
398 | symop[i+nt] = symop[i].operate(so);
|
---|
399 |
|
---|
400 | rot[i] = trans[i] = symop[i].trace();
|
---|
401 | trans[i+nt] = symop[i+nt].trace();
|
---|
402 | rot[i+nt] = -trans[i+nt];
|
---|
403 | }
|
---|
404 |
|
---|
405 | break;
|
---|
406 |
|
---|
407 | case SN:
|
---|
408 | // clockwise rotation-reflection by theta*i radians about z axis
|
---|
409 | //
|
---|
410 | // for odd n/2, the irreps are Ag, Au, E1g...E(nir/2-1)g,E1u...E(nir/2-1)u
|
---|
411 | // for even n/2, the irreps are A, B, E1...E(nir-2)
|
---|
412 | //
|
---|
413 | if ((nt/2)%2) {
|
---|
414 | gamma_[0].init(g, 1, "Ag");
|
---|
415 | gamma_[nirrep_/2].init(g, 1, "Au");
|
---|
416 |
|
---|
417 | for (gi=0; gi < nt/2; gi++) {
|
---|
418 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
419 | gamma_[nirrep_/2].rep[gi][0][0] = 1.0;
|
---|
420 |
|
---|
421 | gamma_[0].rep[gi+nt/2][0][0] = 1.0;
|
---|
422 | gamma_[nirrep_/2].rep[gi+nt/2][0][0] = -1.0;
|
---|
423 | }
|
---|
424 |
|
---|
425 | ei=1;
|
---|
426 | for (i=1; i < nirrep_/2 ; i++, ei++) {
|
---|
427 | IrreducibleRepresentation& ir1 = gamma_[i];
|
---|
428 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2];
|
---|
429 |
|
---|
430 | if (nt==6)
|
---|
431 | sprintf(label,"Eg");
|
---|
432 | else
|
---|
433 | sprintf(label,"E%dg",ei);
|
---|
434 |
|
---|
435 | ir1.init(g,2,label);
|
---|
436 | ir1.complex_=1;
|
---|
437 |
|
---|
438 | if (nt==6)
|
---|
439 | sprintf(label,"Eu");
|
---|
440 | else
|
---|
441 | sprintf(label,"E%du", ei);
|
---|
442 |
|
---|
443 | ir2.init(g,2,label);
|
---|
444 | ir2.complex_=1;
|
---|
445 |
|
---|
446 | // identity
|
---|
447 | ir1.rep[0].E();
|
---|
448 | ir2.rep[0].E();
|
---|
449 |
|
---|
450 | // C(n/2)
|
---|
451 | ir1.rep[1].rotation(ei*theta*2.0);
|
---|
452 | ir2.rep[1].rotation(ei*theta*2.0);
|
---|
453 |
|
---|
454 | for (j=2; j < nt/2; j++) {
|
---|
455 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]);
|
---|
456 | ir2.rep[j] = ir2.rep[j-1].operate(ir2.rep[1]);
|
---|
457 | }
|
---|
458 |
|
---|
459 | SymRep sr(2);
|
---|
460 | sr.i();
|
---|
461 |
|
---|
462 | // Sn
|
---|
463 | for (j=nt/2; j < nt; j++) {
|
---|
464 | ir1.rep[j] = ir1.rep[j-nt/2];
|
---|
465 | ir2.rep[j] = ir2.rep[j-nt/2].operate(sr);
|
---|
466 | }
|
---|
467 | }
|
---|
468 |
|
---|
469 | // identity
|
---|
470 | symop[0].E();
|
---|
471 |
|
---|
472 | // Cn
|
---|
473 | symop[1].rotation(2.0*theta);
|
---|
474 |
|
---|
475 | for (i=2; i < nt/2 ; i++)
|
---|
476 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
477 |
|
---|
478 | so.i();
|
---|
479 |
|
---|
480 | // Sn
|
---|
481 | for (i=nt/2; i < nt; i++)
|
---|
482 | symop[i] = symop[i-nt/2].operate(so);
|
---|
483 |
|
---|
484 | for (i=0; i < nt/2 ; i++) {
|
---|
485 | rot[i] = trans[i] = symop[i].trace();
|
---|
486 |
|
---|
487 | trans[i+nt/2] = symop[i+nt/2].trace();
|
---|
488 | rot[i+nt/2] = -trans[i+nt/2];
|
---|
489 | }
|
---|
490 |
|
---|
491 | } else {
|
---|
492 | gamma_[0].init(g, 1, "A");
|
---|
493 | gamma_[1].init(g, 1, "B");
|
---|
494 |
|
---|
495 | for (gi=0; gi < nt; gi++) {
|
---|
496 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
497 | gamma_[1].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0;
|
---|
498 | }
|
---|
499 |
|
---|
500 | ei=1;
|
---|
501 | for (i=2; i < nirrep_; i++, ei++) {
|
---|
502 | IrreducibleRepresentation& ir = gamma_[i];
|
---|
503 |
|
---|
504 | if (nt==4)
|
---|
505 | sprintf(label,"E");
|
---|
506 | else
|
---|
507 | sprintf(label,"E%d",ei);
|
---|
508 |
|
---|
509 | ir.init(g,2,label);
|
---|
510 | ir.complex_ = 1;
|
---|
511 |
|
---|
512 | // identity
|
---|
513 | ir.rep[0].E();
|
---|
514 |
|
---|
515 | // Sn
|
---|
516 | ir.rep[1].rotation(ei*theta);
|
---|
517 |
|
---|
518 | for (j=2; j < nt; j++)
|
---|
519 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]);
|
---|
520 | }
|
---|
521 |
|
---|
522 | // identity
|
---|
523 | symop[0].E();
|
---|
524 |
|
---|
525 | // Sn
|
---|
526 | symop[1].rotation(theta);
|
---|
527 | symop[1][2][2] = -1.0;
|
---|
528 |
|
---|
529 | for (i=2; i < nt ; i++)
|
---|
530 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
531 |
|
---|
532 | for (i=0; i < nt ; i++) {
|
---|
533 | trans[i] = symop[i].trace();
|
---|
534 | rot[i] = (i%2) ? -trans[i] : trans[i];
|
---|
535 | }
|
---|
536 | }
|
---|
537 |
|
---|
538 | break;
|
---|
539 |
|
---|
540 | case DN:
|
---|
541 | // clockwise rotation about z axis, followed by C2 about x axis
|
---|
542 |
|
---|
543 | // D2 is a special case
|
---|
544 | if (nt==2) {
|
---|
545 | gamma_[0].init(g,1,"A");
|
---|
546 | gamma_[1].init(g,1,"B1");
|
---|
547 | gamma_[2].init(g,1,"B2");
|
---|
548 | gamma_[3].init(g,1,"B3");
|
---|
549 |
|
---|
550 | for (i=0; i < g; i++) {
|
---|
551 | gamma_[0].rep[i][0][0] = 1.0;
|
---|
552 | gamma_[1].rep[i][0][0] = (i < 2) ? 1.0 : -1.0;
|
---|
553 | gamma_[2].rep[i][0][0] = (i % 2) ? -1.0 : 1.0;
|
---|
554 | gamma_[3].rep[i][0][0] = (i < 2) ?
|
---|
555 | ((i % 2) ? -1.0 : 1.0) : ((i%2) ? 1.0 : -1.0);
|
---|
556 | }
|
---|
557 | } else {
|
---|
558 | // Dn is isomorphic with Cnv
|
---|
559 | //
|
---|
560 | // for odd n, the irreps are A1, A2, and E1...E(nir-2)
|
---|
561 | // for even n, the irreps are A1, A2, B1, B2, and E1...E(nir-4)
|
---|
562 | //
|
---|
563 | gamma_[0].init(g,1,"A1");
|
---|
564 | gamma_[1].init(g,1,"A2");
|
---|
565 |
|
---|
566 | for (gi=0; gi < nt; gi++) {
|
---|
567 | // Cn's
|
---|
568 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
569 | gamma_[1].rep[gi][0][0] = 1.0;
|
---|
570 |
|
---|
571 | // C2's
|
---|
572 | gamma_[0].rep[gi+nt][0][0] = 1.0;
|
---|
573 | gamma_[1].rep[gi+nt][0][0] = -1.0;
|
---|
574 | }
|
---|
575 |
|
---|
576 | i=2;
|
---|
577 |
|
---|
578 | if (!(nt%2)) {
|
---|
579 | gamma_[2].init(g,1,"B1");
|
---|
580 | gamma_[3].init(g,1,"B2");
|
---|
581 |
|
---|
582 | for (gi=0; gi < nt ; gi++) {
|
---|
583 | double ci = (gi%2) ? -1.0 : 1.0;
|
---|
584 |
|
---|
585 | // Cn's
|
---|
586 | gamma_[2].rep[gi][0][0] = ci;
|
---|
587 | gamma_[3].rep[gi][0][0] = ci;
|
---|
588 |
|
---|
589 | // sigma's
|
---|
590 | gamma_[2].rep[gi+nt][0][0] = ci;
|
---|
591 | gamma_[3].rep[gi+nt][0][0] = -ci;
|
---|
592 | }
|
---|
593 |
|
---|
594 | i = 4;
|
---|
595 | }
|
---|
596 |
|
---|
597 | ei=1;
|
---|
598 | for (; i < nirrep_; i++, ei++) {
|
---|
599 | IrreducibleRepresentation& ir = gamma_[i];
|
---|
600 |
|
---|
601 | char lab[4];
|
---|
602 | if (nt==3 || nt==4)
|
---|
603 | sprintf(lab,"E");
|
---|
604 | else
|
---|
605 | sprintf(lab,"E%d",ei);
|
---|
606 |
|
---|
607 | ir.init(g,2,lab);
|
---|
608 |
|
---|
609 | // identity
|
---|
610 | ir.rep[0].E();
|
---|
611 |
|
---|
612 | // Cn
|
---|
613 | ir.rep[1].rotation(ei*theta);
|
---|
614 |
|
---|
615 | for (j=2; j < nt; j++)
|
---|
616 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]);
|
---|
617 |
|
---|
618 | // C2(x)
|
---|
619 | ir.rep[nt].c2_y();
|
---|
620 |
|
---|
621 | SymRep sr(2);
|
---|
622 | sr.rotation(ei*theta/2.0);
|
---|
623 |
|
---|
624 | for (j=nt+1; j < 2*nt; j++)
|
---|
625 | ir.rep[j] = ir.rep[j-1].transform(sr);
|
---|
626 | }
|
---|
627 | }
|
---|
628 |
|
---|
629 | // identity
|
---|
630 | symop[0].E();
|
---|
631 |
|
---|
632 | // Cn
|
---|
633 | symop[1].rotation(theta);
|
---|
634 |
|
---|
635 | for (i=2; i < nt; i++)
|
---|
636 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
637 |
|
---|
638 | // C2(x)
|
---|
639 | symop[nt].c2_y();
|
---|
640 |
|
---|
641 | so.rotation(theta/2.0);
|
---|
642 |
|
---|
643 | for (i=nt+1; i < 2*nt; i++)
|
---|
644 | symop[i] = symop[i-1].transform(so);
|
---|
645 |
|
---|
646 | for (i=0; i < 2*nt ; i++)
|
---|
647 | rot[i] = trans[i] = symop[i].trace();
|
---|
648 |
|
---|
649 | break;
|
---|
650 |
|
---|
651 | case DND:
|
---|
652 | // rotation reflection about z axis by theta/2 radians, followed
|
---|
653 | // by c2 about x axis, then reflection through yz plane
|
---|
654 | //
|
---|
655 | // for odd n, the irreps are A1g, A2g, A1u, A2u, E1g...E(nir/2-2)g,
|
---|
656 | // E1u...E(nir/2-2)u
|
---|
657 | // for even n, the irreps are A1, A2, B1, B2, E1...E(nir-4)
|
---|
658 | //
|
---|
659 |
|
---|
660 | if (nt%2) {
|
---|
661 | gamma_[0].init(g,1,"A1g");
|
---|
662 | gamma_[1].init(g,1,"A2g");
|
---|
663 |
|
---|
664 | for (gi=0; gi < g; gi++) {
|
---|
665 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
666 | gamma_[1].rep[gi][0][0] = (gi/nt==0 || gi/nt==2) ? 1.0 : -1.0;
|
---|
667 | }
|
---|
668 |
|
---|
669 | i=nirrep_/2;
|
---|
670 | j=i+1;
|
---|
671 | gamma_[i].init(g,1,"A1u");
|
---|
672 | gamma_[j].init(g,1,"A2u");
|
---|
673 |
|
---|
674 | for (gi=0; gi < g/2; gi++) {
|
---|
675 | gamma_[i].rep[gi][0][0] = gamma_[0].rep[gi][0][0];
|
---|
676 | gamma_[j].rep[gi][0][0] = gamma_[1].rep[gi][0][0];
|
---|
677 |
|
---|
678 | gamma_[i].rep[gi+g/2][0][0] = -gamma_[0].rep[gi][0][0];
|
---|
679 | gamma_[j].rep[gi+g/2][0][0] = -gamma_[1].rep[gi][0][0];
|
---|
680 | }
|
---|
681 |
|
---|
682 | ei=1;
|
---|
683 |
|
---|
684 | for (i=2; i < nirrep_/2 ; i++, ei++) {
|
---|
685 | IrreducibleRepresentation& ir1 = gamma_[i];
|
---|
686 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2];
|
---|
687 |
|
---|
688 | if (nt==3) {
|
---|
689 | ir1.init(g,2,"Eg");
|
---|
690 | ir2.init(g,2,"Eu");
|
---|
691 | } else {
|
---|
692 | sprintf(label,"E%dg",ei);
|
---|
693 | ir1.init(g,2,label);
|
---|
694 | sprintf(label,"E%du",ei);
|
---|
695 | ir2.init(g,2,label);
|
---|
696 | }
|
---|
697 |
|
---|
698 | // identity
|
---|
699 | ir1.rep[0].E();
|
---|
700 |
|
---|
701 | // Cn
|
---|
702 | ir1.rep[1].rotation(ei*theta);
|
---|
703 |
|
---|
704 | for (j=2; j < nt; j++)
|
---|
705 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]);
|
---|
706 |
|
---|
707 | // C2(x)
|
---|
708 | ir1.rep[nt].c2_y();
|
---|
709 |
|
---|
710 | for (j=nt+1; j < 2*nt; j++)
|
---|
711 | ir1.rep[j] = ir1.rep[j-1].transform(ir1.rep[1]);
|
---|
712 |
|
---|
713 | for (j=0; j < 2*nt; j++)
|
---|
714 | ir2.rep[j] = ir1.rep[j];
|
---|
715 |
|
---|
716 | // Sn and sigma d
|
---|
717 | SymRep sr(2);
|
---|
718 | sr.i();
|
---|
719 |
|
---|
720 | for (j=2*nt; j < g; j++) {
|
---|
721 | ir1.rep[j] = ir1.rep[j-2*nt];
|
---|
722 | ir2.rep[j] = ir2.rep[j-2*nt].operate(sr);
|
---|
723 | }
|
---|
724 | }
|
---|
725 |
|
---|
726 | // identity
|
---|
727 | symop[0].E();
|
---|
728 |
|
---|
729 | // Cn
|
---|
730 | symop[1].rotation(theta);
|
---|
731 |
|
---|
732 | for (i=2; i < nt; i++)
|
---|
733 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
734 |
|
---|
735 | // C2(x)
|
---|
736 | symop[nt].c2_y();
|
---|
737 |
|
---|
738 | for (i=nt+1; i < 2*nt; i++)
|
---|
739 | symop[i] = symop[i-1].transform(symop[1]);
|
---|
740 |
|
---|
741 | // i + n-1 S2n + n sigma
|
---|
742 | so.i();
|
---|
743 | for (i=2*nt; i < g; i++)
|
---|
744 | symop[i] = symop[i-2*nt].operate(so);
|
---|
745 |
|
---|
746 | for (i=0; i < g; i++) {
|
---|
747 | trans[i] = symop[i].trace();
|
---|
748 | rot[i] = (i < g/2) ? trans[i] : -trans[i];
|
---|
749 | }
|
---|
750 |
|
---|
751 | } else { // even nt
|
---|
752 |
|
---|
753 | gamma_[0].init(g,1,"A1");
|
---|
754 | gamma_[1].init(g,1,"A2");
|
---|
755 | gamma_[2].init(g,1,"B1");
|
---|
756 | gamma_[3].init(g,1,"B2");
|
---|
757 |
|
---|
758 | for (gi=0; gi < 2*nt; gi++) {
|
---|
759 | // Sn
|
---|
760 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
761 | gamma_[1].rep[gi][0][0] = 1.0;
|
---|
762 | gamma_[2].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0;
|
---|
763 | gamma_[3].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0;
|
---|
764 |
|
---|
765 | // n C2's and n sigma's
|
---|
766 | gamma_[0].rep[gi+2*nt][0][0] = 1.0;
|
---|
767 | gamma_[1].rep[gi+2*nt][0][0] = -1.0;
|
---|
768 | gamma_[2].rep[gi+2*nt][0][0] = (gi%2) ? -1.0 : 1.0;
|
---|
769 | gamma_[3].rep[gi+2*nt][0][0] = (gi%2) ? 1.0 : -1.0;
|
---|
770 | }
|
---|
771 |
|
---|
772 | ei=1;
|
---|
773 | for (i=4; i < nirrep_; i++, ei++) {
|
---|
774 | IrreducibleRepresentation& ir = gamma_[i];
|
---|
775 |
|
---|
776 | if (nt==2)
|
---|
777 | sprintf(label,"E");
|
---|
778 | else
|
---|
779 | sprintf(label,"E%d",ei);
|
---|
780 |
|
---|
781 | ir.init(g,2,label);
|
---|
782 |
|
---|
783 | // identity
|
---|
784 | ir.rep[0].E();
|
---|
785 |
|
---|
786 | // S2n
|
---|
787 | ir.rep[1].rotation(ei*theta/2.0);
|
---|
788 |
|
---|
789 | for (j=2; j < 2*nt; j++)
|
---|
790 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]);
|
---|
791 |
|
---|
792 | // C2(x) + sigma_d
|
---|
793 | ir.rep[2*nt].c2_y();
|
---|
794 |
|
---|
795 | for (j=2*nt+1; j < g; j++)
|
---|
796 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]);
|
---|
797 | }
|
---|
798 |
|
---|
799 | // identity
|
---|
800 | symop[0].E();
|
---|
801 |
|
---|
802 | // Sn's
|
---|
803 | symop[1].rotation(theta/2.0);
|
---|
804 | symop[1][2][2] = -1.0;
|
---|
805 |
|
---|
806 | for (i=2; i < 2*nt; i++)
|
---|
807 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
808 |
|
---|
809 | // C2(x)
|
---|
810 | symop[2*nt].c2_y();
|
---|
811 |
|
---|
812 | for (i=2*nt+1; i < g; i++)
|
---|
813 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
814 |
|
---|
815 | for (i=0; i < g; i++) {
|
---|
816 | trans[i] = symop[i].trace();
|
---|
817 | rot[i] = (i%2) ? -trans[i] : trans[i];
|
---|
818 | }
|
---|
819 | }
|
---|
820 |
|
---|
821 | break;
|
---|
822 |
|
---|
823 | case DNH:
|
---|
824 | // clockwise rotation and rotation-reflection about z axis,
|
---|
825 | // followed by c2 about x axis and then reflection
|
---|
826 | // through xz
|
---|
827 |
|
---|
828 | i=nirrep_/2; j=i+1;
|
---|
829 |
|
---|
830 | if (nt%2) {
|
---|
831 | gamma_[0].init(g,1,"A1'");
|
---|
832 | gamma_[1].init(g,1,"A2'");
|
---|
833 | gamma_[i].init(g,1,"A1\"");
|
---|
834 | gamma_[j].init(g,1,"A2\"");
|
---|
835 | } else {
|
---|
836 | if (nt==2) {
|
---|
837 | gamma_[0].init(g,1,"Ag");
|
---|
838 | gamma_[1].init(g,1,"B1g");
|
---|
839 | gamma_[4].init(g,1,"Au");
|
---|
840 | gamma_[5].init(g,1,"B1u");
|
---|
841 | } else {
|
---|
842 | gamma_[0].init(g,1,"A1g");
|
---|
843 | gamma_[1].init(g,1,"A2g");
|
---|
844 | gamma_[i].init(g,1,"A1u");
|
---|
845 | gamma_[j].init(g,1,"A2u");
|
---|
846 | }
|
---|
847 | }
|
---|
848 |
|
---|
849 | for (gi=0; gi < nt; gi++) {
|
---|
850 | // E + n-1 Cn's
|
---|
851 | gamma_[0].rep[gi][0][0] = gamma_[1].rep[gi][0][0] =
|
---|
852 | gamma_[i].rep[gi][0][0] = gamma_[j].rep[gi][0][0] = 1.0;
|
---|
853 |
|
---|
854 | // n C2's
|
---|
855 | gamma_[0].rep[gi+nt][0][0] = gamma_[i].rep[gi+nt][0][0] = 1.0;
|
---|
856 | gamma_[1].rep[gi+nt][0][0] = gamma_[j].rep[gi+nt][0][0] = -1.0;
|
---|
857 |
|
---|
858 | // i + n-1 S2n's
|
---|
859 | gamma_[0].rep[gi+2*nt][0][0] = gamma_[1].rep[gi+2*nt][0][0] = 1.0;
|
---|
860 | gamma_[i].rep[gi+2*nt][0][0] = gamma_[j].rep[gi+2*nt][0][0] = -1.0;
|
---|
861 |
|
---|
862 | // n sigma's
|
---|
863 | gamma_[0].rep[gi+3*nt][0][0] = gamma_[j].rep[gi+3*nt][0][0] = 1.0;
|
---|
864 | gamma_[i].rep[gi+3*nt][0][0] = gamma_[1].rep[gi+3*nt][0][0] = -1.0;
|
---|
865 | }
|
---|
866 |
|
---|
867 | if (!(nt%2)) {
|
---|
868 | if (nt==2) {
|
---|
869 | gamma_[2].init(g,1,"B2g");
|
---|
870 | gamma_[3].init(g,1,"B3g");
|
---|
871 | gamma_[6].init(g,1,"B2u");
|
---|
872 | gamma_[7].init(g,1,"B3u");
|
---|
873 | } else {
|
---|
874 | gamma_[2].init(g,1,"B1g");
|
---|
875 | gamma_[3].init(g,1,"B2g");
|
---|
876 | gamma_[i+2].init(g,1,"B1u");
|
---|
877 | gamma_[j+2].init(g,1,"B2u");
|
---|
878 | }
|
---|
879 |
|
---|
880 | for (gi=0; gi < nt; gi++) {
|
---|
881 | // E + n-1 Cn's
|
---|
882 | gamma_[2].rep[gi][0][0] = gamma_[3].rep[gi][0][0] =
|
---|
883 | gamma_[i+2].rep[gi][0][0] = gamma_[j+2].rep[gi][0][0] =
|
---|
884 | (gi%2) ? -1.0 : 1.0;
|
---|
885 |
|
---|
886 | // n C2's
|
---|
887 | gamma_[2].rep[gi+nt][0][0] = gamma_[i+2].rep[gi+nt][0][0] =
|
---|
888 | (gi%2) ? -1.0 : 1.0;
|
---|
889 | gamma_[3].rep[gi+nt][0][0] = gamma_[j+2].rep[gi+nt][0][0] =
|
---|
890 | (gi%2) ? 1.0 : -1.0;
|
---|
891 |
|
---|
892 | // i + n-1 S2n's
|
---|
893 | gamma_[2].rep[gi+2*nt][0][0] = gamma_[3].rep[gi+2*nt][0][0] =
|
---|
894 | (gi%2) ? -1.0 : 1.0;
|
---|
895 | gamma_[i+2].rep[gi+2*nt][0][0] = gamma_[j+2].rep[gi+2*nt][0][0] =
|
---|
896 | (gi%2) ? 1.0 : -1.0;
|
---|
897 |
|
---|
898 | // n sigma's
|
---|
899 | gamma_[2].rep[gi+3*nt][0][0] = gamma_[j+2].rep[gi+3*nt][0][0] =
|
---|
900 | (gi%2) ? -1.0 : 1.0;
|
---|
901 | gamma_[i+2].rep[gi+3*nt][0][0] = gamma_[3].rep[gi+3*nt][0][0] =
|
---|
902 | (gi%2) ? 1.0 : -1.0;
|
---|
903 | }
|
---|
904 | }
|
---|
905 |
|
---|
906 | ei=1;
|
---|
907 | for (i = (nt%2) ? 2 : 4; i < nirrep_/2 ; i++, ei++) {
|
---|
908 | IrreducibleRepresentation& ir1 = gamma_[i];
|
---|
909 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2];
|
---|
910 |
|
---|
911 | if (nt==3) {
|
---|
912 | ir1.init(g,2,"E'");
|
---|
913 | ir2.init(g,2,"E\"");
|
---|
914 | } else if (nt==4) {
|
---|
915 | ir1.init(g,2,"Eg");
|
---|
916 | ir2.init(g,2,"Eu");
|
---|
917 | } else {
|
---|
918 | sprintf(label,"E%d%s", ei, (nt%2) ? "'" : "g");
|
---|
919 | ir1.init(g,2,label);
|
---|
920 |
|
---|
921 | sprintf(label,"E%d%s", ei, (nt%2) ? "\"" : "u");
|
---|
922 | ir2.init(g,2,label);
|
---|
923 | }
|
---|
924 |
|
---|
925 | // identity
|
---|
926 | ir1.rep[0].E();
|
---|
927 |
|
---|
928 | // n-1 Cn's
|
---|
929 | ir1.rep[1].rotation(ei*theta);
|
---|
930 |
|
---|
931 | for (j=2; j < nt; j++)
|
---|
932 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]);
|
---|
933 |
|
---|
934 | // n C2's
|
---|
935 | ir1.rep[nt].c2_y();
|
---|
936 |
|
---|
937 | SymRep sr(2);
|
---|
938 | sr.rotation(ei*theta/2.0);
|
---|
939 |
|
---|
940 | for (j=nt+1; j < 2*nt; j++)
|
---|
941 | ir1.rep[j] = ir1.rep[j-1].transform(sr);
|
---|
942 |
|
---|
943 | sr.i();
|
---|
944 | for (j=0; j < 2*nt; j++) {
|
---|
945 | ir1.rep[j+2*nt] = ir1.rep[j];
|
---|
946 | ir2.rep[j] = ir1.rep[j];
|
---|
947 | ir2.rep[j+2*nt] = ir1.rep[j].operate(sr);
|
---|
948 | }
|
---|
949 | }
|
---|
950 |
|
---|
951 | // identity
|
---|
952 | symop[0].E();
|
---|
953 |
|
---|
954 | // n-1 Cn's
|
---|
955 | symop[1].rotation(theta);
|
---|
956 |
|
---|
957 | for (i=2; i < nt; i++)
|
---|
958 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
959 |
|
---|
960 | // n C2's
|
---|
961 | symop[nt].c2_y();
|
---|
962 |
|
---|
963 | so.rotation(theta/2.0);
|
---|
964 | for (i=nt+1; i < 2*nt; i++)
|
---|
965 | symop[i] = symop[i-1].transform(so);
|
---|
966 |
|
---|
967 | if (nt%2)
|
---|
968 | so.sigma_h();
|
---|
969 | else
|
---|
970 | so.i();
|
---|
971 |
|
---|
972 | for (i=2*nt; i < g; i++)
|
---|
973 | symop[i] = symop[i-2*nt].operate(so);
|
---|
974 |
|
---|
975 | for (i=0,j=2*nt; i < 2*nt ; i++,j++) {
|
---|
976 | rot[i] = trans[i] = symop[i].trace();
|
---|
977 | trans[j] = symop[j].trace();
|
---|
978 | rot[j] = -trans[j];
|
---|
979 | }
|
---|
980 |
|
---|
981 | break;
|
---|
982 |
|
---|
983 | case T:
|
---|
984 | t();
|
---|
985 | break;
|
---|
986 |
|
---|
987 | case TH:
|
---|
988 | th();
|
---|
989 | break;
|
---|
990 |
|
---|
991 | case TD:
|
---|
992 | td();
|
---|
993 | break;
|
---|
994 |
|
---|
995 | case O:
|
---|
996 | o();
|
---|
997 | break;
|
---|
998 |
|
---|
999 | case OH:
|
---|
1000 | oh();
|
---|
1001 | break;
|
---|
1002 |
|
---|
1003 | case I:
|
---|
1004 | this->i();
|
---|
1005 | break;
|
---|
1006 |
|
---|
1007 | case IH:
|
---|
1008 | ih();
|
---|
1009 | break;
|
---|
1010 |
|
---|
1011 | default:
|
---|
1012 | return -1;
|
---|
1013 |
|
---|
1014 | }
|
---|
1015 |
|
---|
1016 | /* ok, we have the reducible representation of the rotations and
|
---|
1017 | * translations, now let's use projection operators to find out how many
|
---|
1018 | * rotations and translations there are in each irrep
|
---|
1019 | */
|
---|
1020 |
|
---|
1021 | if (pg != C1 && pg != CI && pg != CS && pg != T && pg != TD && pg != TH &&
|
---|
1022 | pg != O && pg != OH && pg != I && pg != IH) {
|
---|
1023 |
|
---|
1024 | for (i=0; i < nirrep_; i++) {
|
---|
1025 | double nr=0; double nt=0;
|
---|
1026 |
|
---|
1027 | for (j=0; j < gamma_[i].g; j++) {
|
---|
1028 | nr += rot[j]*gamma_[i].character(j);
|
---|
1029 | nt += trans[j]*gamma_[i].character(j);
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 | gamma_[i].nrot_ = (int) ((nr+0.5)/gamma_[i].g);
|
---|
1033 | gamma_[i].ntrans_ = (int) ((nt+0.5)/gamma_[i].g);
|
---|
1034 | }
|
---|
1035 | }
|
---|
1036 |
|
---|
1037 | delete[] rot;
|
---|
1038 | delete[] trans;
|
---|
1039 |
|
---|
1040 | // now find the inverse of each symop
|
---|
1041 | for (gi=0; gi < g; gi++) {
|
---|
1042 | int gj;
|
---|
1043 | for (gj=0; gj < g; gj++) {
|
---|
1044 | so = symop[gi].operate(symop[gj]);
|
---|
1045 |
|
---|
1046 | // is so a unit matrix?
|
---|
1047 | if (fabs(1.0-so[0][0]) < 1.0e-8 &&
|
---|
1048 | fabs(1.0-so[1][1]) < 1.0e-8 &&
|
---|
1049 | fabs(1.0-so[2][2]) < 1.0e-8) break;
|
---|
1050 | }
|
---|
1051 |
|
---|
1052 | if (gj==g) {
|
---|
1053 | ExEnv::err0() << indent
|
---|
1054 | << "make_table: uh oh, can't find inverse of " << gi << endl;
|
---|
1055 | abort();
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 | _inv[gi] = gj;
|
---|
1059 | }
|
---|
1060 |
|
---|
1061 | return 0;
|
---|
1062 | }
|
---|
1063 |
|
---|
1064 | /////////////////////////////////////////////////////////////////////////////
|
---|
1065 |
|
---|
1066 | // Local Variables:
|
---|
1067 | // mode: c++
|
---|
1068 | // c-file-style: "ETS"
|
---|
1069 | // End:
|
---|