| 1 | // | 
|---|
| 2 | // maketab.cc | 
|---|
| 3 | // | 
|---|
| 4 | // Modifications are | 
|---|
| 5 | // Copyright (C) 1996 Limit Point Systems, Inc. | 
|---|
| 6 | // | 
|---|
| 7 | // Author: Edward Seidl <seidl@janed.com> | 
|---|
| 8 | // Maintainer: LPS | 
|---|
| 9 | // | 
|---|
| 10 | // This file is part of the SC Toolkit. | 
|---|
| 11 | // | 
|---|
| 12 | // The SC Toolkit is free software; you can redistribute it and/or modify | 
|---|
| 13 | // it under the terms of the GNU Library General Public License as published by | 
|---|
| 14 | // the Free Software Foundation; either version 2, or (at your option) | 
|---|
| 15 | // any later version. | 
|---|
| 16 | // | 
|---|
| 17 | // The SC Toolkit is distributed in the hope that it will be useful, | 
|---|
| 18 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 19 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 20 | // GNU Library General Public License for more details. | 
|---|
| 21 | // | 
|---|
| 22 | // You should have received a copy of the GNU Library General Public License | 
|---|
| 23 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to | 
|---|
| 24 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | 
|---|
| 25 | // | 
|---|
| 26 | // The U.S. Government is granted a limited license as per AL 91-7. | 
|---|
| 27 | // | 
|---|
| 28 |  | 
|---|
| 29 | /* maketab.cc | 
|---|
| 30 | * | 
|---|
| 31 | *      THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A | 
|---|
| 32 | *      "UNITED STATES GOVERNMENT WORK".  IT WAS WRITTEN AS A PART OF THE | 
|---|
| 33 | *      AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE.  THIS MEANS IT | 
|---|
| 34 | *      CANNOT BE COPYRIGHTED.  THIS SOFTWARE IS FREELY AVAILABLE TO THE | 
|---|
| 35 | *      PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO | 
|---|
| 36 | *      RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY. | 
|---|
| 37 | * | 
|---|
| 38 | *  Author: | 
|---|
| 39 | *      E. T. Seidl | 
|---|
| 40 | *      Bldg. 12A, Rm. 2033 | 
|---|
| 41 | *      Computer Systems Laboratory | 
|---|
| 42 | *      Division of Computer Research and Technology | 
|---|
| 43 | *      National Institutes of Health | 
|---|
| 44 | *      Bethesda, Maryland 20892 | 
|---|
| 45 | *      Internet: seidl@alw.nih.gov | 
|---|
| 46 | *      June, 1993 | 
|---|
| 47 | */ | 
|---|
| 48 |  | 
|---|
| 49 | #include <util/misc/math.h> | 
|---|
| 50 | #include <stdio.h> | 
|---|
| 51 | #include <string.h> | 
|---|
| 52 |  | 
|---|
| 53 | #include <math/symmetry/pointgrp.h> | 
|---|
| 54 | #include <util/misc/formio.h> | 
|---|
| 55 |  | 
|---|
| 56 | using namespace std; | 
|---|
| 57 | using namespace sc; | 
|---|
| 58 |  | 
|---|
| 59 | /* | 
|---|
| 60 | * This function will generate a character table for the point group. | 
|---|
| 61 | * This character table is in the order that symmetry operations are | 
|---|
| 62 | * generated, not in Cotton order. If this is a problem, tough. | 
|---|
| 63 | * Also generate the transformation matrices. | 
|---|
| 64 | */ | 
|---|
| 65 |  | 
|---|
| 66 | int CharacterTable::make_table() | 
|---|
| 67 | { | 
|---|
| 68 | int i,j,ei,gi; | 
|---|
| 69 | char label[4]; | 
|---|
| 70 |  | 
|---|
| 71 | if (!g) return 0; | 
|---|
| 72 |  | 
|---|
| 73 | gamma_ = new IrreducibleRepresentation[nirrep_]; | 
|---|
| 74 |  | 
|---|
| 75 | symop = new SymmetryOperation[g]; | 
|---|
| 76 | SymmetryOperation so; | 
|---|
| 77 |  | 
|---|
| 78 | _inv = new int[g]; | 
|---|
| 79 |  | 
|---|
| 80 | // this array forms a reducible representation for rotations about x,y,z | 
|---|
| 81 | double *rot = new double[g]; | 
|---|
| 82 | memset(rot,0,sizeof(double)*g); | 
|---|
| 83 |  | 
|---|
| 84 | // this array forms a reducible representation for translations along x,y,z | 
|---|
| 85 | double *trans = new double[g]; | 
|---|
| 86 | memset(trans,0,sizeof(double)*g); | 
|---|
| 87 |  | 
|---|
| 88 | // the angle to rotate about the principal axis | 
|---|
| 89 | double theta = (nt) ? 2.0*M_PI/nt : 2.0*M_PI; | 
|---|
| 90 |  | 
|---|
| 91 | switch (pg) { | 
|---|
| 92 |  | 
|---|
| 93 | case C1: | 
|---|
| 94 | // no symmetry case | 
|---|
| 95 | gamma_[0].init(1,1,"A"); | 
|---|
| 96 | gamma_[0].nrot_ = 3; | 
|---|
| 97 | gamma_[0].ntrans_ = 3; | 
|---|
| 98 | gamma_[0].rep[0][0][0] = 1.0; | 
|---|
| 99 |  | 
|---|
| 100 | symop[0].E(); | 
|---|
| 101 |  | 
|---|
| 102 | break; | 
|---|
| 103 |  | 
|---|
| 104 | case CI: | 
|---|
| 105 | // equivalent to S2 about the z axis | 
|---|
| 106 | gamma_[0].init(2,1,"Ag"); | 
|---|
| 107 | gamma_[0].rep[0][0][0] = 1.0; | 
|---|
| 108 | gamma_[0].rep[1][0][0] = 1.0; | 
|---|
| 109 | gamma_[0].nrot_=3; | 
|---|
| 110 |  | 
|---|
| 111 | gamma_[1].init(2,1,"Au"); | 
|---|
| 112 | gamma_[1].rep[0][0][0] =  1.0; | 
|---|
| 113 | gamma_[1].rep[1][0][0] = -1.0; | 
|---|
| 114 | gamma_[1].ntrans_=3; | 
|---|
| 115 |  | 
|---|
| 116 | symop[0].E(); | 
|---|
| 117 | symop[1].i(); | 
|---|
| 118 |  | 
|---|
| 119 | break; | 
|---|
| 120 |  | 
|---|
| 121 | case CS: // reflection through the xy plane | 
|---|
| 122 | gamma_[0].init(2,1,"A'","Ap"); | 
|---|
| 123 | gamma_[0].rep[0][0][0] = 1.0; | 
|---|
| 124 | gamma_[0].rep[1][0][0] = 1.0; | 
|---|
| 125 | gamma_[0].nrot_=1; | 
|---|
| 126 | gamma_[0].ntrans_=2; | 
|---|
| 127 |  | 
|---|
| 128 | gamma_[1].init(2,1,"A\"","App"); | 
|---|
| 129 | gamma_[1].rep[0][0][0] =  1.0; | 
|---|
| 130 | gamma_[1].rep[1][0][0] = -1.0; | 
|---|
| 131 | gamma_[1].nrot_=2; | 
|---|
| 132 | gamma_[1].ntrans_=1; | 
|---|
| 133 |  | 
|---|
| 134 | symop[0].E(); | 
|---|
| 135 | symop[1].sigma_h(); | 
|---|
| 136 |  | 
|---|
| 137 | break; | 
|---|
| 138 |  | 
|---|
| 139 | case CN: | 
|---|
| 140 | // clockwise rotation about z axis by theta*i radians | 
|---|
| 141 | // | 
|---|
| 142 | // for odd n, the irreps are A and E1...E(nir-1) | 
|---|
| 143 | // for even n, the irreps are A, B, and E1...E(nir-2) | 
|---|
| 144 | // | 
|---|
| 145 | gamma_[0].init(g,1,"A"); | 
|---|
| 146 | for (gi=0; gi < g; gi++) | 
|---|
| 147 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
| 148 |  | 
|---|
| 149 | i=1; | 
|---|
| 150 |  | 
|---|
| 151 | if (!(nt%2)) { | 
|---|
| 152 | gamma_[1].init(g,1,"B"); | 
|---|
| 153 | for (gi=0; gi < g; gi++) | 
|---|
| 154 | gamma_[1].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0; | 
|---|
| 155 |  | 
|---|
| 156 | i++; | 
|---|
| 157 | } | 
|---|
| 158 |  | 
|---|
| 159 | ei=1; | 
|---|
| 160 | for (; i < nirrep_; i++, ei++) { | 
|---|
| 161 | IrreducibleRepresentation& ir = gamma_[i]; | 
|---|
| 162 |  | 
|---|
| 163 | if (nt==3 || nt==4) | 
|---|
| 164 | sprintf(label,"E"); | 
|---|
| 165 | else | 
|---|
| 166 | sprintf(label,"E%d",ei); | 
|---|
| 167 |  | 
|---|
| 168 | ir.init(g,2,label); | 
|---|
| 169 | ir.complex_=1; | 
|---|
| 170 |  | 
|---|
| 171 | // identity | 
|---|
| 172 | ir.rep[0].E(); | 
|---|
| 173 |  | 
|---|
| 174 | // Cn | 
|---|
| 175 | ir.rep[1].rotation(ei*theta); | 
|---|
| 176 |  | 
|---|
| 177 | // the other n-1 Cn's | 
|---|
| 178 | for (j=2; j < g; j++) | 
|---|
| 179 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]); | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | // identity | 
|---|
| 183 | symop[0].E(); | 
|---|
| 184 |  | 
|---|
| 185 | // Cn | 
|---|
| 186 | symop[1].rotation(theta); | 
|---|
| 187 |  | 
|---|
| 188 | // the other n-2 Cn's | 
|---|
| 189 | for (i=2; i < nt; i++) | 
|---|
| 190 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
| 191 |  | 
|---|
| 192 | for (i=0; i < nt ; i++) | 
|---|
| 193 | rot[i] = trans[i] = symop[i].trace(); | 
|---|
| 194 |  | 
|---|
| 195 | break; | 
|---|
| 196 |  | 
|---|
| 197 | case CNV: | 
|---|
| 198 | // clockwise rotation about z axis by theta*i radians, then | 
|---|
| 199 | // reflect through the xz plane | 
|---|
| 200 | // | 
|---|
| 201 | // for odd n, the irreps are A1, A2, and E1...E(nir-2) | 
|---|
| 202 | // for even n, the irreps are A1, A2, B1, B2, and E1...E(nir-4) | 
|---|
| 203 | // | 
|---|
| 204 |  | 
|---|
| 205 | gamma_[0].init(g,1,"A1"); | 
|---|
| 206 | gamma_[1].init(g,1,"A2"); | 
|---|
| 207 |  | 
|---|
| 208 | for (gi=0; gi < nt; gi++) { | 
|---|
| 209 | // Cn's | 
|---|
| 210 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
| 211 | gamma_[1].rep[gi][0][0] = 1.0; | 
|---|
| 212 |  | 
|---|
| 213 | // sigma's | 
|---|
| 214 | gamma_[0].rep[gi+nt][0][0] =  1.0; | 
|---|
| 215 | gamma_[1].rep[gi+nt][0][0] = -1.0; | 
|---|
| 216 | } | 
|---|
| 217 |  | 
|---|
| 218 | if (!(nt%2)) { | 
|---|
| 219 | gamma_[2].init(g,1,"B1"); | 
|---|
| 220 | gamma_[3].init(g,1,"B2"); | 
|---|
| 221 |  | 
|---|
| 222 | for (gi=0; gi < nt ; gi++) { | 
|---|
| 223 | double ci = (gi%2) ? -1.0 : 1.0; | 
|---|
| 224 |  | 
|---|
| 225 | // Cn's | 
|---|
| 226 | gamma_[2].rep[gi][0][0] = ci; | 
|---|
| 227 | gamma_[3].rep[gi][0][0] = ci; | 
|---|
| 228 |  | 
|---|
| 229 | // sigma's | 
|---|
| 230 | gamma_[2].rep[gi+nt][0][0] =  ci; | 
|---|
| 231 | gamma_[3].rep[gi+nt][0][0] = -ci; | 
|---|
| 232 | } | 
|---|
| 233 | } | 
|---|
| 234 |  | 
|---|
| 235 | ei=1; | 
|---|
| 236 | for (i = (nt%2) ? 2 : 4; i < nirrep_; i++, ei++) { | 
|---|
| 237 | IrreducibleRepresentation& ir = gamma_[i]; | 
|---|
| 238 |  | 
|---|
| 239 | char lab[4]; | 
|---|
| 240 | if (nt==3 || nt==4) | 
|---|
| 241 | sprintf(lab,"E"); | 
|---|
| 242 | else | 
|---|
| 243 | sprintf(lab,"E%d",ei); | 
|---|
| 244 |  | 
|---|
| 245 | ir.init(g,2,lab); | 
|---|
| 246 |  | 
|---|
| 247 | // identity | 
|---|
| 248 | ir.rep[0].E(); | 
|---|
| 249 |  | 
|---|
| 250 | // Cn | 
|---|
| 251 | ir.rep[1].rotation(ei*theta); | 
|---|
| 252 |  | 
|---|
| 253 | // the other n-2 Cn's | 
|---|
| 254 | for (j=2; j < nt; j++) | 
|---|
| 255 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]); | 
|---|
| 256 |  | 
|---|
| 257 | // sigma xz | 
|---|
| 258 | ir.rep[nt].sigma_xz(); | 
|---|
| 259 |  | 
|---|
| 260 | SymRep sr(2); | 
|---|
| 261 | sr.rotation(ei*theta/2.0); | 
|---|
| 262 |  | 
|---|
| 263 | // the other n-1 sigma's | 
|---|
| 264 | for (j=nt+1; j < g; j++) | 
|---|
| 265 | ir.rep[j] = ir.rep[j-1].transform(sr); | 
|---|
| 266 | } | 
|---|
| 267 |  | 
|---|
| 268 | // identity | 
|---|
| 269 | symop[0].E(); | 
|---|
| 270 |  | 
|---|
| 271 | // Cn | 
|---|
| 272 | symop[1].rotation(theta); | 
|---|
| 273 |  | 
|---|
| 274 | // the other n-2 Cn's | 
|---|
| 275 | for (i=2; i < nt; i++) | 
|---|
| 276 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
| 277 |  | 
|---|
| 278 | // sigma xz | 
|---|
| 279 | symop[nt].sigma_xz(); | 
|---|
| 280 |  | 
|---|
| 281 | so.rotation(theta/2.0); | 
|---|
| 282 |  | 
|---|
| 283 | // the other n-1 sigma's | 
|---|
| 284 | for (j=nt+1; j < g; j++) | 
|---|
| 285 | symop[j] = symop[j-1].transform(so); | 
|---|
| 286 |  | 
|---|
| 287 | for (i=0; i < nt ; i++) { | 
|---|
| 288 | rot[i] = trans[i] = symop[i].trace(); | 
|---|
| 289 |  | 
|---|
| 290 | rot[i+nt] = -symop[i+nt].trace(); | 
|---|
| 291 | trans[i+nt] = symop[i+nt].trace(); | 
|---|
| 292 | } | 
|---|
| 293 |  | 
|---|
| 294 | break; | 
|---|
| 295 |  | 
|---|
| 296 | case CNH: | 
|---|
| 297 | // lockwise rotation about z axis by theta*i radians, | 
|---|
| 298 | // as well as rotation-reflection about same axis | 
|---|
| 299 |  | 
|---|
| 300 | // | 
|---|
| 301 | // for odd n, the irreps are A', A", E1'...E(nir/2-1)', E1"...E(nir/2-1)'' | 
|---|
| 302 | // for even n, the irreps are Ag, Bg, Au, Bu, | 
|---|
| 303 | //                            E1g...E(nir/2-1)g, E1u...E(nir/2-1)u | 
|---|
| 304 | // | 
|---|
| 305 | gamma_[0].init(g,1, (nt%2) ? "A'" : "Ag", (nt%2) ? "Ap" : 0); | 
|---|
| 306 | gamma_[nirrep_/2].init(g,1, (nt%2) ? "A\"" : "Au", (nt%2) ? "Ap" : 0); | 
|---|
| 307 |  | 
|---|
| 308 | for (gi=0; gi < nt; gi++) { | 
|---|
| 309 | // Cn's | 
|---|
| 310 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
| 311 | gamma_[nirrep_/2].rep[gi][0][0] = 1.0; | 
|---|
| 312 |  | 
|---|
| 313 | // Sn's | 
|---|
| 314 | gamma_[0].rep[gi+nt][0][0] = 1.0; | 
|---|
| 315 | gamma_[nirrep_/2].rep[gi+nt][0][0] = -1.0; | 
|---|
| 316 | } | 
|---|
| 317 |  | 
|---|
| 318 | if (!(nt%2)) { | 
|---|
| 319 | gamma_[1].init(g,1,"Bg"); | 
|---|
| 320 | gamma_[1+nirrep_/2].init(g,1,"Bu"); | 
|---|
| 321 |  | 
|---|
| 322 | for (gi=0; gi < nt; gi++) { | 
|---|
| 323 | double ci = (gi%2) ? -1.0 : 1.0; | 
|---|
| 324 |  | 
|---|
| 325 | // Cn's | 
|---|
| 326 | gamma_[1].rep[gi][0][0] = ci; | 
|---|
| 327 | gamma_[1+nirrep_/2].rep[gi][0][0] = ci; | 
|---|
| 328 |  | 
|---|
| 329 | // Sn's | 
|---|
| 330 | gamma_[1].rep[gi+nt][0][0] =  ci; | 
|---|
| 331 | gamma_[1+nirrep_/2].rep[gi+nt][0][0] = -ci; | 
|---|
| 332 | } | 
|---|
| 333 | } | 
|---|
| 334 |  | 
|---|
| 335 | ei=1; | 
|---|
| 336 | for (i = (nt%2) ? 1 : 2; i < nirrep_/2 ; i++, ei++) { | 
|---|
| 337 | IrreducibleRepresentation& ir1 = gamma_[i]; | 
|---|
| 338 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2]; | 
|---|
| 339 |  | 
|---|
| 340 | if (nt==3 || nt==4) | 
|---|
| 341 | sprintf(label,(nt%2) ? "E'" : "Eg"); | 
|---|
| 342 | else | 
|---|
| 343 | sprintf(label,"E%d%s", ei, (nt%2) ? "'" : "g"); | 
|---|
| 344 |  | 
|---|
| 345 | ir1.init(g,2,label); | 
|---|
| 346 |  | 
|---|
| 347 | if (nt==3 || nt==4) | 
|---|
| 348 | sprintf(label,(nt%2) ? "E\"" : "Eu"); | 
|---|
| 349 | else | 
|---|
| 350 | sprintf(label,"E%d%s", ei, (nt%2) ? "\"" : "u"); | 
|---|
| 351 |  | 
|---|
| 352 | ir2.init(g,2,label); | 
|---|
| 353 |  | 
|---|
| 354 | ir1.complex_=1; | 
|---|
| 355 | ir2.complex_=1; | 
|---|
| 356 |  | 
|---|
| 357 | // identity | 
|---|
| 358 | ir1.rep[0].E(); | 
|---|
| 359 | ir2.rep[0].E(); | 
|---|
| 360 |  | 
|---|
| 361 | // Cn | 
|---|
| 362 | ir1.rep[1].rotation(ei*theta); | 
|---|
| 363 | ir2.rep[1].rotation(ei*theta); | 
|---|
| 364 |  | 
|---|
| 365 | for (j=2; j < nt; j++) { | 
|---|
| 366 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]); | 
|---|
| 367 | ir2.rep[j] = ir2.rep[j-1].operate(ir2.rep[1]); | 
|---|
| 368 | } | 
|---|
| 369 |  | 
|---|
| 370 | // Sn's | 
|---|
| 371 | SymRep sr(2); | 
|---|
| 372 | sr.i(); | 
|---|
| 373 |  | 
|---|
| 374 | for (j=nt; j < g; j++) { | 
|---|
| 375 | ir1.rep[j] = ir1.rep[j-nt]; | 
|---|
| 376 | ir2.rep[j] = ir2.rep[j-nt].operate(sr); | 
|---|
| 377 | } | 
|---|
| 378 | } | 
|---|
| 379 |  | 
|---|
| 380 | // identity | 
|---|
| 381 | symop[0].E(); | 
|---|
| 382 |  | 
|---|
| 383 | // Cn | 
|---|
| 384 | symop[1].rotation(theta); | 
|---|
| 385 |  | 
|---|
| 386 | // the other n-2 Cn's | 
|---|
| 387 | for (i=2; i < nt; i++) | 
|---|
| 388 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
| 389 |  | 
|---|
| 390 | // Sn's, for odd nt, operate on Cn's with sigma_h, for even nt, | 
|---|
| 391 | // operate Cn's with i | 
|---|
| 392 | if (nt%2) | 
|---|
| 393 | so.sigma_h(); | 
|---|
| 394 | else | 
|---|
| 395 | so.i(); | 
|---|
| 396 |  | 
|---|
| 397 | for (i=0; i < nt ; i++) { | 
|---|
| 398 | symop[i+nt] = symop[i].operate(so); | 
|---|
| 399 |  | 
|---|
| 400 | rot[i] = trans[i] = symop[i].trace(); | 
|---|
| 401 | trans[i+nt] = symop[i+nt].trace(); | 
|---|
| 402 | rot[i+nt] = -trans[i+nt]; | 
|---|
| 403 | } | 
|---|
| 404 |  | 
|---|
| 405 | break; | 
|---|
| 406 |  | 
|---|
| 407 | case SN: | 
|---|
| 408 | // clockwise rotation-reflection by theta*i radians about z axis | 
|---|
| 409 | // | 
|---|
| 410 | // for odd n/2, the irreps are Ag, Au, E1g...E(nir/2-1)g,E1u...E(nir/2-1)u | 
|---|
| 411 | // for even n/2, the irreps are A, B, E1...E(nir-2) | 
|---|
| 412 | // | 
|---|
| 413 | if ((nt/2)%2) { | 
|---|
| 414 | gamma_[0].init(g, 1, "Ag"); | 
|---|
| 415 | gamma_[nirrep_/2].init(g, 1, "Au"); | 
|---|
| 416 |  | 
|---|
| 417 | for (gi=0; gi < nt/2; gi++) { | 
|---|
| 418 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
| 419 | gamma_[nirrep_/2].rep[gi][0][0] = 1.0; | 
|---|
| 420 |  | 
|---|
| 421 | gamma_[0].rep[gi+nt/2][0][0] =  1.0; | 
|---|
| 422 | gamma_[nirrep_/2].rep[gi+nt/2][0][0] = -1.0; | 
|---|
| 423 | } | 
|---|
| 424 |  | 
|---|
| 425 | ei=1; | 
|---|
| 426 | for (i=1; i < nirrep_/2 ; i++, ei++) { | 
|---|
| 427 | IrreducibleRepresentation& ir1 = gamma_[i]; | 
|---|
| 428 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2]; | 
|---|
| 429 |  | 
|---|
| 430 | if (nt==6) | 
|---|
| 431 | sprintf(label,"Eg"); | 
|---|
| 432 | else | 
|---|
| 433 | sprintf(label,"E%dg",ei); | 
|---|
| 434 |  | 
|---|
| 435 | ir1.init(g,2,label); | 
|---|
| 436 | ir1.complex_=1; | 
|---|
| 437 |  | 
|---|
| 438 | if (nt==6) | 
|---|
| 439 | sprintf(label,"Eu"); | 
|---|
| 440 | else | 
|---|
| 441 | sprintf(label,"E%du", ei); | 
|---|
| 442 |  | 
|---|
| 443 | ir2.init(g,2,label); | 
|---|
| 444 | ir2.complex_=1; | 
|---|
| 445 |  | 
|---|
| 446 | // identity | 
|---|
| 447 | ir1.rep[0].E(); | 
|---|
| 448 | ir2.rep[0].E(); | 
|---|
| 449 |  | 
|---|
| 450 | // C(n/2) | 
|---|
| 451 | ir1.rep[1].rotation(ei*theta*2.0); | 
|---|
| 452 | ir2.rep[1].rotation(ei*theta*2.0); | 
|---|
| 453 |  | 
|---|
| 454 | for (j=2; j < nt/2; j++) { | 
|---|
| 455 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]); | 
|---|
| 456 | ir2.rep[j] = ir2.rep[j-1].operate(ir2.rep[1]); | 
|---|
| 457 | } | 
|---|
| 458 |  | 
|---|
| 459 | SymRep sr(2); | 
|---|
| 460 | sr.i(); | 
|---|
| 461 |  | 
|---|
| 462 | // Sn | 
|---|
| 463 | for (j=nt/2; j < nt; j++) { | 
|---|
| 464 | ir1.rep[j] = ir1.rep[j-nt/2]; | 
|---|
| 465 | ir2.rep[j] = ir2.rep[j-nt/2].operate(sr); | 
|---|
| 466 | } | 
|---|
| 467 | } | 
|---|
| 468 |  | 
|---|
| 469 | // identity | 
|---|
| 470 | symop[0].E(); | 
|---|
| 471 |  | 
|---|
| 472 | // Cn | 
|---|
| 473 | symop[1].rotation(2.0*theta); | 
|---|
| 474 |  | 
|---|
| 475 | for (i=2; i < nt/2 ; i++) | 
|---|
| 476 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
| 477 |  | 
|---|
| 478 | so.i(); | 
|---|
| 479 |  | 
|---|
| 480 | // Sn | 
|---|
| 481 | for (i=nt/2; i < nt; i++) | 
|---|
| 482 | symop[i] = symop[i-nt/2].operate(so); | 
|---|
| 483 |  | 
|---|
| 484 | for (i=0; i < nt/2 ; i++) { | 
|---|
| 485 | rot[i] = trans[i] = symop[i].trace(); | 
|---|
| 486 |  | 
|---|
| 487 | trans[i+nt/2] = symop[i+nt/2].trace(); | 
|---|
| 488 | rot[i+nt/2] = -trans[i+nt/2]; | 
|---|
| 489 | } | 
|---|
| 490 |  | 
|---|
| 491 | } else { | 
|---|
| 492 | gamma_[0].init(g, 1, "A"); | 
|---|
| 493 | gamma_[1].init(g, 1, "B"); | 
|---|
| 494 |  | 
|---|
| 495 | for (gi=0; gi < nt; gi++) { | 
|---|
| 496 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
| 497 | gamma_[1].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0; | 
|---|
| 498 | } | 
|---|
| 499 |  | 
|---|
| 500 | ei=1; | 
|---|
| 501 | for (i=2; i < nirrep_; i++, ei++) { | 
|---|
| 502 | IrreducibleRepresentation& ir = gamma_[i]; | 
|---|
| 503 |  | 
|---|
| 504 | if (nt==4) | 
|---|
| 505 | sprintf(label,"E"); | 
|---|
| 506 | else | 
|---|
| 507 | sprintf(label,"E%d",ei); | 
|---|
| 508 |  | 
|---|
| 509 | ir.init(g,2,label); | 
|---|
| 510 | ir.complex_ = 1; | 
|---|
| 511 |  | 
|---|
| 512 | // identity | 
|---|
| 513 | ir.rep[0].E(); | 
|---|
| 514 |  | 
|---|
| 515 | // Sn | 
|---|
| 516 | ir.rep[1].rotation(ei*theta); | 
|---|
| 517 |  | 
|---|
| 518 | for (j=2; j < nt; j++) | 
|---|
| 519 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]); | 
|---|
| 520 | } | 
|---|
| 521 |  | 
|---|
| 522 | // identity | 
|---|
| 523 | symop[0].E(); | 
|---|
| 524 |  | 
|---|
| 525 | // Sn | 
|---|
| 526 | symop[1].rotation(theta); | 
|---|
| 527 | symop[1][2][2] = -1.0; | 
|---|
| 528 |  | 
|---|
| 529 | for (i=2; i < nt ; i++) | 
|---|
| 530 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
| 531 |  | 
|---|
| 532 | for (i=0; i < nt ; i++) { | 
|---|
| 533 | trans[i] = symop[i].trace(); | 
|---|
| 534 | rot[i] = (i%2) ? -trans[i] : trans[i]; | 
|---|
| 535 | } | 
|---|
| 536 | } | 
|---|
| 537 |  | 
|---|
| 538 | break; | 
|---|
| 539 |  | 
|---|
| 540 | case DN: | 
|---|
| 541 | // clockwise rotation about z axis, followed by C2 about x axis | 
|---|
| 542 |  | 
|---|
| 543 | // D2 is a special case | 
|---|
| 544 | if (nt==2) { | 
|---|
| 545 | gamma_[0].init(g,1,"A"); | 
|---|
| 546 | gamma_[1].init(g,1,"B1"); | 
|---|
| 547 | gamma_[2].init(g,1,"B2"); | 
|---|
| 548 | gamma_[3].init(g,1,"B3"); | 
|---|
| 549 |  | 
|---|
| 550 | for (i=0; i < g; i++) { | 
|---|
| 551 | gamma_[0].rep[i][0][0] = 1.0; | 
|---|
| 552 | gamma_[1].rep[i][0][0] = (i < 2) ? 1.0 : -1.0; | 
|---|
| 553 | gamma_[2].rep[i][0][0] = (i % 2) ? -1.0 : 1.0; | 
|---|
| 554 | gamma_[3].rep[i][0][0] = (i < 2) ? | 
|---|
| 555 | ((i % 2) ? -1.0 : 1.0) : ((i%2) ? 1.0 : -1.0); | 
|---|
| 556 | } | 
|---|
| 557 | } else { | 
|---|
| 558 | // Dn is isomorphic with Cnv | 
|---|
| 559 | // | 
|---|
| 560 | // for odd n, the irreps are A1, A2, and E1...E(nir-2) | 
|---|
| 561 | // for even n, the irreps are A1, A2, B1, B2, and E1...E(nir-4) | 
|---|
| 562 | // | 
|---|
| 563 | gamma_[0].init(g,1,"A1"); | 
|---|
| 564 | gamma_[1].init(g,1,"A2"); | 
|---|
| 565 |  | 
|---|
| 566 | for (gi=0; gi < nt; gi++) { | 
|---|
| 567 | // Cn's | 
|---|
| 568 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
| 569 | gamma_[1].rep[gi][0][0] = 1.0; | 
|---|
| 570 |  | 
|---|
| 571 | // C2's | 
|---|
| 572 | gamma_[0].rep[gi+nt][0][0] =  1.0; | 
|---|
| 573 | gamma_[1].rep[gi+nt][0][0] = -1.0; | 
|---|
| 574 | } | 
|---|
| 575 |  | 
|---|
| 576 | i=2; | 
|---|
| 577 |  | 
|---|
| 578 | if (!(nt%2)) { | 
|---|
| 579 | gamma_[2].init(g,1,"B1"); | 
|---|
| 580 | gamma_[3].init(g,1,"B2"); | 
|---|
| 581 |  | 
|---|
| 582 | for (gi=0; gi < nt ; gi++) { | 
|---|
| 583 | double ci = (gi%2) ? -1.0 : 1.0; | 
|---|
| 584 |  | 
|---|
| 585 | // Cn's | 
|---|
| 586 | gamma_[2].rep[gi][0][0] = ci; | 
|---|
| 587 | gamma_[3].rep[gi][0][0] = ci; | 
|---|
| 588 |  | 
|---|
| 589 | // sigma's | 
|---|
| 590 | gamma_[2].rep[gi+nt][0][0] =  ci; | 
|---|
| 591 | gamma_[3].rep[gi+nt][0][0] = -ci; | 
|---|
| 592 | } | 
|---|
| 593 |  | 
|---|
| 594 | i = 4; | 
|---|
| 595 | } | 
|---|
| 596 |  | 
|---|
| 597 | ei=1; | 
|---|
| 598 | for (; i < nirrep_; i++, ei++) { | 
|---|
| 599 | IrreducibleRepresentation& ir = gamma_[i]; | 
|---|
| 600 |  | 
|---|
| 601 | char lab[4]; | 
|---|
| 602 | if (nt==3 || nt==4) | 
|---|
| 603 | sprintf(lab,"E"); | 
|---|
| 604 | else | 
|---|
| 605 | sprintf(lab,"E%d",ei); | 
|---|
| 606 |  | 
|---|
| 607 | ir.init(g,2,lab); | 
|---|
| 608 |  | 
|---|
| 609 | // identity | 
|---|
| 610 | ir.rep[0].E(); | 
|---|
| 611 |  | 
|---|
| 612 | // Cn | 
|---|
| 613 | ir.rep[1].rotation(ei*theta); | 
|---|
| 614 |  | 
|---|
| 615 | for (j=2; j < nt; j++) | 
|---|
| 616 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]); | 
|---|
| 617 |  | 
|---|
| 618 | // C2(x) | 
|---|
| 619 | ir.rep[nt].c2_y(); | 
|---|
| 620 |  | 
|---|
| 621 | SymRep sr(2); | 
|---|
| 622 | sr.rotation(ei*theta/2.0); | 
|---|
| 623 |  | 
|---|
| 624 | for (j=nt+1; j < 2*nt; j++) | 
|---|
| 625 | ir.rep[j] = ir.rep[j-1].transform(sr); | 
|---|
| 626 | } | 
|---|
| 627 | } | 
|---|
| 628 |  | 
|---|
| 629 | // identity | 
|---|
| 630 | symop[0].E(); | 
|---|
| 631 |  | 
|---|
| 632 | // Cn | 
|---|
| 633 | symop[1].rotation(theta); | 
|---|
| 634 |  | 
|---|
| 635 | for (i=2; i < nt; i++) | 
|---|
| 636 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
| 637 |  | 
|---|
| 638 | // C2(x) | 
|---|
| 639 | symop[nt].c2_y(); | 
|---|
| 640 |  | 
|---|
| 641 | so.rotation(theta/2.0); | 
|---|
| 642 |  | 
|---|
| 643 | for (i=nt+1; i < 2*nt; i++) | 
|---|
| 644 | symop[i] = symop[i-1].transform(so); | 
|---|
| 645 |  | 
|---|
| 646 | for (i=0; i < 2*nt ; i++) | 
|---|
| 647 | rot[i] = trans[i] = symop[i].trace(); | 
|---|
| 648 |  | 
|---|
| 649 | break; | 
|---|
| 650 |  | 
|---|
| 651 | case DND: | 
|---|
| 652 | // rotation reflection about z axis by theta/2 radians, followed | 
|---|
| 653 | // by c2 about x axis, then reflection through yz plane | 
|---|
| 654 | // | 
|---|
| 655 | // for odd n, the irreps are A1g, A2g, A1u, A2u, E1g...E(nir/2-2)g, | 
|---|
| 656 | //                                               E1u...E(nir/2-2)u | 
|---|
| 657 | // for even n, the irreps are A1, A2, B1, B2, E1...E(nir-4) | 
|---|
| 658 | // | 
|---|
| 659 |  | 
|---|
| 660 | if (nt%2) { | 
|---|
| 661 | gamma_[0].init(g,1,"A1g"); | 
|---|
| 662 | gamma_[1].init(g,1,"A2g"); | 
|---|
| 663 |  | 
|---|
| 664 | for (gi=0; gi < g; gi++) { | 
|---|
| 665 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
| 666 | gamma_[1].rep[gi][0][0] = (gi/nt==0 || gi/nt==2) ? 1.0 : -1.0; | 
|---|
| 667 | } | 
|---|
| 668 |  | 
|---|
| 669 | i=nirrep_/2; | 
|---|
| 670 | j=i+1; | 
|---|
| 671 | gamma_[i].init(g,1,"A1u"); | 
|---|
| 672 | gamma_[j].init(g,1,"A2u"); | 
|---|
| 673 |  | 
|---|
| 674 | for (gi=0; gi < g/2; gi++) { | 
|---|
| 675 | gamma_[i].rep[gi][0][0] = gamma_[0].rep[gi][0][0]; | 
|---|
| 676 | gamma_[j].rep[gi][0][0] = gamma_[1].rep[gi][0][0]; | 
|---|
| 677 |  | 
|---|
| 678 | gamma_[i].rep[gi+g/2][0][0] = -gamma_[0].rep[gi][0][0]; | 
|---|
| 679 | gamma_[j].rep[gi+g/2][0][0] = -gamma_[1].rep[gi][0][0]; | 
|---|
| 680 | } | 
|---|
| 681 |  | 
|---|
| 682 | ei=1; | 
|---|
| 683 |  | 
|---|
| 684 | for (i=2; i < nirrep_/2 ; i++, ei++) { | 
|---|
| 685 | IrreducibleRepresentation& ir1 = gamma_[i]; | 
|---|
| 686 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2]; | 
|---|
| 687 |  | 
|---|
| 688 | if (nt==3) { | 
|---|
| 689 | ir1.init(g,2,"Eg"); | 
|---|
| 690 | ir2.init(g,2,"Eu"); | 
|---|
| 691 | } else { | 
|---|
| 692 | sprintf(label,"E%dg",ei); | 
|---|
| 693 | ir1.init(g,2,label); | 
|---|
| 694 | sprintf(label,"E%du",ei); | 
|---|
| 695 | ir2.init(g,2,label); | 
|---|
| 696 | } | 
|---|
| 697 |  | 
|---|
| 698 | // identity | 
|---|
| 699 | ir1.rep[0].E(); | 
|---|
| 700 |  | 
|---|
| 701 | // Cn | 
|---|
| 702 | ir1.rep[1].rotation(ei*theta); | 
|---|
| 703 |  | 
|---|
| 704 | for (j=2; j < nt; j++) | 
|---|
| 705 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]); | 
|---|
| 706 |  | 
|---|
| 707 | // C2(x) | 
|---|
| 708 | ir1.rep[nt].c2_y(); | 
|---|
| 709 |  | 
|---|
| 710 | for (j=nt+1; j < 2*nt; j++) | 
|---|
| 711 | ir1.rep[j] = ir1.rep[j-1].transform(ir1.rep[1]); | 
|---|
| 712 |  | 
|---|
| 713 | for (j=0; j < 2*nt; j++) | 
|---|
| 714 | ir2.rep[j] = ir1.rep[j]; | 
|---|
| 715 |  | 
|---|
| 716 | // Sn and sigma d | 
|---|
| 717 | SymRep sr(2); | 
|---|
| 718 | sr.i(); | 
|---|
| 719 |  | 
|---|
| 720 | for (j=2*nt; j < g; j++) { | 
|---|
| 721 | ir1.rep[j] = ir1.rep[j-2*nt]; | 
|---|
| 722 | ir2.rep[j] = ir2.rep[j-2*nt].operate(sr); | 
|---|
| 723 | } | 
|---|
| 724 | } | 
|---|
| 725 |  | 
|---|
| 726 | // identity | 
|---|
| 727 | symop[0].E(); | 
|---|
| 728 |  | 
|---|
| 729 | // Cn | 
|---|
| 730 | symop[1].rotation(theta); | 
|---|
| 731 |  | 
|---|
| 732 | for (i=2; i < nt; i++) | 
|---|
| 733 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
| 734 |  | 
|---|
| 735 | // C2(x) | 
|---|
| 736 | symop[nt].c2_y(); | 
|---|
| 737 |  | 
|---|
| 738 | for (i=nt+1; i < 2*nt; i++) | 
|---|
| 739 | symop[i] = symop[i-1].transform(symop[1]); | 
|---|
| 740 |  | 
|---|
| 741 | // i + n-1 S2n + n sigma | 
|---|
| 742 | so.i(); | 
|---|
| 743 | for (i=2*nt; i < g; i++) | 
|---|
| 744 | symop[i] = symop[i-2*nt].operate(so); | 
|---|
| 745 |  | 
|---|
| 746 | for (i=0; i < g; i++) { | 
|---|
| 747 | trans[i] = symop[i].trace(); | 
|---|
| 748 | rot[i] = (i < g/2) ? trans[i] : -trans[i]; | 
|---|
| 749 | } | 
|---|
| 750 |  | 
|---|
| 751 | } else { // even nt | 
|---|
| 752 |  | 
|---|
| 753 | gamma_[0].init(g,1,"A1"); | 
|---|
| 754 | gamma_[1].init(g,1,"A2"); | 
|---|
| 755 | gamma_[2].init(g,1,"B1"); | 
|---|
| 756 | gamma_[3].init(g,1,"B2"); | 
|---|
| 757 |  | 
|---|
| 758 | for (gi=0; gi < 2*nt; gi++) { | 
|---|
| 759 | // Sn | 
|---|
| 760 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
| 761 | gamma_[1].rep[gi][0][0] = 1.0; | 
|---|
| 762 | gamma_[2].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0; | 
|---|
| 763 | gamma_[3].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0; | 
|---|
| 764 |  | 
|---|
| 765 | // n C2's and n sigma's | 
|---|
| 766 | gamma_[0].rep[gi+2*nt][0][0] =  1.0; | 
|---|
| 767 | gamma_[1].rep[gi+2*nt][0][0] = -1.0; | 
|---|
| 768 | gamma_[2].rep[gi+2*nt][0][0] = (gi%2) ? -1.0 : 1.0; | 
|---|
| 769 | gamma_[3].rep[gi+2*nt][0][0] = (gi%2) ? 1.0 : -1.0; | 
|---|
| 770 | } | 
|---|
| 771 |  | 
|---|
| 772 | ei=1; | 
|---|
| 773 | for (i=4; i < nirrep_; i++, ei++) { | 
|---|
| 774 | IrreducibleRepresentation& ir = gamma_[i]; | 
|---|
| 775 |  | 
|---|
| 776 | if (nt==2) | 
|---|
| 777 | sprintf(label,"E"); | 
|---|
| 778 | else | 
|---|
| 779 | sprintf(label,"E%d",ei); | 
|---|
| 780 |  | 
|---|
| 781 | ir.init(g,2,label); | 
|---|
| 782 |  | 
|---|
| 783 | // identity | 
|---|
| 784 | ir.rep[0].E(); | 
|---|
| 785 |  | 
|---|
| 786 | // S2n | 
|---|
| 787 | ir.rep[1].rotation(ei*theta/2.0); | 
|---|
| 788 |  | 
|---|
| 789 | for (j=2; j < 2*nt; j++) | 
|---|
| 790 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]); | 
|---|
| 791 |  | 
|---|
| 792 | // C2(x) + sigma_d | 
|---|
| 793 | ir.rep[2*nt].c2_y(); | 
|---|
| 794 |  | 
|---|
| 795 | for (j=2*nt+1; j < g; j++) | 
|---|
| 796 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]); | 
|---|
| 797 | } | 
|---|
| 798 |  | 
|---|
| 799 | // identity | 
|---|
| 800 | symop[0].E(); | 
|---|
| 801 |  | 
|---|
| 802 | // Sn's | 
|---|
| 803 | symop[1].rotation(theta/2.0); | 
|---|
| 804 | symop[1][2][2] = -1.0; | 
|---|
| 805 |  | 
|---|
| 806 | for (i=2; i < 2*nt; i++) | 
|---|
| 807 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
| 808 |  | 
|---|
| 809 | // C2(x) | 
|---|
| 810 | symop[2*nt].c2_y(); | 
|---|
| 811 |  | 
|---|
| 812 | for (i=2*nt+1; i < g; i++) | 
|---|
| 813 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
| 814 |  | 
|---|
| 815 | for (i=0; i < g; i++) { | 
|---|
| 816 | trans[i] = symop[i].trace(); | 
|---|
| 817 | rot[i] = (i%2) ? -trans[i] : trans[i]; | 
|---|
| 818 | } | 
|---|
| 819 | } | 
|---|
| 820 |  | 
|---|
| 821 | break; | 
|---|
| 822 |  | 
|---|
| 823 | case DNH: | 
|---|
| 824 | // clockwise rotation and rotation-reflection about z axis, | 
|---|
| 825 | // followed by c2 about x axis and then reflection | 
|---|
| 826 | // through xz | 
|---|
| 827 |  | 
|---|
| 828 | i=nirrep_/2; j=i+1; | 
|---|
| 829 |  | 
|---|
| 830 | if (nt%2) { | 
|---|
| 831 | gamma_[0].init(g,1,"A1'"); | 
|---|
| 832 | gamma_[1].init(g,1,"A2'"); | 
|---|
| 833 | gamma_[i].init(g,1,"A1\""); | 
|---|
| 834 | gamma_[j].init(g,1,"A2\""); | 
|---|
| 835 | } else { | 
|---|
| 836 | if (nt==2) { | 
|---|
| 837 | gamma_[0].init(g,1,"Ag"); | 
|---|
| 838 | gamma_[1].init(g,1,"B1g"); | 
|---|
| 839 | gamma_[4].init(g,1,"Au"); | 
|---|
| 840 | gamma_[5].init(g,1,"B1u"); | 
|---|
| 841 | } else { | 
|---|
| 842 | gamma_[0].init(g,1,"A1g"); | 
|---|
| 843 | gamma_[1].init(g,1,"A2g"); | 
|---|
| 844 | gamma_[i].init(g,1,"A1u"); | 
|---|
| 845 | gamma_[j].init(g,1,"A2u"); | 
|---|
| 846 | } | 
|---|
| 847 | } | 
|---|
| 848 |  | 
|---|
| 849 | for (gi=0; gi < nt; gi++) { | 
|---|
| 850 | // E + n-1 Cn's | 
|---|
| 851 | gamma_[0].rep[gi][0][0] = gamma_[1].rep[gi][0][0] = | 
|---|
| 852 | gamma_[i].rep[gi][0][0] = gamma_[j].rep[gi][0][0] = 1.0; | 
|---|
| 853 |  | 
|---|
| 854 | // n C2's | 
|---|
| 855 | gamma_[0].rep[gi+nt][0][0] = gamma_[i].rep[gi+nt][0][0] =  1.0; | 
|---|
| 856 | gamma_[1].rep[gi+nt][0][0] = gamma_[j].rep[gi+nt][0][0] = -1.0; | 
|---|
| 857 |  | 
|---|
| 858 | // i + n-1 S2n's | 
|---|
| 859 | gamma_[0].rep[gi+2*nt][0][0] = gamma_[1].rep[gi+2*nt][0][0] =  1.0; | 
|---|
| 860 | gamma_[i].rep[gi+2*nt][0][0] = gamma_[j].rep[gi+2*nt][0][0] = -1.0; | 
|---|
| 861 |  | 
|---|
| 862 | // n sigma's | 
|---|
| 863 | gamma_[0].rep[gi+3*nt][0][0] = gamma_[j].rep[gi+3*nt][0][0] =  1.0; | 
|---|
| 864 | gamma_[i].rep[gi+3*nt][0][0] = gamma_[1].rep[gi+3*nt][0][0] = -1.0; | 
|---|
| 865 | } | 
|---|
| 866 |  | 
|---|
| 867 | if (!(nt%2)) { | 
|---|
| 868 | if (nt==2) { | 
|---|
| 869 | gamma_[2].init(g,1,"B2g"); | 
|---|
| 870 | gamma_[3].init(g,1,"B3g"); | 
|---|
| 871 | gamma_[6].init(g,1,"B2u"); | 
|---|
| 872 | gamma_[7].init(g,1,"B3u"); | 
|---|
| 873 | } else { | 
|---|
| 874 | gamma_[2].init(g,1,"B1g"); | 
|---|
| 875 | gamma_[3].init(g,1,"B2g"); | 
|---|
| 876 | gamma_[i+2].init(g,1,"B1u"); | 
|---|
| 877 | gamma_[j+2].init(g,1,"B2u"); | 
|---|
| 878 | } | 
|---|
| 879 |  | 
|---|
| 880 | for (gi=0; gi < nt; gi++) { | 
|---|
| 881 | // E + n-1 Cn's | 
|---|
| 882 | gamma_[2].rep[gi][0][0] = gamma_[3].rep[gi][0][0] = | 
|---|
| 883 | gamma_[i+2].rep[gi][0][0] = gamma_[j+2].rep[gi][0][0] = | 
|---|
| 884 | (gi%2) ? -1.0 : 1.0; | 
|---|
| 885 |  | 
|---|
| 886 | // n C2's | 
|---|
| 887 | gamma_[2].rep[gi+nt][0][0] = gamma_[i+2].rep[gi+nt][0][0] = | 
|---|
| 888 | (gi%2) ? -1.0 : 1.0; | 
|---|
| 889 | gamma_[3].rep[gi+nt][0][0] = gamma_[j+2].rep[gi+nt][0][0] = | 
|---|
| 890 | (gi%2) ? 1.0 : -1.0; | 
|---|
| 891 |  | 
|---|
| 892 | // i + n-1 S2n's | 
|---|
| 893 | gamma_[2].rep[gi+2*nt][0][0] = gamma_[3].rep[gi+2*nt][0][0] = | 
|---|
| 894 | (gi%2) ? -1.0 : 1.0; | 
|---|
| 895 | gamma_[i+2].rep[gi+2*nt][0][0] = gamma_[j+2].rep[gi+2*nt][0][0] = | 
|---|
| 896 | (gi%2) ? 1.0 : -1.0; | 
|---|
| 897 |  | 
|---|
| 898 | // n sigma's | 
|---|
| 899 | gamma_[2].rep[gi+3*nt][0][0] = gamma_[j+2].rep[gi+3*nt][0][0] = | 
|---|
| 900 | (gi%2) ? -1.0 : 1.0; | 
|---|
| 901 | gamma_[i+2].rep[gi+3*nt][0][0] = gamma_[3].rep[gi+3*nt][0][0] = | 
|---|
| 902 | (gi%2) ? 1.0 : -1.0; | 
|---|
| 903 | } | 
|---|
| 904 | } | 
|---|
| 905 |  | 
|---|
| 906 | ei=1; | 
|---|
| 907 | for (i = (nt%2) ? 2 : 4; i < nirrep_/2 ; i++, ei++) { | 
|---|
| 908 | IrreducibleRepresentation& ir1 = gamma_[i]; | 
|---|
| 909 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2]; | 
|---|
| 910 |  | 
|---|
| 911 | if (nt==3) { | 
|---|
| 912 | ir1.init(g,2,"E'"); | 
|---|
| 913 | ir2.init(g,2,"E\""); | 
|---|
| 914 | } else if (nt==4) { | 
|---|
| 915 | ir1.init(g,2,"Eg"); | 
|---|
| 916 | ir2.init(g,2,"Eu"); | 
|---|
| 917 | } else { | 
|---|
| 918 | sprintf(label,"E%d%s", ei, (nt%2) ? "'" : "g"); | 
|---|
| 919 | ir1.init(g,2,label); | 
|---|
| 920 |  | 
|---|
| 921 | sprintf(label,"E%d%s", ei, (nt%2) ? "\"" : "u"); | 
|---|
| 922 | ir2.init(g,2,label); | 
|---|
| 923 | } | 
|---|
| 924 |  | 
|---|
| 925 | // identity | 
|---|
| 926 | ir1.rep[0].E(); | 
|---|
| 927 |  | 
|---|
| 928 | // n-1 Cn's | 
|---|
| 929 | ir1.rep[1].rotation(ei*theta); | 
|---|
| 930 |  | 
|---|
| 931 | for (j=2; j < nt; j++) | 
|---|
| 932 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]); | 
|---|
| 933 |  | 
|---|
| 934 | // n C2's | 
|---|
| 935 | ir1.rep[nt].c2_y(); | 
|---|
| 936 |  | 
|---|
| 937 | SymRep sr(2); | 
|---|
| 938 | sr.rotation(ei*theta/2.0); | 
|---|
| 939 |  | 
|---|
| 940 | for (j=nt+1; j < 2*nt; j++) | 
|---|
| 941 | ir1.rep[j] = ir1.rep[j-1].transform(sr); | 
|---|
| 942 |  | 
|---|
| 943 | sr.i(); | 
|---|
| 944 | for (j=0; j < 2*nt; j++) { | 
|---|
| 945 | ir1.rep[j+2*nt] = ir1.rep[j]; | 
|---|
| 946 | ir2.rep[j] = ir1.rep[j]; | 
|---|
| 947 | ir2.rep[j+2*nt] = ir1.rep[j].operate(sr); | 
|---|
| 948 | } | 
|---|
| 949 | } | 
|---|
| 950 |  | 
|---|
| 951 | // identity | 
|---|
| 952 | symop[0].E(); | 
|---|
| 953 |  | 
|---|
| 954 | // n-1 Cn's | 
|---|
| 955 | symop[1].rotation(theta); | 
|---|
| 956 |  | 
|---|
| 957 | for (i=2; i < nt; i++) | 
|---|
| 958 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
| 959 |  | 
|---|
| 960 | // n C2's | 
|---|
| 961 | symop[nt].c2_y(); | 
|---|
| 962 |  | 
|---|
| 963 | so.rotation(theta/2.0); | 
|---|
| 964 | for (i=nt+1; i < 2*nt; i++) | 
|---|
| 965 | symop[i] = symop[i-1].transform(so); | 
|---|
| 966 |  | 
|---|
| 967 | if (nt%2) | 
|---|
| 968 | so.sigma_h(); | 
|---|
| 969 | else | 
|---|
| 970 | so.i(); | 
|---|
| 971 |  | 
|---|
| 972 | for (i=2*nt; i < g; i++) | 
|---|
| 973 | symop[i] = symop[i-2*nt].operate(so); | 
|---|
| 974 |  | 
|---|
| 975 | for (i=0,j=2*nt; i < 2*nt ; i++,j++) { | 
|---|
| 976 | rot[i] = trans[i] = symop[i].trace(); | 
|---|
| 977 | trans[j] = symop[j].trace(); | 
|---|
| 978 | rot[j] = -trans[j]; | 
|---|
| 979 | } | 
|---|
| 980 |  | 
|---|
| 981 | break; | 
|---|
| 982 |  | 
|---|
| 983 | case T: | 
|---|
| 984 | t(); | 
|---|
| 985 | break; | 
|---|
| 986 |  | 
|---|
| 987 | case TH: | 
|---|
| 988 | th(); | 
|---|
| 989 | break; | 
|---|
| 990 |  | 
|---|
| 991 | case TD: | 
|---|
| 992 | td(); | 
|---|
| 993 | break; | 
|---|
| 994 |  | 
|---|
| 995 | case O: | 
|---|
| 996 | o(); | 
|---|
| 997 | break; | 
|---|
| 998 |  | 
|---|
| 999 | case OH: | 
|---|
| 1000 | oh(); | 
|---|
| 1001 | break; | 
|---|
| 1002 |  | 
|---|
| 1003 | case I: | 
|---|
| 1004 | this->i(); | 
|---|
| 1005 | break; | 
|---|
| 1006 |  | 
|---|
| 1007 | case IH: | 
|---|
| 1008 | ih(); | 
|---|
| 1009 | break; | 
|---|
| 1010 |  | 
|---|
| 1011 | default: | 
|---|
| 1012 | return -1; | 
|---|
| 1013 |  | 
|---|
| 1014 | } | 
|---|
| 1015 |  | 
|---|
| 1016 | /* ok, we have the reducible representation of the rotations and | 
|---|
| 1017 | * translations, now let's use projection operators to find out how many | 
|---|
| 1018 | * rotations and translations there are in each irrep | 
|---|
| 1019 | */ | 
|---|
| 1020 |  | 
|---|
| 1021 | if (pg != C1 && pg != CI && pg != CS && pg != T && pg != TD && pg != TH && | 
|---|
| 1022 | pg != O && pg != OH && pg != I && pg != IH) { | 
|---|
| 1023 |  | 
|---|
| 1024 | for (i=0; i < nirrep_; i++) { | 
|---|
| 1025 | double nr=0; double nt=0; | 
|---|
| 1026 |  | 
|---|
| 1027 | for (j=0; j < gamma_[i].g; j++) { | 
|---|
| 1028 | nr += rot[j]*gamma_[i].character(j); | 
|---|
| 1029 | nt += trans[j]*gamma_[i].character(j); | 
|---|
| 1030 | } | 
|---|
| 1031 |  | 
|---|
| 1032 | gamma_[i].nrot_ = (int) ((nr+0.5)/gamma_[i].g); | 
|---|
| 1033 | gamma_[i].ntrans_ = (int) ((nt+0.5)/gamma_[i].g); | 
|---|
| 1034 | } | 
|---|
| 1035 | } | 
|---|
| 1036 |  | 
|---|
| 1037 | delete[] rot; | 
|---|
| 1038 | delete[] trans; | 
|---|
| 1039 |  | 
|---|
| 1040 | // now find the inverse of each symop | 
|---|
| 1041 | for (gi=0; gi < g; gi++) { | 
|---|
| 1042 | int gj; | 
|---|
| 1043 | for (gj=0; gj < g; gj++) { | 
|---|
| 1044 | so = symop[gi].operate(symop[gj]); | 
|---|
| 1045 |  | 
|---|
| 1046 | // is so a unit matrix? | 
|---|
| 1047 | if (fabs(1.0-so[0][0]) < 1.0e-8 && | 
|---|
| 1048 | fabs(1.0-so[1][1]) < 1.0e-8 && | 
|---|
| 1049 | fabs(1.0-so[2][2]) < 1.0e-8) break; | 
|---|
| 1050 | } | 
|---|
| 1051 |  | 
|---|
| 1052 | if (gj==g) { | 
|---|
| 1053 | ExEnv::err0() << indent | 
|---|
| 1054 | << "make_table: uh oh, can't find inverse of " << gi << endl; | 
|---|
| 1055 | abort(); | 
|---|
| 1056 | } | 
|---|
| 1057 |  | 
|---|
| 1058 | _inv[gi] = gj; | 
|---|
| 1059 | } | 
|---|
| 1060 |  | 
|---|
| 1061 | return 0; | 
|---|
| 1062 | } | 
|---|
| 1063 |  | 
|---|
| 1064 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 1065 |  | 
|---|
| 1066 | // Local Variables: | 
|---|
| 1067 | // mode: c++ | 
|---|
| 1068 | // c-file-style: "ETS" | 
|---|
| 1069 | // End: | 
|---|