[0b990d] | 1 | //
|
---|
| 2 | // maketab.cc
|
---|
| 3 | //
|
---|
| 4 | // Modifications are
|
---|
| 5 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 6 | //
|
---|
| 7 | // Author: Edward Seidl <seidl@janed.com>
|
---|
| 8 | // Maintainer: LPS
|
---|
| 9 | //
|
---|
| 10 | // This file is part of the SC Toolkit.
|
---|
| 11 | //
|
---|
| 12 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 13 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 14 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 15 | // any later version.
|
---|
| 16 | //
|
---|
| 17 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 18 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 19 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 20 | // GNU Library General Public License for more details.
|
---|
| 21 | //
|
---|
| 22 | // You should have received a copy of the GNU Library General Public License
|
---|
| 23 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 24 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 25 | //
|
---|
| 26 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 27 | //
|
---|
| 28 |
|
---|
| 29 | /* maketab.cc
|
---|
| 30 | *
|
---|
| 31 | * THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A
|
---|
| 32 | * "UNITED STATES GOVERNMENT WORK". IT WAS WRITTEN AS A PART OF THE
|
---|
| 33 | * AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE. THIS MEANS IT
|
---|
| 34 | * CANNOT BE COPYRIGHTED. THIS SOFTWARE IS FREELY AVAILABLE TO THE
|
---|
| 35 | * PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO
|
---|
| 36 | * RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY.
|
---|
| 37 | *
|
---|
| 38 | * Author:
|
---|
| 39 | * E. T. Seidl
|
---|
| 40 | * Bldg. 12A, Rm. 2033
|
---|
| 41 | * Computer Systems Laboratory
|
---|
| 42 | * Division of Computer Research and Technology
|
---|
| 43 | * National Institutes of Health
|
---|
| 44 | * Bethesda, Maryland 20892
|
---|
| 45 | * Internet: seidl@alw.nih.gov
|
---|
| 46 | * June, 1993
|
---|
| 47 | */
|
---|
| 48 |
|
---|
| 49 | #include <util/misc/math.h>
|
---|
| 50 | #include <stdio.h>
|
---|
| 51 | #include <string.h>
|
---|
| 52 |
|
---|
| 53 | #include <math/symmetry/pointgrp.h>
|
---|
| 54 | #include <util/misc/formio.h>
|
---|
| 55 |
|
---|
| 56 | using namespace std;
|
---|
| 57 | using namespace sc;
|
---|
| 58 |
|
---|
| 59 | /*
|
---|
| 60 | * This function will generate a character table for the point group.
|
---|
| 61 | * This character table is in the order that symmetry operations are
|
---|
| 62 | * generated, not in Cotton order. If this is a problem, tough.
|
---|
| 63 | * Also generate the transformation matrices.
|
---|
| 64 | */
|
---|
| 65 |
|
---|
| 66 | int CharacterTable::make_table()
|
---|
| 67 | {
|
---|
| 68 | int i,j,ei,gi;
|
---|
| 69 | char label[4];
|
---|
| 70 |
|
---|
| 71 | if (!g) return 0;
|
---|
| 72 |
|
---|
| 73 | gamma_ = new IrreducibleRepresentation[nirrep_];
|
---|
| 74 |
|
---|
| 75 | symop = new SymmetryOperation[g];
|
---|
| 76 | SymmetryOperation so;
|
---|
| 77 |
|
---|
| 78 | _inv = new int[g];
|
---|
| 79 |
|
---|
| 80 | // this array forms a reducible representation for rotations about x,y,z
|
---|
| 81 | double *rot = new double[g];
|
---|
| 82 | memset(rot,0,sizeof(double)*g);
|
---|
| 83 |
|
---|
| 84 | // this array forms a reducible representation for translations along x,y,z
|
---|
| 85 | double *trans = new double[g];
|
---|
| 86 | memset(trans,0,sizeof(double)*g);
|
---|
| 87 |
|
---|
| 88 | // the angle to rotate about the principal axis
|
---|
| 89 | double theta = (nt) ? 2.0*M_PI/nt : 2.0*M_PI;
|
---|
| 90 |
|
---|
| 91 | switch (pg) {
|
---|
| 92 |
|
---|
| 93 | case C1:
|
---|
| 94 | // no symmetry case
|
---|
| 95 | gamma_[0].init(1,1,"A");
|
---|
| 96 | gamma_[0].nrot_ = 3;
|
---|
| 97 | gamma_[0].ntrans_ = 3;
|
---|
| 98 | gamma_[0].rep[0][0][0] = 1.0;
|
---|
| 99 |
|
---|
| 100 | symop[0].E();
|
---|
| 101 |
|
---|
| 102 | break;
|
---|
| 103 |
|
---|
| 104 | case CI:
|
---|
| 105 | // equivalent to S2 about the z axis
|
---|
| 106 | gamma_[0].init(2,1,"Ag");
|
---|
| 107 | gamma_[0].rep[0][0][0] = 1.0;
|
---|
| 108 | gamma_[0].rep[1][0][0] = 1.0;
|
---|
| 109 | gamma_[0].nrot_=3;
|
---|
| 110 |
|
---|
| 111 | gamma_[1].init(2,1,"Au");
|
---|
| 112 | gamma_[1].rep[0][0][0] = 1.0;
|
---|
| 113 | gamma_[1].rep[1][0][0] = -1.0;
|
---|
| 114 | gamma_[1].ntrans_=3;
|
---|
| 115 |
|
---|
| 116 | symop[0].E();
|
---|
| 117 | symop[1].i();
|
---|
| 118 |
|
---|
| 119 | break;
|
---|
| 120 |
|
---|
| 121 | case CS: // reflection through the xy plane
|
---|
| 122 | gamma_[0].init(2,1,"A'","Ap");
|
---|
| 123 | gamma_[0].rep[0][0][0] = 1.0;
|
---|
| 124 | gamma_[0].rep[1][0][0] = 1.0;
|
---|
| 125 | gamma_[0].nrot_=1;
|
---|
| 126 | gamma_[0].ntrans_=2;
|
---|
| 127 |
|
---|
| 128 | gamma_[1].init(2,1,"A\"","App");
|
---|
| 129 | gamma_[1].rep[0][0][0] = 1.0;
|
---|
| 130 | gamma_[1].rep[1][0][0] = -1.0;
|
---|
| 131 | gamma_[1].nrot_=2;
|
---|
| 132 | gamma_[1].ntrans_=1;
|
---|
| 133 |
|
---|
| 134 | symop[0].E();
|
---|
| 135 | symop[1].sigma_h();
|
---|
| 136 |
|
---|
| 137 | break;
|
---|
| 138 |
|
---|
| 139 | case CN:
|
---|
| 140 | // clockwise rotation about z axis by theta*i radians
|
---|
| 141 | //
|
---|
| 142 | // for odd n, the irreps are A and E1...E(nir-1)
|
---|
| 143 | // for even n, the irreps are A, B, and E1...E(nir-2)
|
---|
| 144 | //
|
---|
| 145 | gamma_[0].init(g,1,"A");
|
---|
| 146 | for (gi=0; gi < g; gi++)
|
---|
| 147 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
| 148 |
|
---|
| 149 | i=1;
|
---|
| 150 |
|
---|
| 151 | if (!(nt%2)) {
|
---|
| 152 | gamma_[1].init(g,1,"B");
|
---|
| 153 | for (gi=0; gi < g; gi++)
|
---|
| 154 | gamma_[1].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0;
|
---|
| 155 |
|
---|
| 156 | i++;
|
---|
| 157 | }
|
---|
| 158 |
|
---|
| 159 | ei=1;
|
---|
| 160 | for (; i < nirrep_; i++, ei++) {
|
---|
| 161 | IrreducibleRepresentation& ir = gamma_[i];
|
---|
| 162 |
|
---|
| 163 | if (nt==3 || nt==4)
|
---|
| 164 | sprintf(label,"E");
|
---|
| 165 | else
|
---|
| 166 | sprintf(label,"E%d",ei);
|
---|
| 167 |
|
---|
| 168 | ir.init(g,2,label);
|
---|
| 169 | ir.complex_=1;
|
---|
| 170 |
|
---|
| 171 | // identity
|
---|
| 172 | ir.rep[0].E();
|
---|
| 173 |
|
---|
| 174 | // Cn
|
---|
| 175 | ir.rep[1].rotation(ei*theta);
|
---|
| 176 |
|
---|
| 177 | // the other n-1 Cn's
|
---|
| 178 | for (j=2; j < g; j++)
|
---|
| 179 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]);
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | // identity
|
---|
| 183 | symop[0].E();
|
---|
| 184 |
|
---|
| 185 | // Cn
|
---|
| 186 | symop[1].rotation(theta);
|
---|
| 187 |
|
---|
| 188 | // the other n-2 Cn's
|
---|
| 189 | for (i=2; i < nt; i++)
|
---|
| 190 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
| 191 |
|
---|
| 192 | for (i=0; i < nt ; i++)
|
---|
| 193 | rot[i] = trans[i] = symop[i].trace();
|
---|
| 194 |
|
---|
| 195 | break;
|
---|
| 196 |
|
---|
| 197 | case CNV:
|
---|
| 198 | // clockwise rotation about z axis by theta*i radians, then
|
---|
| 199 | // reflect through the xz plane
|
---|
| 200 | //
|
---|
| 201 | // for odd n, the irreps are A1, A2, and E1...E(nir-2)
|
---|
| 202 | // for even n, the irreps are A1, A2, B1, B2, and E1...E(nir-4)
|
---|
| 203 | //
|
---|
| 204 |
|
---|
| 205 | gamma_[0].init(g,1,"A1");
|
---|
| 206 | gamma_[1].init(g,1,"A2");
|
---|
| 207 |
|
---|
| 208 | for (gi=0; gi < nt; gi++) {
|
---|
| 209 | // Cn's
|
---|
| 210 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
| 211 | gamma_[1].rep[gi][0][0] = 1.0;
|
---|
| 212 |
|
---|
| 213 | // sigma's
|
---|
| 214 | gamma_[0].rep[gi+nt][0][0] = 1.0;
|
---|
| 215 | gamma_[1].rep[gi+nt][0][0] = -1.0;
|
---|
| 216 | }
|
---|
| 217 |
|
---|
| 218 | if (!(nt%2)) {
|
---|
| 219 | gamma_[2].init(g,1,"B1");
|
---|
| 220 | gamma_[3].init(g,1,"B2");
|
---|
| 221 |
|
---|
| 222 | for (gi=0; gi < nt ; gi++) {
|
---|
| 223 | double ci = (gi%2) ? -1.0 : 1.0;
|
---|
| 224 |
|
---|
| 225 | // Cn's
|
---|
| 226 | gamma_[2].rep[gi][0][0] = ci;
|
---|
| 227 | gamma_[3].rep[gi][0][0] = ci;
|
---|
| 228 |
|
---|
| 229 | // sigma's
|
---|
| 230 | gamma_[2].rep[gi+nt][0][0] = ci;
|
---|
| 231 | gamma_[3].rep[gi+nt][0][0] = -ci;
|
---|
| 232 | }
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 | ei=1;
|
---|
| 236 | for (i = (nt%2) ? 2 : 4; i < nirrep_; i++, ei++) {
|
---|
| 237 | IrreducibleRepresentation& ir = gamma_[i];
|
---|
| 238 |
|
---|
| 239 | char lab[4];
|
---|
| 240 | if (nt==3 || nt==4)
|
---|
| 241 | sprintf(lab,"E");
|
---|
| 242 | else
|
---|
| 243 | sprintf(lab,"E%d",ei);
|
---|
| 244 |
|
---|
| 245 | ir.init(g,2,lab);
|
---|
| 246 |
|
---|
| 247 | // identity
|
---|
| 248 | ir.rep[0].E();
|
---|
| 249 |
|
---|
| 250 | // Cn
|
---|
| 251 | ir.rep[1].rotation(ei*theta);
|
---|
| 252 |
|
---|
| 253 | // the other n-2 Cn's
|
---|
| 254 | for (j=2; j < nt; j++)
|
---|
| 255 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]);
|
---|
| 256 |
|
---|
| 257 | // sigma xz
|
---|
| 258 | ir.rep[nt].sigma_xz();
|
---|
| 259 |
|
---|
| 260 | SymRep sr(2);
|
---|
| 261 | sr.rotation(ei*theta/2.0);
|
---|
| 262 |
|
---|
| 263 | // the other n-1 sigma's
|
---|
| 264 | for (j=nt+1; j < g; j++)
|
---|
| 265 | ir.rep[j] = ir.rep[j-1].transform(sr);
|
---|
| 266 | }
|
---|
| 267 |
|
---|
| 268 | // identity
|
---|
| 269 | symop[0].E();
|
---|
| 270 |
|
---|
| 271 | // Cn
|
---|
| 272 | symop[1].rotation(theta);
|
---|
| 273 |
|
---|
| 274 | // the other n-2 Cn's
|
---|
| 275 | for (i=2; i < nt; i++)
|
---|
| 276 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
| 277 |
|
---|
| 278 | // sigma xz
|
---|
| 279 | symop[nt].sigma_xz();
|
---|
| 280 |
|
---|
| 281 | so.rotation(theta/2.0);
|
---|
| 282 |
|
---|
| 283 | // the other n-1 sigma's
|
---|
| 284 | for (j=nt+1; j < g; j++)
|
---|
| 285 | symop[j] = symop[j-1].transform(so);
|
---|
| 286 |
|
---|
| 287 | for (i=0; i < nt ; i++) {
|
---|
| 288 | rot[i] = trans[i] = symop[i].trace();
|
---|
| 289 |
|
---|
| 290 | rot[i+nt] = -symop[i+nt].trace();
|
---|
| 291 | trans[i+nt] = symop[i+nt].trace();
|
---|
| 292 | }
|
---|
| 293 |
|
---|
| 294 | break;
|
---|
| 295 |
|
---|
| 296 | case CNH:
|
---|
| 297 | // lockwise rotation about z axis by theta*i radians,
|
---|
| 298 | // as well as rotation-reflection about same axis
|
---|
| 299 |
|
---|
| 300 | //
|
---|
| 301 | // for odd n, the irreps are A', A", E1'...E(nir/2-1)', E1"...E(nir/2-1)''
|
---|
| 302 | // for even n, the irreps are Ag, Bg, Au, Bu,
|
---|
| 303 | // E1g...E(nir/2-1)g, E1u...E(nir/2-1)u
|
---|
| 304 | //
|
---|
| 305 | gamma_[0].init(g,1, (nt%2) ? "A'" : "Ag", (nt%2) ? "Ap" : 0);
|
---|
| 306 | gamma_[nirrep_/2].init(g,1, (nt%2) ? "A\"" : "Au", (nt%2) ? "Ap" : 0);
|
---|
| 307 |
|
---|
| 308 | for (gi=0; gi < nt; gi++) {
|
---|
| 309 | // Cn's
|
---|
| 310 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
| 311 | gamma_[nirrep_/2].rep[gi][0][0] = 1.0;
|
---|
| 312 |
|
---|
| 313 | // Sn's
|
---|
| 314 | gamma_[0].rep[gi+nt][0][0] = 1.0;
|
---|
| 315 | gamma_[nirrep_/2].rep[gi+nt][0][0] = -1.0;
|
---|
| 316 | }
|
---|
| 317 |
|
---|
| 318 | if (!(nt%2)) {
|
---|
| 319 | gamma_[1].init(g,1,"Bg");
|
---|
| 320 | gamma_[1+nirrep_/2].init(g,1,"Bu");
|
---|
| 321 |
|
---|
| 322 | for (gi=0; gi < nt; gi++) {
|
---|
| 323 | double ci = (gi%2) ? -1.0 : 1.0;
|
---|
| 324 |
|
---|
| 325 | // Cn's
|
---|
| 326 | gamma_[1].rep[gi][0][0] = ci;
|
---|
| 327 | gamma_[1+nirrep_/2].rep[gi][0][0] = ci;
|
---|
| 328 |
|
---|
| 329 | // Sn's
|
---|
| 330 | gamma_[1].rep[gi+nt][0][0] = ci;
|
---|
| 331 | gamma_[1+nirrep_/2].rep[gi+nt][0][0] = -ci;
|
---|
| 332 | }
|
---|
| 333 | }
|
---|
| 334 |
|
---|
| 335 | ei=1;
|
---|
| 336 | for (i = (nt%2) ? 1 : 2; i < nirrep_/2 ; i++, ei++) {
|
---|
| 337 | IrreducibleRepresentation& ir1 = gamma_[i];
|
---|
| 338 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2];
|
---|
| 339 |
|
---|
| 340 | if (nt==3 || nt==4)
|
---|
| 341 | sprintf(label,(nt%2) ? "E'" : "Eg");
|
---|
| 342 | else
|
---|
| 343 | sprintf(label,"E%d%s", ei, (nt%2) ? "'" : "g");
|
---|
| 344 |
|
---|
| 345 | ir1.init(g,2,label);
|
---|
| 346 |
|
---|
| 347 | if (nt==3 || nt==4)
|
---|
| 348 | sprintf(label,(nt%2) ? "E\"" : "Eu");
|
---|
| 349 | else
|
---|
| 350 | sprintf(label,"E%d%s", ei, (nt%2) ? "\"" : "u");
|
---|
| 351 |
|
---|
| 352 | ir2.init(g,2,label);
|
---|
| 353 |
|
---|
| 354 | ir1.complex_=1;
|
---|
| 355 | ir2.complex_=1;
|
---|
| 356 |
|
---|
| 357 | // identity
|
---|
| 358 | ir1.rep[0].E();
|
---|
| 359 | ir2.rep[0].E();
|
---|
| 360 |
|
---|
| 361 | // Cn
|
---|
| 362 | ir1.rep[1].rotation(ei*theta);
|
---|
| 363 | ir2.rep[1].rotation(ei*theta);
|
---|
| 364 |
|
---|
| 365 | for (j=2; j < nt; j++) {
|
---|
| 366 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]);
|
---|
| 367 | ir2.rep[j] = ir2.rep[j-1].operate(ir2.rep[1]);
|
---|
| 368 | }
|
---|
| 369 |
|
---|
| 370 | // Sn's
|
---|
| 371 | SymRep sr(2);
|
---|
| 372 | sr.i();
|
---|
| 373 |
|
---|
| 374 | for (j=nt; j < g; j++) {
|
---|
| 375 | ir1.rep[j] = ir1.rep[j-nt];
|
---|
| 376 | ir2.rep[j] = ir2.rep[j-nt].operate(sr);
|
---|
| 377 | }
|
---|
| 378 | }
|
---|
| 379 |
|
---|
| 380 | // identity
|
---|
| 381 | symop[0].E();
|
---|
| 382 |
|
---|
| 383 | // Cn
|
---|
| 384 | symop[1].rotation(theta);
|
---|
| 385 |
|
---|
| 386 | // the other n-2 Cn's
|
---|
| 387 | for (i=2; i < nt; i++)
|
---|
| 388 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
| 389 |
|
---|
| 390 | // Sn's, for odd nt, operate on Cn's with sigma_h, for even nt,
|
---|
| 391 | // operate Cn's with i
|
---|
| 392 | if (nt%2)
|
---|
| 393 | so.sigma_h();
|
---|
| 394 | else
|
---|
| 395 | so.i();
|
---|
| 396 |
|
---|
| 397 | for (i=0; i < nt ; i++) {
|
---|
| 398 | symop[i+nt] = symop[i].operate(so);
|
---|
| 399 |
|
---|
| 400 | rot[i] = trans[i] = symop[i].trace();
|
---|
| 401 | trans[i+nt] = symop[i+nt].trace();
|
---|
| 402 | rot[i+nt] = -trans[i+nt];
|
---|
| 403 | }
|
---|
| 404 |
|
---|
| 405 | break;
|
---|
| 406 |
|
---|
| 407 | case SN:
|
---|
| 408 | // clockwise rotation-reflection by theta*i radians about z axis
|
---|
| 409 | //
|
---|
| 410 | // for odd n/2, the irreps are Ag, Au, E1g...E(nir/2-1)g,E1u...E(nir/2-1)u
|
---|
| 411 | // for even n/2, the irreps are A, B, E1...E(nir-2)
|
---|
| 412 | //
|
---|
| 413 | if ((nt/2)%2) {
|
---|
| 414 | gamma_[0].init(g, 1, "Ag");
|
---|
| 415 | gamma_[nirrep_/2].init(g, 1, "Au");
|
---|
| 416 |
|
---|
| 417 | for (gi=0; gi < nt/2; gi++) {
|
---|
| 418 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
| 419 | gamma_[nirrep_/2].rep[gi][0][0] = 1.0;
|
---|
| 420 |
|
---|
| 421 | gamma_[0].rep[gi+nt/2][0][0] = 1.0;
|
---|
| 422 | gamma_[nirrep_/2].rep[gi+nt/2][0][0] = -1.0;
|
---|
| 423 | }
|
---|
| 424 |
|
---|
| 425 | ei=1;
|
---|
| 426 | for (i=1; i < nirrep_/2 ; i++, ei++) {
|
---|
| 427 | IrreducibleRepresentation& ir1 = gamma_[i];
|
---|
| 428 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2];
|
---|
| 429 |
|
---|
| 430 | if (nt==6)
|
---|
| 431 | sprintf(label,"Eg");
|
---|
| 432 | else
|
---|
| 433 | sprintf(label,"E%dg",ei);
|
---|
| 434 |
|
---|
| 435 | ir1.init(g,2,label);
|
---|
| 436 | ir1.complex_=1;
|
---|
| 437 |
|
---|
| 438 | if (nt==6)
|
---|
| 439 | sprintf(label,"Eu");
|
---|
| 440 | else
|
---|
| 441 | sprintf(label,"E%du", ei);
|
---|
| 442 |
|
---|
| 443 | ir2.init(g,2,label);
|
---|
| 444 | ir2.complex_=1;
|
---|
| 445 |
|
---|
| 446 | // identity
|
---|
| 447 | ir1.rep[0].E();
|
---|
| 448 | ir2.rep[0].E();
|
---|
| 449 |
|
---|
| 450 | // C(n/2)
|
---|
| 451 | ir1.rep[1].rotation(ei*theta*2.0);
|
---|
| 452 | ir2.rep[1].rotation(ei*theta*2.0);
|
---|
| 453 |
|
---|
| 454 | for (j=2; j < nt/2; j++) {
|
---|
| 455 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]);
|
---|
| 456 | ir2.rep[j] = ir2.rep[j-1].operate(ir2.rep[1]);
|
---|
| 457 | }
|
---|
| 458 |
|
---|
| 459 | SymRep sr(2);
|
---|
| 460 | sr.i();
|
---|
| 461 |
|
---|
| 462 | // Sn
|
---|
| 463 | for (j=nt/2; j < nt; j++) {
|
---|
| 464 | ir1.rep[j] = ir1.rep[j-nt/2];
|
---|
| 465 | ir2.rep[j] = ir2.rep[j-nt/2].operate(sr);
|
---|
| 466 | }
|
---|
| 467 | }
|
---|
| 468 |
|
---|
| 469 | // identity
|
---|
| 470 | symop[0].E();
|
---|
| 471 |
|
---|
| 472 | // Cn
|
---|
| 473 | symop[1].rotation(2.0*theta);
|
---|
| 474 |
|
---|
| 475 | for (i=2; i < nt/2 ; i++)
|
---|
| 476 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
| 477 |
|
---|
| 478 | so.i();
|
---|
| 479 |
|
---|
| 480 | // Sn
|
---|
| 481 | for (i=nt/2; i < nt; i++)
|
---|
| 482 | symop[i] = symop[i-nt/2].operate(so);
|
---|
| 483 |
|
---|
| 484 | for (i=0; i < nt/2 ; i++) {
|
---|
| 485 | rot[i] = trans[i] = symop[i].trace();
|
---|
| 486 |
|
---|
| 487 | trans[i+nt/2] = symop[i+nt/2].trace();
|
---|
| 488 | rot[i+nt/2] = -trans[i+nt/2];
|
---|
| 489 | }
|
---|
| 490 |
|
---|
| 491 | } else {
|
---|
| 492 | gamma_[0].init(g, 1, "A");
|
---|
| 493 | gamma_[1].init(g, 1, "B");
|
---|
| 494 |
|
---|
| 495 | for (gi=0; gi < nt; gi++) {
|
---|
| 496 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
| 497 | gamma_[1].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0;
|
---|
| 498 | }
|
---|
| 499 |
|
---|
| 500 | ei=1;
|
---|
| 501 | for (i=2; i < nirrep_; i++, ei++) {
|
---|
| 502 | IrreducibleRepresentation& ir = gamma_[i];
|
---|
| 503 |
|
---|
| 504 | if (nt==4)
|
---|
| 505 | sprintf(label,"E");
|
---|
| 506 | else
|
---|
| 507 | sprintf(label,"E%d",ei);
|
---|
| 508 |
|
---|
| 509 | ir.init(g,2,label);
|
---|
| 510 | ir.complex_ = 1;
|
---|
| 511 |
|
---|
| 512 | // identity
|
---|
| 513 | ir.rep[0].E();
|
---|
| 514 |
|
---|
| 515 | // Sn
|
---|
| 516 | ir.rep[1].rotation(ei*theta);
|
---|
| 517 |
|
---|
| 518 | for (j=2; j < nt; j++)
|
---|
| 519 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]);
|
---|
| 520 | }
|
---|
| 521 |
|
---|
| 522 | // identity
|
---|
| 523 | symop[0].E();
|
---|
| 524 |
|
---|
| 525 | // Sn
|
---|
| 526 | symop[1].rotation(theta);
|
---|
| 527 | symop[1][2][2] = -1.0;
|
---|
| 528 |
|
---|
| 529 | for (i=2; i < nt ; i++)
|
---|
| 530 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
| 531 |
|
---|
| 532 | for (i=0; i < nt ; i++) {
|
---|
| 533 | trans[i] = symop[i].trace();
|
---|
| 534 | rot[i] = (i%2) ? -trans[i] : trans[i];
|
---|
| 535 | }
|
---|
| 536 | }
|
---|
| 537 |
|
---|
| 538 | break;
|
---|
| 539 |
|
---|
| 540 | case DN:
|
---|
| 541 | // clockwise rotation about z axis, followed by C2 about x axis
|
---|
| 542 |
|
---|
| 543 | // D2 is a special case
|
---|
| 544 | if (nt==2) {
|
---|
| 545 | gamma_[0].init(g,1,"A");
|
---|
| 546 | gamma_[1].init(g,1,"B1");
|
---|
| 547 | gamma_[2].init(g,1,"B2");
|
---|
| 548 | gamma_[3].init(g,1,"B3");
|
---|
| 549 |
|
---|
| 550 | for (i=0; i < g; i++) {
|
---|
| 551 | gamma_[0].rep[i][0][0] = 1.0;
|
---|
| 552 | gamma_[1].rep[i][0][0] = (i < 2) ? 1.0 : -1.0;
|
---|
| 553 | gamma_[2].rep[i][0][0] = (i % 2) ? -1.0 : 1.0;
|
---|
| 554 | gamma_[3].rep[i][0][0] = (i < 2) ?
|
---|
| 555 | ((i % 2) ? -1.0 : 1.0) : ((i%2) ? 1.0 : -1.0);
|
---|
| 556 | }
|
---|
| 557 | } else {
|
---|
| 558 | // Dn is isomorphic with Cnv
|
---|
| 559 | //
|
---|
| 560 | // for odd n, the irreps are A1, A2, and E1...E(nir-2)
|
---|
| 561 | // for even n, the irreps are A1, A2, B1, B2, and E1...E(nir-4)
|
---|
| 562 | //
|
---|
| 563 | gamma_[0].init(g,1,"A1");
|
---|
| 564 | gamma_[1].init(g,1,"A2");
|
---|
| 565 |
|
---|
| 566 | for (gi=0; gi < nt; gi++) {
|
---|
| 567 | // Cn's
|
---|
| 568 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
| 569 | gamma_[1].rep[gi][0][0] = 1.0;
|
---|
| 570 |
|
---|
| 571 | // C2's
|
---|
| 572 | gamma_[0].rep[gi+nt][0][0] = 1.0;
|
---|
| 573 | gamma_[1].rep[gi+nt][0][0] = -1.0;
|
---|
| 574 | }
|
---|
| 575 |
|
---|
| 576 | i=2;
|
---|
| 577 |
|
---|
| 578 | if (!(nt%2)) {
|
---|
| 579 | gamma_[2].init(g,1,"B1");
|
---|
| 580 | gamma_[3].init(g,1,"B2");
|
---|
| 581 |
|
---|
| 582 | for (gi=0; gi < nt ; gi++) {
|
---|
| 583 | double ci = (gi%2) ? -1.0 : 1.0;
|
---|
| 584 |
|
---|
| 585 | // Cn's
|
---|
| 586 | gamma_[2].rep[gi][0][0] = ci;
|
---|
| 587 | gamma_[3].rep[gi][0][0] = ci;
|
---|
| 588 |
|
---|
| 589 | // sigma's
|
---|
| 590 | gamma_[2].rep[gi+nt][0][0] = ci;
|
---|
| 591 | gamma_[3].rep[gi+nt][0][0] = -ci;
|
---|
| 592 | }
|
---|
| 593 |
|
---|
| 594 | i = 4;
|
---|
| 595 | }
|
---|
| 596 |
|
---|
| 597 | ei=1;
|
---|
| 598 | for (; i < nirrep_; i++, ei++) {
|
---|
| 599 | IrreducibleRepresentation& ir = gamma_[i];
|
---|
| 600 |
|
---|
| 601 | char lab[4];
|
---|
| 602 | if (nt==3 || nt==4)
|
---|
| 603 | sprintf(lab,"E");
|
---|
| 604 | else
|
---|
| 605 | sprintf(lab,"E%d",ei);
|
---|
| 606 |
|
---|
| 607 | ir.init(g,2,lab);
|
---|
| 608 |
|
---|
| 609 | // identity
|
---|
| 610 | ir.rep[0].E();
|
---|
| 611 |
|
---|
| 612 | // Cn
|
---|
| 613 | ir.rep[1].rotation(ei*theta);
|
---|
| 614 |
|
---|
| 615 | for (j=2; j < nt; j++)
|
---|
| 616 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]);
|
---|
| 617 |
|
---|
| 618 | // C2(x)
|
---|
| 619 | ir.rep[nt].c2_y();
|
---|
| 620 |
|
---|
| 621 | SymRep sr(2);
|
---|
| 622 | sr.rotation(ei*theta/2.0);
|
---|
| 623 |
|
---|
| 624 | for (j=nt+1; j < 2*nt; j++)
|
---|
| 625 | ir.rep[j] = ir.rep[j-1].transform(sr);
|
---|
| 626 | }
|
---|
| 627 | }
|
---|
| 628 |
|
---|
| 629 | // identity
|
---|
| 630 | symop[0].E();
|
---|
| 631 |
|
---|
| 632 | // Cn
|
---|
| 633 | symop[1].rotation(theta);
|
---|
| 634 |
|
---|
| 635 | for (i=2; i < nt; i++)
|
---|
| 636 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
| 637 |
|
---|
| 638 | // C2(x)
|
---|
| 639 | symop[nt].c2_y();
|
---|
| 640 |
|
---|
| 641 | so.rotation(theta/2.0);
|
---|
| 642 |
|
---|
| 643 | for (i=nt+1; i < 2*nt; i++)
|
---|
| 644 | symop[i] = symop[i-1].transform(so);
|
---|
| 645 |
|
---|
| 646 | for (i=0; i < 2*nt ; i++)
|
---|
| 647 | rot[i] = trans[i] = symop[i].trace();
|
---|
| 648 |
|
---|
| 649 | break;
|
---|
| 650 |
|
---|
| 651 | case DND:
|
---|
| 652 | // rotation reflection about z axis by theta/2 radians, followed
|
---|
| 653 | // by c2 about x axis, then reflection through yz plane
|
---|
| 654 | //
|
---|
| 655 | // for odd n, the irreps are A1g, A2g, A1u, A2u, E1g...E(nir/2-2)g,
|
---|
| 656 | // E1u...E(nir/2-2)u
|
---|
| 657 | // for even n, the irreps are A1, A2, B1, B2, E1...E(nir-4)
|
---|
| 658 | //
|
---|
| 659 |
|
---|
| 660 | if (nt%2) {
|
---|
| 661 | gamma_[0].init(g,1,"A1g");
|
---|
| 662 | gamma_[1].init(g,1,"A2g");
|
---|
| 663 |
|
---|
| 664 | for (gi=0; gi < g; gi++) {
|
---|
| 665 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
| 666 | gamma_[1].rep[gi][0][0] = (gi/nt==0 || gi/nt==2) ? 1.0 : -1.0;
|
---|
| 667 | }
|
---|
| 668 |
|
---|
| 669 | i=nirrep_/2;
|
---|
| 670 | j=i+1;
|
---|
| 671 | gamma_[i].init(g,1,"A1u");
|
---|
| 672 | gamma_[j].init(g,1,"A2u");
|
---|
| 673 |
|
---|
| 674 | for (gi=0; gi < g/2; gi++) {
|
---|
| 675 | gamma_[i].rep[gi][0][0] = gamma_[0].rep[gi][0][0];
|
---|
| 676 | gamma_[j].rep[gi][0][0] = gamma_[1].rep[gi][0][0];
|
---|
| 677 |
|
---|
| 678 | gamma_[i].rep[gi+g/2][0][0] = -gamma_[0].rep[gi][0][0];
|
---|
| 679 | gamma_[j].rep[gi+g/2][0][0] = -gamma_[1].rep[gi][0][0];
|
---|
| 680 | }
|
---|
| 681 |
|
---|
| 682 | ei=1;
|
---|
| 683 |
|
---|
| 684 | for (i=2; i < nirrep_/2 ; i++, ei++) {
|
---|
| 685 | IrreducibleRepresentation& ir1 = gamma_[i];
|
---|
| 686 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2];
|
---|
| 687 |
|
---|
| 688 | if (nt==3) {
|
---|
| 689 | ir1.init(g,2,"Eg");
|
---|
| 690 | ir2.init(g,2,"Eu");
|
---|
| 691 | } else {
|
---|
| 692 | sprintf(label,"E%dg",ei);
|
---|
| 693 | ir1.init(g,2,label);
|
---|
| 694 | sprintf(label,"E%du",ei);
|
---|
| 695 | ir2.init(g,2,label);
|
---|
| 696 | }
|
---|
| 697 |
|
---|
| 698 | // identity
|
---|
| 699 | ir1.rep[0].E();
|
---|
| 700 |
|
---|
| 701 | // Cn
|
---|
| 702 | ir1.rep[1].rotation(ei*theta);
|
---|
| 703 |
|
---|
| 704 | for (j=2; j < nt; j++)
|
---|
| 705 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]);
|
---|
| 706 |
|
---|
| 707 | // C2(x)
|
---|
| 708 | ir1.rep[nt].c2_y();
|
---|
| 709 |
|
---|
| 710 | for (j=nt+1; j < 2*nt; j++)
|
---|
| 711 | ir1.rep[j] = ir1.rep[j-1].transform(ir1.rep[1]);
|
---|
| 712 |
|
---|
| 713 | for (j=0; j < 2*nt; j++)
|
---|
| 714 | ir2.rep[j] = ir1.rep[j];
|
---|
| 715 |
|
---|
| 716 | // Sn and sigma d
|
---|
| 717 | SymRep sr(2);
|
---|
| 718 | sr.i();
|
---|
| 719 |
|
---|
| 720 | for (j=2*nt; j < g; j++) {
|
---|
| 721 | ir1.rep[j] = ir1.rep[j-2*nt];
|
---|
| 722 | ir2.rep[j] = ir2.rep[j-2*nt].operate(sr);
|
---|
| 723 | }
|
---|
| 724 | }
|
---|
| 725 |
|
---|
| 726 | // identity
|
---|
| 727 | symop[0].E();
|
---|
| 728 |
|
---|
| 729 | // Cn
|
---|
| 730 | symop[1].rotation(theta);
|
---|
| 731 |
|
---|
| 732 | for (i=2; i < nt; i++)
|
---|
| 733 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
| 734 |
|
---|
| 735 | // C2(x)
|
---|
| 736 | symop[nt].c2_y();
|
---|
| 737 |
|
---|
| 738 | for (i=nt+1; i < 2*nt; i++)
|
---|
| 739 | symop[i] = symop[i-1].transform(symop[1]);
|
---|
| 740 |
|
---|
| 741 | // i + n-1 S2n + n sigma
|
---|
| 742 | so.i();
|
---|
| 743 | for (i=2*nt; i < g; i++)
|
---|
| 744 | symop[i] = symop[i-2*nt].operate(so);
|
---|
| 745 |
|
---|
| 746 | for (i=0; i < g; i++) {
|
---|
| 747 | trans[i] = symop[i].trace();
|
---|
| 748 | rot[i] = (i < g/2) ? trans[i] : -trans[i];
|
---|
| 749 | }
|
---|
| 750 |
|
---|
| 751 | } else { // even nt
|
---|
| 752 |
|
---|
| 753 | gamma_[0].init(g,1,"A1");
|
---|
| 754 | gamma_[1].init(g,1,"A2");
|
---|
| 755 | gamma_[2].init(g,1,"B1");
|
---|
| 756 | gamma_[3].init(g,1,"B2");
|
---|
| 757 |
|
---|
| 758 | for (gi=0; gi < 2*nt; gi++) {
|
---|
| 759 | // Sn
|
---|
| 760 | gamma_[0].rep[gi][0][0] = 1.0;
|
---|
| 761 | gamma_[1].rep[gi][0][0] = 1.0;
|
---|
| 762 | gamma_[2].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0;
|
---|
| 763 | gamma_[3].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0;
|
---|
| 764 |
|
---|
| 765 | // n C2's and n sigma's
|
---|
| 766 | gamma_[0].rep[gi+2*nt][0][0] = 1.0;
|
---|
| 767 | gamma_[1].rep[gi+2*nt][0][0] = -1.0;
|
---|
| 768 | gamma_[2].rep[gi+2*nt][0][0] = (gi%2) ? -1.0 : 1.0;
|
---|
| 769 | gamma_[3].rep[gi+2*nt][0][0] = (gi%2) ? 1.0 : -1.0;
|
---|
| 770 | }
|
---|
| 771 |
|
---|
| 772 | ei=1;
|
---|
| 773 | for (i=4; i < nirrep_; i++, ei++) {
|
---|
| 774 | IrreducibleRepresentation& ir = gamma_[i];
|
---|
| 775 |
|
---|
| 776 | if (nt==2)
|
---|
| 777 | sprintf(label,"E");
|
---|
| 778 | else
|
---|
| 779 | sprintf(label,"E%d",ei);
|
---|
| 780 |
|
---|
| 781 | ir.init(g,2,label);
|
---|
| 782 |
|
---|
| 783 | // identity
|
---|
| 784 | ir.rep[0].E();
|
---|
| 785 |
|
---|
| 786 | // S2n
|
---|
| 787 | ir.rep[1].rotation(ei*theta/2.0);
|
---|
| 788 |
|
---|
| 789 | for (j=2; j < 2*nt; j++)
|
---|
| 790 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]);
|
---|
| 791 |
|
---|
| 792 | // C2(x) + sigma_d
|
---|
| 793 | ir.rep[2*nt].c2_y();
|
---|
| 794 |
|
---|
| 795 | for (j=2*nt+1; j < g; j++)
|
---|
| 796 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]);
|
---|
| 797 | }
|
---|
| 798 |
|
---|
| 799 | // identity
|
---|
| 800 | symop[0].E();
|
---|
| 801 |
|
---|
| 802 | // Sn's
|
---|
| 803 | symop[1].rotation(theta/2.0);
|
---|
| 804 | symop[1][2][2] = -1.0;
|
---|
| 805 |
|
---|
| 806 | for (i=2; i < 2*nt; i++)
|
---|
| 807 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
| 808 |
|
---|
| 809 | // C2(x)
|
---|
| 810 | symop[2*nt].c2_y();
|
---|
| 811 |
|
---|
| 812 | for (i=2*nt+1; i < g; i++)
|
---|
| 813 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
| 814 |
|
---|
| 815 | for (i=0; i < g; i++) {
|
---|
| 816 | trans[i] = symop[i].trace();
|
---|
| 817 | rot[i] = (i%2) ? -trans[i] : trans[i];
|
---|
| 818 | }
|
---|
| 819 | }
|
---|
| 820 |
|
---|
| 821 | break;
|
---|
| 822 |
|
---|
| 823 | case DNH:
|
---|
| 824 | // clockwise rotation and rotation-reflection about z axis,
|
---|
| 825 | // followed by c2 about x axis and then reflection
|
---|
| 826 | // through xz
|
---|
| 827 |
|
---|
| 828 | i=nirrep_/2; j=i+1;
|
---|
| 829 |
|
---|
| 830 | if (nt%2) {
|
---|
| 831 | gamma_[0].init(g,1,"A1'");
|
---|
| 832 | gamma_[1].init(g,1,"A2'");
|
---|
| 833 | gamma_[i].init(g,1,"A1\"");
|
---|
| 834 | gamma_[j].init(g,1,"A2\"");
|
---|
| 835 | } else {
|
---|
| 836 | if (nt==2) {
|
---|
| 837 | gamma_[0].init(g,1,"Ag");
|
---|
| 838 | gamma_[1].init(g,1,"B1g");
|
---|
| 839 | gamma_[4].init(g,1,"Au");
|
---|
| 840 | gamma_[5].init(g,1,"B1u");
|
---|
| 841 | } else {
|
---|
| 842 | gamma_[0].init(g,1,"A1g");
|
---|
| 843 | gamma_[1].init(g,1,"A2g");
|
---|
| 844 | gamma_[i].init(g,1,"A1u");
|
---|
| 845 | gamma_[j].init(g,1,"A2u");
|
---|
| 846 | }
|
---|
| 847 | }
|
---|
| 848 |
|
---|
| 849 | for (gi=0; gi < nt; gi++) {
|
---|
| 850 | // E + n-1 Cn's
|
---|
| 851 | gamma_[0].rep[gi][0][0] = gamma_[1].rep[gi][0][0] =
|
---|
| 852 | gamma_[i].rep[gi][0][0] = gamma_[j].rep[gi][0][0] = 1.0;
|
---|
| 853 |
|
---|
| 854 | // n C2's
|
---|
| 855 | gamma_[0].rep[gi+nt][0][0] = gamma_[i].rep[gi+nt][0][0] = 1.0;
|
---|
| 856 | gamma_[1].rep[gi+nt][0][0] = gamma_[j].rep[gi+nt][0][0] = -1.0;
|
---|
| 857 |
|
---|
| 858 | // i + n-1 S2n's
|
---|
| 859 | gamma_[0].rep[gi+2*nt][0][0] = gamma_[1].rep[gi+2*nt][0][0] = 1.0;
|
---|
| 860 | gamma_[i].rep[gi+2*nt][0][0] = gamma_[j].rep[gi+2*nt][0][0] = -1.0;
|
---|
| 861 |
|
---|
| 862 | // n sigma's
|
---|
| 863 | gamma_[0].rep[gi+3*nt][0][0] = gamma_[j].rep[gi+3*nt][0][0] = 1.0;
|
---|
| 864 | gamma_[i].rep[gi+3*nt][0][0] = gamma_[1].rep[gi+3*nt][0][0] = -1.0;
|
---|
| 865 | }
|
---|
| 866 |
|
---|
| 867 | if (!(nt%2)) {
|
---|
| 868 | if (nt==2) {
|
---|
| 869 | gamma_[2].init(g,1,"B2g");
|
---|
| 870 | gamma_[3].init(g,1,"B3g");
|
---|
| 871 | gamma_[6].init(g,1,"B2u");
|
---|
| 872 | gamma_[7].init(g,1,"B3u");
|
---|
| 873 | } else {
|
---|
| 874 | gamma_[2].init(g,1,"B1g");
|
---|
| 875 | gamma_[3].init(g,1,"B2g");
|
---|
| 876 | gamma_[i+2].init(g,1,"B1u");
|
---|
| 877 | gamma_[j+2].init(g,1,"B2u");
|
---|
| 878 | }
|
---|
| 879 |
|
---|
| 880 | for (gi=0; gi < nt; gi++) {
|
---|
| 881 | // E + n-1 Cn's
|
---|
| 882 | gamma_[2].rep[gi][0][0] = gamma_[3].rep[gi][0][0] =
|
---|
| 883 | gamma_[i+2].rep[gi][0][0] = gamma_[j+2].rep[gi][0][0] =
|
---|
| 884 | (gi%2) ? -1.0 : 1.0;
|
---|
| 885 |
|
---|
| 886 | // n C2's
|
---|
| 887 | gamma_[2].rep[gi+nt][0][0] = gamma_[i+2].rep[gi+nt][0][0] =
|
---|
| 888 | (gi%2) ? -1.0 : 1.0;
|
---|
| 889 | gamma_[3].rep[gi+nt][0][0] = gamma_[j+2].rep[gi+nt][0][0] =
|
---|
| 890 | (gi%2) ? 1.0 : -1.0;
|
---|
| 891 |
|
---|
| 892 | // i + n-1 S2n's
|
---|
| 893 | gamma_[2].rep[gi+2*nt][0][0] = gamma_[3].rep[gi+2*nt][0][0] =
|
---|
| 894 | (gi%2) ? -1.0 : 1.0;
|
---|
| 895 | gamma_[i+2].rep[gi+2*nt][0][0] = gamma_[j+2].rep[gi+2*nt][0][0] =
|
---|
| 896 | (gi%2) ? 1.0 : -1.0;
|
---|
| 897 |
|
---|
| 898 | // n sigma's
|
---|
| 899 | gamma_[2].rep[gi+3*nt][0][0] = gamma_[j+2].rep[gi+3*nt][0][0] =
|
---|
| 900 | (gi%2) ? -1.0 : 1.0;
|
---|
| 901 | gamma_[i+2].rep[gi+3*nt][0][0] = gamma_[3].rep[gi+3*nt][0][0] =
|
---|
| 902 | (gi%2) ? 1.0 : -1.0;
|
---|
| 903 | }
|
---|
| 904 | }
|
---|
| 905 |
|
---|
| 906 | ei=1;
|
---|
| 907 | for (i = (nt%2) ? 2 : 4; i < nirrep_/2 ; i++, ei++) {
|
---|
| 908 | IrreducibleRepresentation& ir1 = gamma_[i];
|
---|
| 909 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2];
|
---|
| 910 |
|
---|
| 911 | if (nt==3) {
|
---|
| 912 | ir1.init(g,2,"E'");
|
---|
| 913 | ir2.init(g,2,"E\"");
|
---|
| 914 | } else if (nt==4) {
|
---|
| 915 | ir1.init(g,2,"Eg");
|
---|
| 916 | ir2.init(g,2,"Eu");
|
---|
| 917 | } else {
|
---|
| 918 | sprintf(label,"E%d%s", ei, (nt%2) ? "'" : "g");
|
---|
| 919 | ir1.init(g,2,label);
|
---|
| 920 |
|
---|
| 921 | sprintf(label,"E%d%s", ei, (nt%2) ? "\"" : "u");
|
---|
| 922 | ir2.init(g,2,label);
|
---|
| 923 | }
|
---|
| 924 |
|
---|
| 925 | // identity
|
---|
| 926 | ir1.rep[0].E();
|
---|
| 927 |
|
---|
| 928 | // n-1 Cn's
|
---|
| 929 | ir1.rep[1].rotation(ei*theta);
|
---|
| 930 |
|
---|
| 931 | for (j=2; j < nt; j++)
|
---|
| 932 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]);
|
---|
| 933 |
|
---|
| 934 | // n C2's
|
---|
| 935 | ir1.rep[nt].c2_y();
|
---|
| 936 |
|
---|
| 937 | SymRep sr(2);
|
---|
| 938 | sr.rotation(ei*theta/2.0);
|
---|
| 939 |
|
---|
| 940 | for (j=nt+1; j < 2*nt; j++)
|
---|
| 941 | ir1.rep[j] = ir1.rep[j-1].transform(sr);
|
---|
| 942 |
|
---|
| 943 | sr.i();
|
---|
| 944 | for (j=0; j < 2*nt; j++) {
|
---|
| 945 | ir1.rep[j+2*nt] = ir1.rep[j];
|
---|
| 946 | ir2.rep[j] = ir1.rep[j];
|
---|
| 947 | ir2.rep[j+2*nt] = ir1.rep[j].operate(sr);
|
---|
| 948 | }
|
---|
| 949 | }
|
---|
| 950 |
|
---|
| 951 | // identity
|
---|
| 952 | symop[0].E();
|
---|
| 953 |
|
---|
| 954 | // n-1 Cn's
|
---|
| 955 | symop[1].rotation(theta);
|
---|
| 956 |
|
---|
| 957 | for (i=2; i < nt; i++)
|
---|
| 958 | symop[i] = symop[i-1].operate(symop[1]);
|
---|
| 959 |
|
---|
| 960 | // n C2's
|
---|
| 961 | symop[nt].c2_y();
|
---|
| 962 |
|
---|
| 963 | so.rotation(theta/2.0);
|
---|
| 964 | for (i=nt+1; i < 2*nt; i++)
|
---|
| 965 | symop[i] = symop[i-1].transform(so);
|
---|
| 966 |
|
---|
| 967 | if (nt%2)
|
---|
| 968 | so.sigma_h();
|
---|
| 969 | else
|
---|
| 970 | so.i();
|
---|
| 971 |
|
---|
| 972 | for (i=2*nt; i < g; i++)
|
---|
| 973 | symop[i] = symop[i-2*nt].operate(so);
|
---|
| 974 |
|
---|
| 975 | for (i=0,j=2*nt; i < 2*nt ; i++,j++) {
|
---|
| 976 | rot[i] = trans[i] = symop[i].trace();
|
---|
| 977 | trans[j] = symop[j].trace();
|
---|
| 978 | rot[j] = -trans[j];
|
---|
| 979 | }
|
---|
| 980 |
|
---|
| 981 | break;
|
---|
| 982 |
|
---|
| 983 | case T:
|
---|
| 984 | t();
|
---|
| 985 | break;
|
---|
| 986 |
|
---|
| 987 | case TH:
|
---|
| 988 | th();
|
---|
| 989 | break;
|
---|
| 990 |
|
---|
| 991 | case TD:
|
---|
| 992 | td();
|
---|
| 993 | break;
|
---|
| 994 |
|
---|
| 995 | case O:
|
---|
| 996 | o();
|
---|
| 997 | break;
|
---|
| 998 |
|
---|
| 999 | case OH:
|
---|
| 1000 | oh();
|
---|
| 1001 | break;
|
---|
| 1002 |
|
---|
| 1003 | case I:
|
---|
| 1004 | this->i();
|
---|
| 1005 | break;
|
---|
| 1006 |
|
---|
| 1007 | case IH:
|
---|
| 1008 | ih();
|
---|
| 1009 | break;
|
---|
| 1010 |
|
---|
| 1011 | default:
|
---|
| 1012 | return -1;
|
---|
| 1013 |
|
---|
| 1014 | }
|
---|
| 1015 |
|
---|
| 1016 | /* ok, we have the reducible representation of the rotations and
|
---|
| 1017 | * translations, now let's use projection operators to find out how many
|
---|
| 1018 | * rotations and translations there are in each irrep
|
---|
| 1019 | */
|
---|
| 1020 |
|
---|
| 1021 | if (pg != C1 && pg != CI && pg != CS && pg != T && pg != TD && pg != TH &&
|
---|
| 1022 | pg != O && pg != OH && pg != I && pg != IH) {
|
---|
| 1023 |
|
---|
| 1024 | for (i=0; i < nirrep_; i++) {
|
---|
| 1025 | double nr=0; double nt=0;
|
---|
| 1026 |
|
---|
| 1027 | for (j=0; j < gamma_[i].g; j++) {
|
---|
| 1028 | nr += rot[j]*gamma_[i].character(j);
|
---|
| 1029 | nt += trans[j]*gamma_[i].character(j);
|
---|
| 1030 | }
|
---|
| 1031 |
|
---|
| 1032 | gamma_[i].nrot_ = (int) ((nr+0.5)/gamma_[i].g);
|
---|
| 1033 | gamma_[i].ntrans_ = (int) ((nt+0.5)/gamma_[i].g);
|
---|
| 1034 | }
|
---|
| 1035 | }
|
---|
| 1036 |
|
---|
| 1037 | delete[] rot;
|
---|
| 1038 | delete[] trans;
|
---|
| 1039 |
|
---|
| 1040 | // now find the inverse of each symop
|
---|
| 1041 | for (gi=0; gi < g; gi++) {
|
---|
| 1042 | int gj;
|
---|
| 1043 | for (gj=0; gj < g; gj++) {
|
---|
| 1044 | so = symop[gi].operate(symop[gj]);
|
---|
| 1045 |
|
---|
| 1046 | // is so a unit matrix?
|
---|
| 1047 | if (fabs(1.0-so[0][0]) < 1.0e-8 &&
|
---|
| 1048 | fabs(1.0-so[1][1]) < 1.0e-8 &&
|
---|
| 1049 | fabs(1.0-so[2][2]) < 1.0e-8) break;
|
---|
| 1050 | }
|
---|
| 1051 |
|
---|
| 1052 | if (gj==g) {
|
---|
| 1053 | ExEnv::err0() << indent
|
---|
| 1054 | << "make_table: uh oh, can't find inverse of " << gi << endl;
|
---|
| 1055 | abort();
|
---|
| 1056 | }
|
---|
| 1057 |
|
---|
| 1058 | _inv[gi] = gj;
|
---|
| 1059 | }
|
---|
| 1060 |
|
---|
| 1061 | return 0;
|
---|
| 1062 | }
|
---|
| 1063 |
|
---|
| 1064 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 1065 |
|
---|
| 1066 | // Local Variables:
|
---|
| 1067 | // mode: c++
|
---|
| 1068 | // c-file-style: "ETS"
|
---|
| 1069 | // End:
|
---|