// // ico.cc --- implementation of icosahedral operations // // Copyright (C) 1996 Limit Point Systems, Inc. // // Author: Edward Seidl // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // #include #include #include using namespace sc; // these are the operations which make up T static void i_ops(SymRep *t1rep, SymRep *t2rep, SymRep *grep, SymRep *hrep) { int i; // identity t1rep[0].E(); t2rep[0].E(); grep[0].E(); hrep[0].E(); // // 12 C5's // // first the 2 C5's about the z axis t1rep[1].rotation(2.0*(double)M_PI/5.0); t1rep[2].rotation(8.0*(double)M_PI/5.0); t2rep[1] = t1rep[1].operate(t1rep[1]); t2rep[2] = t1rep[2].operate(t1rep[2]); grep[1].rotation(2.0*(double)M_PI/5.0); grep[2].rotation(8.0*(double)M_PI/5.0); hrep[1].rotation(2.0*(double)M_PI/5.0); hrep[2].rotation(8.0*(double)M_PI/5.0); // form rotation matrices for the C3 axis about the zx axis (these were // taken from turbomole version 2, which claims they were sort of inherited // from hondo SymRep t1so(3); SymRep gso(4); SymRep hso(5); double c2p5 = cos(2.0*(double)M_PI/5.0); double s2p5 = sin(2.0*(double)M_PI/5.0); double cosd = s2p5/((1.0-c2p5)*sqrt(3.0)); double cosd2 = cosd*cosd; double sind2 = 1.0 - cosd2; double sind = sqrt(sind2); t1so[0][0] = 1.0 - 1.5*cosd2; t1so[1][0] = 0.5*sqrt(3.0)*cosd; t1so[2][0] = 1.5*cosd*sind; t1so[0][1] = -0.5*sqrt(3.0)*cosd; t1so[1][1] = -0.5; t1so[2][1] = 0.5*sqrt(3.0)*sind; t1so[0][2] = 1.5*cosd*sind; t1so[1][2] = -0.5*sqrt(3.0)*sind; t1so[2][2] = 1.0 - 1.5*sind2; gso[0][0] = (3.0*sqrt(5.0)+5.0)/20.0; gso[0][1] = cosd*sqrt(3.0)*(sqrt(5.0)-1.0)/4.0; gso[0][2] = 3.0*sqrt(5.0)/10.0; gso[0][3] = -sqrt(5.0-2.0*sqrt(5.0))*sqrt(5.0)/10.0; gso[1][0] = -gso[0][1]; gso[1][1] = (1-sqrt(5.0))/4.0; gso[1][2] = cosd*sqrt(3.0)/2.0; gso[1][3] = cosd*sqrt(5-2*sqrt(5.0))*sqrt(3.0)/2.0; gso[2][0] = gso[0][2]; gso[2][1] = -gso[1][2]; gso[2][2] = (5-3*sqrt(5.0))/20.0; gso[2][3] = sqrt(5.0-2*sqrt(5.0))*(sqrt(5.0)+5)/20; gso[3][0] = -gso[0][3]; gso[3][1] = gso[1][3]; gso[3][2] = -gso[2][3]; gso[3][3] = (sqrt(5.0)+1)/4.0; hso[0][0] = -1.0/5.0; hso[0][4] = sqrt(3.0)*(sqrt(5.0)+1)/10.0; hso[0][3] = 3.0*cosd*(3.0*sqrt(5.0)-5.0)/10.0; hso[0][2] = 3.0*cosd*(5.0-sqrt(5.0))/10.0; hso[0][1] = sqrt(3.0)*(sqrt(5.0)-1.0)/10.0; hso[4][0] = hso[0][4]; hso[4][4] = (2.0*sqrt(5.0)+1.0)/10.0; hso[4][3] = sqrt(3.0)*cosd*(5.0-2.0*sqrt(5.0))/10.0; hso[4][2] = sqrt(3.0)*cosd*(5.0-3.0*sqrt(5.0))/5.0; hso[4][1] = 2.0/5.0; hso[3][0] = -hso[0][3]; hso[3][4] = -hso[4][3]; hso[3][3] = -1.0/2.0; hso[3][2] = 0.0; hso[3][1] = sqrt(3.0)*cosd*(5.0-sqrt(5.0))/5.0; hso[2][0] = -hso[0][2]; hso[2][4] = -hso[4][2]; hso[2][3] = 0.0; hso[2][2] = -1.0/2.0; hso[2][1] = -sqrt(3.0)*sqrt(5.0)*cosd/10.0; hso[1][0] = hso[0][1]; hso[1][4] = hso[4][1]; hso[1][3] = -hso[3][1]; hso[1][2] = -hso[2][1]; hso[1][1] = (1.0-2.0*sqrt(5.0))/10.0; // now rotate the first C5's by 2pi/3 degrees about the zx axis (sort of) t1rep[3] = t1rep[1].transform(t1so); t1rep[4] = t1rep[2].transform(t1so); grep[3] = grep[1].transform(gso); grep[4] = grep[2].transform(gso); hrep[3] = hrep[1].transform(hso); hrep[4] = hrep[2].transform(hso); // rotate twice to get the first one aligned along the x axis t1rep[3] = t1rep[3].transform(t1rep[1]).transform(t1rep[1]); t1rep[4] = t1rep[4].transform(t1rep[1]).transform(t1rep[1]); grep[3] = grep[3].transform(grep[1]).transform(grep[1]); grep[4] = grep[4].transform(grep[1]).transform(grep[1]); hrep[3] = hrep[3].transform(hrep[1]).transform(hrep[1]); hrep[4] = hrep[4].transform(hrep[1]).transform(hrep[1]); t2rep[3] = t1rep[4].operate(t1rep[4]); t2rep[4] = t1rep[3].operate(t1rep[3]); t2rep[13] = t1rep[2]; t2rep[14] = t1rep[1]; t2rep[15] = t1rep[3]; t2rep[16] = t1rep[4]; // and then rotate those by 2pi/5 about the z axis 4 times for (i=5; i < 13; i++) { t1rep[i] = t1rep[i-2].transform(t1rep[1]); grep[i] = grep[i-2].transform(grep[1]); hrep[i] = hrep[i-2].transform(hrep[1]); t2rep[i] = t2rep[i-2].transform(t2rep[1]); t2rep[i+12] = t2rep[i+10].transform(t2rep[1]); } // // 12 C5^2's // // get these from operating on each of the C5's with itself for (i=13; i < 25; i++) { t1rep[i] = t1rep[i-12].operate(t1rep[i-12]); grep[i] = grep[i-12].operate(grep[i-12]); hrep[i] = hrep[i-12].operate(hrep[i-12]); } // // 20 C3's // // first we have 2 C3's about the zx axis t1rep[25] = t1so; t1rep[26] = t1so.operate(t1so); grep[25] = gso; grep[26] = gso.operate(gso); hrep[25] = hso; hrep[26] = hso.operate(hso); // and then rotate those by 2pi/5 about the z axis 4 times for (i=27; i < 35; i++) { t1rep[i] = t1rep[i-2].transform(t1rep[1]); grep[i] = grep[i-2].transform(grep[1]); hrep[i] = hrep[i-2].transform(hrep[1]); } // now rotate one of the above C3's by 2pi/3 about the zx axis t1rep[35] = t1rep[27].transform(t1so); t1rep[36] = t1rep[28].transform(t1so); grep[35] = grep[27].transform(gso); grep[36] = grep[28].transform(gso); hrep[35] = hrep[27].transform(hso); hrep[36] = hrep[28].transform(hso); // and then rotate those by 2pi/5 about the z axis 4 times for (i=37; i < 45; i++) { t1rep[i] = t1rep[i-2].transform(t1rep[1]); grep[i] = grep[i-2].transform(grep[1]); hrep[i] = hrep[i-2].transform(hrep[1]); } t2rep[25] = t1rep[35]; t2rep[26] = t1rep[36]; for (i=27; i < 35; i++) t2rep[i] = t2rep[i-2].transform(t2rep[1]); t2rep[35] = t1rep[26]; t2rep[36] = t1rep[25]; for (i=37; i < 45; i++) t2rep[i] = t2rep[i-2].transform(t2rep[1]); // // 15 C2's // // first we have a C2 about the y axis t1rep[45][0][0] = -1.0; t1rep[45][1][1] = 1.0; t1rep[45][2][2] = -1.0; t2rep[45] = t1rep[45]; grep[45][0][0] = -1.0; grep[45][1][1] = 1.0; grep[45][2][2] = -1.0; grep[45][3][3] = 1.0; hrep[45][0][0] = 1.0; hrep[45][1][1] = 1.0; hrep[45][2][2] = -1.0; hrep[45][3][3] = -1.0; hrep[45][4][4] = 1.0; // and rotate that by 2pi/5 about the z axis 4 times for (i=46; i < 50; i++) { t1rep[i] = t1rep[i-1].transform(t1rep[1]); t2rep[i] = t2rep[i-1].transform(t2rep[1]); grep[i] = grep[i-1].transform(grep[1]); hrep[i] = hrep[i-1].transform(hrep[1]); } // now take the C2 about the y axis and rotate it by 2pi/3 about the zx axis t1rep[50] = t1rep[45].transform(t1so); grep[50] = grep[45].transform(gso); hrep[50] = hrep[45].transform(hso); // align this c2 along the x axis t1rep[50] = t1rep[50].transform(t1rep[2]).transform(t1rep[2]); grep[50] = grep[50].transform(grep[2]).transform(grep[2]); hrep[50] = hrep[50].transform(hrep[2]).transform(hrep[2]); // and rotate that by 2pi/5 about the z axis 4 times for (i=51; i < 55; i++) { t1rep[i] = t1rep[i-1].transform(t1rep[1]); grep[i] = grep[i-1].transform(grep[1]); hrep[i] = hrep[i-1].transform(hrep[1]); } // finally, take a C2 about the y axis, and rotate it by 2pi/3 about the // xz axis, and align it along the x axis t1rep[55] = t1rep[45].transform(t1rep[35]).transform(t1rep[1]); grep[55] = grep[45].transform(grep[35]).transform(grep[1]); hrep[55] = hrep[45].transform(hrep[35]).transform(hrep[1]); // and then rotate that by 2pi/5 about the z axis 4 times for (i=56; i < 60; i++) { t1rep[i] = t1rep[i-1].transform(t1rep[1]); grep[i] = grep[i-1].transform(grep[1]); hrep[i] = hrep[i-1].transform(hrep[1]); } t2rep[50] = t1rep[55]; t2rep[55] = t1rep[50]; for (i=51; i < 55; i++) { t2rep[i] = t2rep[i-1].transform(t2rep[1]); t2rep[i+5] = t2rep[i+4].transform(t2rep[1]); } } void CharacterTable::i() { int i; IrreducibleRepresentation& ira = gamma_[0]; IrreducibleRepresentation& ir1 = gamma_[1]; IrreducibleRepresentation& ir2 = gamma_[2]; IrreducibleRepresentation& irg = gamma_[3]; IrreducibleRepresentation& irh = gamma_[4]; ira.init(g,1,"A"); ir1.init(g,3,"T1"); ir2.init(g,3,"T2"); irg.init(g,4,"G"); irh.init(g,5,"H"); // i_ops gives us all the symmetry operations we need i_ops(ir1.rep, ir2.rep, irg.rep, irh.rep); ir1.nrot_ = 1; ir1.ntrans_ = 1; for (i=0; i < g; i++) { ira.rep[i][0][0] = 1.0; symop[i] = ir1.rep[i]; } } void CharacterTable::ih() { int i; IrreducibleRepresentation& irag = gamma_[0]; IrreducibleRepresentation& ir1g = gamma_[1]; IrreducibleRepresentation& ir2g = gamma_[2]; IrreducibleRepresentation& irgg = gamma_[3]; IrreducibleRepresentation& irhg = gamma_[4]; IrreducibleRepresentation& irau = gamma_[5]; IrreducibleRepresentation& ir1u = gamma_[6]; IrreducibleRepresentation& ir2u = gamma_[7]; IrreducibleRepresentation& irgu = gamma_[8]; IrreducibleRepresentation& irhu = gamma_[9]; irag.init(g,1,"Ag"); ir1g.init(g,3,"T1g"); ir2g.init(g,3,"T2g"); irgg.init(g,4,"Gg"); irhg.init(g,5,"Hg"); irau.init(g,1,"Au"); ir1u.init(g,3,"T1u"); ir2u.init(g,3,"T2u"); irgu.init(g,4,"Gu"); irhu.init(g,5,"Hu"); // i_ops gives us all the symmetry operations we need i_ops(ir1g.rep, ir2g.rep, irgg.rep, irhg.rep); ir1g.nrot_ = 1; ir1u.ntrans_ = 1; SymRep ti(3), gi(4), hi(5); ti.i(); gi.i(); hi.i(); for (i=0; i < g/2; i++) { irag.rep[i][0][0] = 1.0; irau.rep[i][0][0] = 1.0; irag.rep[i+60][0][0] = 1.0; irau.rep[i+60][0][0] = -1.0; ir1g.rep[i+60] = ir1g.rep[i]; ir2g.rep[i+60] = ir2g.rep[i]; irgg.rep[i+60] = irgg.rep[i]; irhg.rep[i+60] = irhg.rep[i]; ir1u.rep[i] = ir1g.rep[i]; ir2u.rep[i] = ir2g.rep[i]; irgu.rep[i] = irgg.rep[i]; irhu.rep[i] = irhg.rep[i]; ir1u.rep[i+60] = ir1g.rep[i].operate(ti); ir2u.rep[i+60] = ir2g.rep[i].operate(ti); irgu.rep[i+60] = irgg.rep[i].operate(gi); irhu.rep[i+60] = irhg.rep[i].operate(hi); symop[i] = ir1u.rep[i]; symop[i+60] = ir1u.rep[i+60]; } } ///////////////////////////////////////////////////////////////////////////// // Local Variables: // mode: c++ // c-file-style: "ETS" // End: