[0b990d] | 1 | //
|
---|
| 2 | // ico.cc --- implementation of icosahedral operations
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Edward Seidl <seidl@janed.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #include <util/misc/math.h>
|
---|
| 29 | #include <string.h>
|
---|
| 30 |
|
---|
| 31 | #include <math/symmetry/pointgrp.h>
|
---|
| 32 |
|
---|
| 33 | using namespace sc;
|
---|
| 34 |
|
---|
| 35 | // these are the operations which make up T
|
---|
| 36 | static void
|
---|
| 37 | i_ops(SymRep *t1rep, SymRep *t2rep, SymRep *grep, SymRep *hrep)
|
---|
| 38 | {
|
---|
| 39 | int i;
|
---|
| 40 |
|
---|
| 41 | // identity
|
---|
| 42 | t1rep[0].E();
|
---|
| 43 | t2rep[0].E();
|
---|
| 44 | grep[0].E();
|
---|
| 45 | hrep[0].E();
|
---|
| 46 |
|
---|
| 47 | //
|
---|
| 48 | // 12 C5's
|
---|
| 49 | //
|
---|
| 50 | // first the 2 C5's about the z axis
|
---|
| 51 | t1rep[1].rotation(2.0*(double)M_PI/5.0);
|
---|
| 52 | t1rep[2].rotation(8.0*(double)M_PI/5.0);
|
---|
| 53 |
|
---|
| 54 | t2rep[1] = t1rep[1].operate(t1rep[1]);
|
---|
| 55 | t2rep[2] = t1rep[2].operate(t1rep[2]);
|
---|
| 56 |
|
---|
| 57 | grep[1].rotation(2.0*(double)M_PI/5.0);
|
---|
| 58 | grep[2].rotation(8.0*(double)M_PI/5.0);
|
---|
| 59 |
|
---|
| 60 | hrep[1].rotation(2.0*(double)M_PI/5.0);
|
---|
| 61 | hrep[2].rotation(8.0*(double)M_PI/5.0);
|
---|
| 62 |
|
---|
| 63 | // form rotation matrices for the C3 axis about the zx axis (these were
|
---|
| 64 | // taken from turbomole version 2, which claims they were sort of inherited
|
---|
| 65 | // from hondo
|
---|
| 66 | SymRep t1so(3);
|
---|
| 67 | SymRep gso(4);
|
---|
| 68 | SymRep hso(5);
|
---|
| 69 |
|
---|
| 70 | double c2p5 = cos(2.0*(double)M_PI/5.0);
|
---|
| 71 | double s2p5 = sin(2.0*(double)M_PI/5.0);
|
---|
| 72 | double cosd = s2p5/((1.0-c2p5)*sqrt(3.0));
|
---|
| 73 | double cosd2 = cosd*cosd;
|
---|
| 74 | double sind2 = 1.0 - cosd2;
|
---|
| 75 | double sind = sqrt(sind2);
|
---|
| 76 |
|
---|
| 77 | t1so[0][0] = 1.0 - 1.5*cosd2;
|
---|
| 78 | t1so[1][0] = 0.5*sqrt(3.0)*cosd;
|
---|
| 79 | t1so[2][0] = 1.5*cosd*sind;
|
---|
| 80 | t1so[0][1] = -0.5*sqrt(3.0)*cosd;
|
---|
| 81 | t1so[1][1] = -0.5;
|
---|
| 82 | t1so[2][1] = 0.5*sqrt(3.0)*sind;
|
---|
| 83 | t1so[0][2] = 1.5*cosd*sind;
|
---|
| 84 | t1so[1][2] = -0.5*sqrt(3.0)*sind;
|
---|
| 85 | t1so[2][2] = 1.0 - 1.5*sind2;
|
---|
| 86 |
|
---|
| 87 | gso[0][0] = (3.0*sqrt(5.0)+5.0)/20.0;
|
---|
| 88 | gso[0][1] = cosd*sqrt(3.0)*(sqrt(5.0)-1.0)/4.0;
|
---|
| 89 | gso[0][2] = 3.0*sqrt(5.0)/10.0;
|
---|
| 90 | gso[0][3] = -sqrt(5.0-2.0*sqrt(5.0))*sqrt(5.0)/10.0;
|
---|
| 91 | gso[1][0] = -gso[0][1];
|
---|
| 92 | gso[1][1] = (1-sqrt(5.0))/4.0;
|
---|
| 93 | gso[1][2] = cosd*sqrt(3.0)/2.0;
|
---|
| 94 | gso[1][3] = cosd*sqrt(5-2*sqrt(5.0))*sqrt(3.0)/2.0;
|
---|
| 95 | gso[2][0] = gso[0][2];
|
---|
| 96 | gso[2][1] = -gso[1][2];
|
---|
| 97 | gso[2][2] = (5-3*sqrt(5.0))/20.0;
|
---|
| 98 | gso[2][3] = sqrt(5.0-2*sqrt(5.0))*(sqrt(5.0)+5)/20;
|
---|
| 99 | gso[3][0] = -gso[0][3];
|
---|
| 100 | gso[3][1] = gso[1][3];
|
---|
| 101 | gso[3][2] = -gso[2][3];
|
---|
| 102 | gso[3][3] = (sqrt(5.0)+1)/4.0;
|
---|
| 103 |
|
---|
| 104 | hso[0][0] = -1.0/5.0;
|
---|
| 105 | hso[0][4] = sqrt(3.0)*(sqrt(5.0)+1)/10.0;
|
---|
| 106 | hso[0][3] = 3.0*cosd*(3.0*sqrt(5.0)-5.0)/10.0;
|
---|
| 107 | hso[0][2] = 3.0*cosd*(5.0-sqrt(5.0))/10.0;
|
---|
| 108 | hso[0][1] = sqrt(3.0)*(sqrt(5.0)-1.0)/10.0;
|
---|
| 109 | hso[4][0] = hso[0][4];
|
---|
| 110 | hso[4][4] = (2.0*sqrt(5.0)+1.0)/10.0;
|
---|
| 111 | hso[4][3] = sqrt(3.0)*cosd*(5.0-2.0*sqrt(5.0))/10.0;
|
---|
| 112 | hso[4][2] = sqrt(3.0)*cosd*(5.0-3.0*sqrt(5.0))/5.0;
|
---|
| 113 | hso[4][1] = 2.0/5.0;
|
---|
| 114 | hso[3][0] = -hso[0][3];
|
---|
| 115 | hso[3][4] = -hso[4][3];
|
---|
| 116 | hso[3][3] = -1.0/2.0;
|
---|
| 117 | hso[3][2] = 0.0;
|
---|
| 118 | hso[3][1] = sqrt(3.0)*cosd*(5.0-sqrt(5.0))/5.0;
|
---|
| 119 | hso[2][0] = -hso[0][2];
|
---|
| 120 | hso[2][4] = -hso[4][2];
|
---|
| 121 | hso[2][3] = 0.0;
|
---|
| 122 | hso[2][2] = -1.0/2.0;
|
---|
| 123 | hso[2][1] = -sqrt(3.0)*sqrt(5.0)*cosd/10.0;
|
---|
| 124 | hso[1][0] = hso[0][1];
|
---|
| 125 | hso[1][4] = hso[4][1];
|
---|
| 126 | hso[1][3] = -hso[3][1];
|
---|
| 127 | hso[1][2] = -hso[2][1];
|
---|
| 128 | hso[1][1] = (1.0-2.0*sqrt(5.0))/10.0;
|
---|
| 129 |
|
---|
| 130 | // now rotate the first C5's by 2pi/3 degrees about the zx axis (sort of)
|
---|
| 131 | t1rep[3] = t1rep[1].transform(t1so);
|
---|
| 132 | t1rep[4] = t1rep[2].transform(t1so);
|
---|
| 133 |
|
---|
| 134 | grep[3] = grep[1].transform(gso);
|
---|
| 135 | grep[4] = grep[2].transform(gso);
|
---|
| 136 |
|
---|
| 137 | hrep[3] = hrep[1].transform(hso);
|
---|
| 138 | hrep[4] = hrep[2].transform(hso);
|
---|
| 139 |
|
---|
| 140 | // rotate twice to get the first one aligned along the x axis
|
---|
| 141 | t1rep[3] = t1rep[3].transform(t1rep[1]).transform(t1rep[1]);
|
---|
| 142 | t1rep[4] = t1rep[4].transform(t1rep[1]).transform(t1rep[1]);
|
---|
| 143 |
|
---|
| 144 | grep[3] = grep[3].transform(grep[1]).transform(grep[1]);
|
---|
| 145 | grep[4] = grep[4].transform(grep[1]).transform(grep[1]);
|
---|
| 146 |
|
---|
| 147 | hrep[3] = hrep[3].transform(hrep[1]).transform(hrep[1]);
|
---|
| 148 | hrep[4] = hrep[4].transform(hrep[1]).transform(hrep[1]);
|
---|
| 149 |
|
---|
| 150 | t2rep[3] = t1rep[4].operate(t1rep[4]);
|
---|
| 151 | t2rep[4] = t1rep[3].operate(t1rep[3]);
|
---|
| 152 |
|
---|
| 153 | t2rep[13] = t1rep[2];
|
---|
| 154 | t2rep[14] = t1rep[1];
|
---|
| 155 |
|
---|
| 156 | t2rep[15] = t1rep[3];
|
---|
| 157 | t2rep[16] = t1rep[4];
|
---|
| 158 |
|
---|
| 159 | // and then rotate those by 2pi/5 about the z axis 4 times
|
---|
| 160 | for (i=5; i < 13; i++) {
|
---|
| 161 | t1rep[i] = t1rep[i-2].transform(t1rep[1]);
|
---|
| 162 | grep[i] = grep[i-2].transform(grep[1]);
|
---|
| 163 | hrep[i] = hrep[i-2].transform(hrep[1]);
|
---|
| 164 |
|
---|
| 165 | t2rep[i] = t2rep[i-2].transform(t2rep[1]);
|
---|
| 166 | t2rep[i+12] = t2rep[i+10].transform(t2rep[1]);
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | //
|
---|
| 170 | // 12 C5^2's
|
---|
| 171 | //
|
---|
| 172 | // get these from operating on each of the C5's with itself
|
---|
| 173 | for (i=13; i < 25; i++) {
|
---|
| 174 | t1rep[i] = t1rep[i-12].operate(t1rep[i-12]);
|
---|
| 175 | grep[i] = grep[i-12].operate(grep[i-12]);
|
---|
| 176 | hrep[i] = hrep[i-12].operate(hrep[i-12]);
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 | //
|
---|
| 180 | // 20 C3's
|
---|
| 181 | //
|
---|
| 182 | // first we have 2 C3's about the zx axis
|
---|
| 183 | t1rep[25] = t1so;
|
---|
| 184 | t1rep[26] = t1so.operate(t1so);
|
---|
| 185 |
|
---|
| 186 | grep[25] = gso;
|
---|
| 187 | grep[26] = gso.operate(gso);
|
---|
| 188 |
|
---|
| 189 | hrep[25] = hso;
|
---|
| 190 | hrep[26] = hso.operate(hso);
|
---|
| 191 |
|
---|
| 192 | // and then rotate those by 2pi/5 about the z axis 4 times
|
---|
| 193 | for (i=27; i < 35; i++) {
|
---|
| 194 | t1rep[i] = t1rep[i-2].transform(t1rep[1]);
|
---|
| 195 | grep[i] = grep[i-2].transform(grep[1]);
|
---|
| 196 | hrep[i] = hrep[i-2].transform(hrep[1]);
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 | // now rotate one of the above C3's by 2pi/3 about the zx axis
|
---|
| 200 | t1rep[35] = t1rep[27].transform(t1so);
|
---|
| 201 | t1rep[36] = t1rep[28].transform(t1so);
|
---|
| 202 |
|
---|
| 203 | grep[35] = grep[27].transform(gso);
|
---|
| 204 | grep[36] = grep[28].transform(gso);
|
---|
| 205 |
|
---|
| 206 | hrep[35] = hrep[27].transform(hso);
|
---|
| 207 | hrep[36] = hrep[28].transform(hso);
|
---|
| 208 |
|
---|
| 209 | // and then rotate those by 2pi/5 about the z axis 4 times
|
---|
| 210 | for (i=37; i < 45; i++) {
|
---|
| 211 | t1rep[i] = t1rep[i-2].transform(t1rep[1]);
|
---|
| 212 | grep[i] = grep[i-2].transform(grep[1]);
|
---|
| 213 | hrep[i] = hrep[i-2].transform(hrep[1]);
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 | t2rep[25] = t1rep[35];
|
---|
| 217 | t2rep[26] = t1rep[36];
|
---|
| 218 |
|
---|
| 219 | for (i=27; i < 35; i++)
|
---|
| 220 | t2rep[i] = t2rep[i-2].transform(t2rep[1]);
|
---|
| 221 |
|
---|
| 222 | t2rep[35] = t1rep[26];
|
---|
| 223 | t2rep[36] = t1rep[25];
|
---|
| 224 |
|
---|
| 225 | for (i=37; i < 45; i++)
|
---|
| 226 | t2rep[i] = t2rep[i-2].transform(t2rep[1]);
|
---|
| 227 |
|
---|
| 228 | //
|
---|
| 229 | // 15 C2's
|
---|
| 230 | //
|
---|
| 231 | // first we have a C2 about the y axis
|
---|
| 232 | t1rep[45][0][0] = -1.0;
|
---|
| 233 | t1rep[45][1][1] = 1.0;
|
---|
| 234 | t1rep[45][2][2] = -1.0;
|
---|
| 235 |
|
---|
| 236 | t2rep[45] = t1rep[45];
|
---|
| 237 |
|
---|
| 238 | grep[45][0][0] = -1.0;
|
---|
| 239 | grep[45][1][1] = 1.0;
|
---|
| 240 | grep[45][2][2] = -1.0;
|
---|
| 241 | grep[45][3][3] = 1.0;
|
---|
| 242 |
|
---|
| 243 | hrep[45][0][0] = 1.0;
|
---|
| 244 | hrep[45][1][1] = 1.0;
|
---|
| 245 | hrep[45][2][2] = -1.0;
|
---|
| 246 | hrep[45][3][3] = -1.0;
|
---|
| 247 | hrep[45][4][4] = 1.0;
|
---|
| 248 |
|
---|
| 249 | // and rotate that by 2pi/5 about the z axis 4 times
|
---|
| 250 | for (i=46; i < 50; i++) {
|
---|
| 251 | t1rep[i] = t1rep[i-1].transform(t1rep[1]);
|
---|
| 252 | t2rep[i] = t2rep[i-1].transform(t2rep[1]);
|
---|
| 253 | grep[i] = grep[i-1].transform(grep[1]);
|
---|
| 254 | hrep[i] = hrep[i-1].transform(hrep[1]);
|
---|
| 255 | }
|
---|
| 256 |
|
---|
| 257 | // now take the C2 about the y axis and rotate it by 2pi/3 about the zx axis
|
---|
| 258 | t1rep[50] = t1rep[45].transform(t1so);
|
---|
| 259 | grep[50] = grep[45].transform(gso);
|
---|
| 260 | hrep[50] = hrep[45].transform(hso);
|
---|
| 261 |
|
---|
| 262 | // align this c2 along the x axis
|
---|
| 263 | t1rep[50] = t1rep[50].transform(t1rep[2]).transform(t1rep[2]);
|
---|
| 264 | grep[50] = grep[50].transform(grep[2]).transform(grep[2]);
|
---|
| 265 | hrep[50] = hrep[50].transform(hrep[2]).transform(hrep[2]);
|
---|
| 266 |
|
---|
| 267 | // and rotate that by 2pi/5 about the z axis 4 times
|
---|
| 268 | for (i=51; i < 55; i++) {
|
---|
| 269 | t1rep[i] = t1rep[i-1].transform(t1rep[1]);
|
---|
| 270 | grep[i] = grep[i-1].transform(grep[1]);
|
---|
| 271 | hrep[i] = hrep[i-1].transform(hrep[1]);
|
---|
| 272 | }
|
---|
| 273 |
|
---|
| 274 | // finally, take a C2 about the y axis, and rotate it by 2pi/3 about the
|
---|
| 275 | // xz axis, and align it along the x axis
|
---|
| 276 | t1rep[55] = t1rep[45].transform(t1rep[35]).transform(t1rep[1]);
|
---|
| 277 | grep[55] = grep[45].transform(grep[35]).transform(grep[1]);
|
---|
| 278 | hrep[55] = hrep[45].transform(hrep[35]).transform(hrep[1]);
|
---|
| 279 |
|
---|
| 280 | // and then rotate that by 2pi/5 about the z axis 4 times
|
---|
| 281 | for (i=56; i < 60; i++) {
|
---|
| 282 | t1rep[i] = t1rep[i-1].transform(t1rep[1]);
|
---|
| 283 | grep[i] = grep[i-1].transform(grep[1]);
|
---|
| 284 | hrep[i] = hrep[i-1].transform(hrep[1]);
|
---|
| 285 | }
|
---|
| 286 |
|
---|
| 287 | t2rep[50] = t1rep[55];
|
---|
| 288 | t2rep[55] = t1rep[50];
|
---|
| 289 |
|
---|
| 290 | for (i=51; i < 55; i++) {
|
---|
| 291 | t2rep[i] = t2rep[i-1].transform(t2rep[1]);
|
---|
| 292 | t2rep[i+5] = t2rep[i+4].transform(t2rep[1]);
|
---|
| 293 | }
|
---|
| 294 | }
|
---|
| 295 |
|
---|
| 296 | void
|
---|
| 297 | CharacterTable::i()
|
---|
| 298 | {
|
---|
| 299 | int i;
|
---|
| 300 |
|
---|
| 301 | IrreducibleRepresentation& ira = gamma_[0];
|
---|
| 302 | IrreducibleRepresentation& ir1 = gamma_[1];
|
---|
| 303 | IrreducibleRepresentation& ir2 = gamma_[2];
|
---|
| 304 | IrreducibleRepresentation& irg = gamma_[3];
|
---|
| 305 | IrreducibleRepresentation& irh = gamma_[4];
|
---|
| 306 |
|
---|
| 307 | ira.init(g,1,"A");
|
---|
| 308 | ir1.init(g,3,"T1");
|
---|
| 309 | ir2.init(g,3,"T2");
|
---|
| 310 | irg.init(g,4,"G");
|
---|
| 311 | irh.init(g,5,"H");
|
---|
| 312 |
|
---|
| 313 | // i_ops gives us all the symmetry operations we need
|
---|
| 314 | i_ops(ir1.rep, ir2.rep, irg.rep, irh.rep);
|
---|
| 315 |
|
---|
| 316 | ir1.nrot_ = 1;
|
---|
| 317 | ir1.ntrans_ = 1;
|
---|
| 318 |
|
---|
| 319 | for (i=0; i < g; i++) {
|
---|
| 320 | ira.rep[i][0][0] = 1.0;
|
---|
| 321 | symop[i] = ir1.rep[i];
|
---|
| 322 | }
|
---|
| 323 | }
|
---|
| 324 |
|
---|
| 325 |
|
---|
| 326 | void CharacterTable::ih()
|
---|
| 327 | {
|
---|
| 328 | int i;
|
---|
| 329 |
|
---|
| 330 | IrreducibleRepresentation& irag = gamma_[0];
|
---|
| 331 | IrreducibleRepresentation& ir1g = gamma_[1];
|
---|
| 332 | IrreducibleRepresentation& ir2g = gamma_[2];
|
---|
| 333 | IrreducibleRepresentation& irgg = gamma_[3];
|
---|
| 334 | IrreducibleRepresentation& irhg = gamma_[4];
|
---|
| 335 |
|
---|
| 336 | IrreducibleRepresentation& irau = gamma_[5];
|
---|
| 337 | IrreducibleRepresentation& ir1u = gamma_[6];
|
---|
| 338 | IrreducibleRepresentation& ir2u = gamma_[7];
|
---|
| 339 | IrreducibleRepresentation& irgu = gamma_[8];
|
---|
| 340 | IrreducibleRepresentation& irhu = gamma_[9];
|
---|
| 341 |
|
---|
| 342 | irag.init(g,1,"Ag");
|
---|
| 343 | ir1g.init(g,3,"T1g");
|
---|
| 344 | ir2g.init(g,3,"T2g");
|
---|
| 345 | irgg.init(g,4,"Gg");
|
---|
| 346 | irhg.init(g,5,"Hg");
|
---|
| 347 |
|
---|
| 348 | irau.init(g,1,"Au");
|
---|
| 349 | ir1u.init(g,3,"T1u");
|
---|
| 350 | ir2u.init(g,3,"T2u");
|
---|
| 351 | irgu.init(g,4,"Gu");
|
---|
| 352 | irhu.init(g,5,"Hu");
|
---|
| 353 |
|
---|
| 354 | // i_ops gives us all the symmetry operations we need
|
---|
| 355 | i_ops(ir1g.rep, ir2g.rep, irgg.rep, irhg.rep);
|
---|
| 356 |
|
---|
| 357 | ir1g.nrot_ = 1;
|
---|
| 358 | ir1u.ntrans_ = 1;
|
---|
| 359 |
|
---|
| 360 | SymRep ti(3), gi(4), hi(5);
|
---|
| 361 | ti.i();
|
---|
| 362 | gi.i();
|
---|
| 363 | hi.i();
|
---|
| 364 |
|
---|
| 365 | for (i=0; i < g/2; i++) {
|
---|
| 366 | irag.rep[i][0][0] = 1.0;
|
---|
| 367 | irau.rep[i][0][0] = 1.0;
|
---|
| 368 |
|
---|
| 369 | irag.rep[i+60][0][0] = 1.0;
|
---|
| 370 | irau.rep[i+60][0][0] = -1.0;
|
---|
| 371 |
|
---|
| 372 | ir1g.rep[i+60] = ir1g.rep[i];
|
---|
| 373 | ir2g.rep[i+60] = ir2g.rep[i];
|
---|
| 374 | irgg.rep[i+60] = irgg.rep[i];
|
---|
| 375 | irhg.rep[i+60] = irhg.rep[i];
|
---|
| 376 |
|
---|
| 377 | ir1u.rep[i] = ir1g.rep[i];
|
---|
| 378 | ir2u.rep[i] = ir2g.rep[i];
|
---|
| 379 | irgu.rep[i] = irgg.rep[i];
|
---|
| 380 | irhu.rep[i] = irhg.rep[i];
|
---|
| 381 |
|
---|
| 382 | ir1u.rep[i+60] = ir1g.rep[i].operate(ti);
|
---|
| 383 | ir2u.rep[i+60] = ir2g.rep[i].operate(ti);
|
---|
| 384 | irgu.rep[i+60] = irgg.rep[i].operate(gi);
|
---|
| 385 | irhu.rep[i+60] = irhg.rep[i].operate(hi);
|
---|
| 386 |
|
---|
| 387 | symop[i] = ir1u.rep[i];
|
---|
| 388 | symop[i+60] = ir1u.rep[i+60];
|
---|
| 389 | }
|
---|
| 390 | }
|
---|
| 391 |
|
---|
| 392 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 393 |
|
---|
| 394 | // Local Variables:
|
---|
| 395 | // mode: c++
|
---|
| 396 | // c-file-style: "ETS"
|
---|
| 397 | // End:
|
---|