1 | //
|
---|
2 | // vector3.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <iostream>
|
---|
33 | #include <iomanip>
|
---|
34 |
|
---|
35 | #include <math/scmat/matrix.h>
|
---|
36 | #include <math/scmat/vector3.h>
|
---|
37 | #include <math.h>
|
---|
38 |
|
---|
39 | #include <util/misc/formio.h>
|
---|
40 | #include <util/keyval/keyval.h>
|
---|
41 |
|
---|
42 | using namespace std;
|
---|
43 | using namespace sc;
|
---|
44 |
|
---|
45 | namespace sc {
|
---|
46 |
|
---|
47 | ////////////////////////////////////////////////////////////////////////
|
---|
48 | // DVector3
|
---|
49 |
|
---|
50 | SCVector3::SCVector3(const Ref<KeyVal>&keyval)
|
---|
51 | {
|
---|
52 | _v[0] = keyval->doublevalue(0);
|
---|
53 | _v[1] = keyval->doublevalue(1);
|
---|
54 | _v[2] = keyval->doublevalue(2);
|
---|
55 | }
|
---|
56 |
|
---|
57 | SCVector3::SCVector3(const RefSCVector&x)
|
---|
58 | {
|
---|
59 | if (x.dim().n() != 3) {
|
---|
60 | ExEnv::errn() << indent << "SCVector3::SCVector3(RefSCVEctor&): bad length\n";
|
---|
61 | abort();
|
---|
62 | }
|
---|
63 | _v[0] = x.get_element(0);
|
---|
64 | _v[1] = x.get_element(1);
|
---|
65 | _v[2] = x.get_element(2);
|
---|
66 | };
|
---|
67 |
|
---|
68 | SCVector3
|
---|
69 | operator*(double d,const SCVector3& v)
|
---|
70 | {
|
---|
71 | SCVector3 result;
|
---|
72 | for (int i=0; i<3; i++) result[i] = d * v[i];
|
---|
73 | return result;
|
---|
74 | }
|
---|
75 |
|
---|
76 | SCVector3 SCVector3::operator*(double d) const
|
---|
77 | {
|
---|
78 | return d*(*this);
|
---|
79 | }
|
---|
80 |
|
---|
81 | SCVector3 SCVector3::cross(const SCVector3&v) const
|
---|
82 | {
|
---|
83 | SCVector3 result(_v[1]*v._v[2]-_v[2]*v._v[1],
|
---|
84 | _v[2]*v._v[0]-_v[0]*v._v[2],
|
---|
85 | _v[0]*v._v[1]-_v[1]*v._v[0]);
|
---|
86 | return result;
|
---|
87 | }
|
---|
88 |
|
---|
89 | SCVector3 SCVector3::perp_unit(const SCVector3&v) const
|
---|
90 | {
|
---|
91 | // try the cross product
|
---|
92 | SCVector3 result(_v[1]*v._v[2]-_v[2]*v._v[1],
|
---|
93 | _v[2]*v._v[0]-_v[0]*v._v[2],
|
---|
94 | _v[0]*v._v[1]-_v[1]*v._v[0]);
|
---|
95 | double resultdotresult = result.dot(result);
|
---|
96 | if (resultdotresult < 1.e-16) {
|
---|
97 | // the cross product is too small to normalize
|
---|
98 |
|
---|
99 | // find the largest of this and v
|
---|
100 | double dotprodt = this->dot(*this);
|
---|
101 | double dotprodv = v.dot(v);
|
---|
102 | const SCVector3 *d;
|
---|
103 | double dotprodd;
|
---|
104 | if (dotprodt < dotprodv) {
|
---|
105 | d = &v;
|
---|
106 | dotprodd = dotprodv;
|
---|
107 | }
|
---|
108 | else {
|
---|
109 | d = this;
|
---|
110 | dotprodd = dotprodt;
|
---|
111 | }
|
---|
112 | // see if d is big enough
|
---|
113 | if (dotprodd < 1.e-16) {
|
---|
114 | // choose an arbitrary vector, since the biggest vector is small
|
---|
115 | result[0] = 1.0;
|
---|
116 | result[1] = 0.0;
|
---|
117 | result[2] = 0.0;
|
---|
118 | return result;
|
---|
119 | }
|
---|
120 | else {
|
---|
121 | // choose a vector perpendicular to d
|
---|
122 | // choose it in one of the planes xy, xz, yz
|
---|
123 | // choose the plane to be that which contains the two largest
|
---|
124 | // components of d
|
---|
125 | double absd[3];
|
---|
126 | absd[0] = fabs(d->_v[0]);
|
---|
127 | absd[1] = fabs(d->_v[1]);
|
---|
128 | absd[2] = fabs(d->_v[2]);
|
---|
129 | int axis0, axis1;
|
---|
130 | if (absd[0] < absd[1]) {
|
---|
131 | axis0 = 1;
|
---|
132 | if (absd[0] < absd[2]) {
|
---|
133 | axis1 = 2;
|
---|
134 | }
|
---|
135 | else {
|
---|
136 | axis1 = 0;
|
---|
137 | }
|
---|
138 | }
|
---|
139 | else {
|
---|
140 | axis0 = 0;
|
---|
141 | if (absd[1] < absd[2]) {
|
---|
142 | axis1 = 2;
|
---|
143 | }
|
---|
144 | else {
|
---|
145 | axis1 = 1;
|
---|
146 | }
|
---|
147 | }
|
---|
148 | result[0] = 0.0;
|
---|
149 | result[1] = 0.0;
|
---|
150 | result[2] = 0.0;
|
---|
151 | // do the pi/2 rotation in the plane
|
---|
152 | result[axis0] = d->_v[axis1];
|
---|
153 | result[axis1] = -d->_v[axis0];
|
---|
154 | }
|
---|
155 | result.normalize();
|
---|
156 | return result;
|
---|
157 | }
|
---|
158 | else {
|
---|
159 | // normalize the cross product and return the result
|
---|
160 | result *= 1.0/sqrt(resultdotresult);
|
---|
161 | return result;
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | void SCVector3::rotate(double theta,SCVector3&axis)
|
---|
166 | {
|
---|
167 | SCVector3 result;
|
---|
168 | SCVector3 unitaxis = axis;
|
---|
169 | unitaxis.normalize();
|
---|
170 |
|
---|
171 | // split this into parallel and perpendicular components along axis
|
---|
172 | SCVector3 parallel = axis * (this->dot(axis) / axis.dot(axis));
|
---|
173 | SCVector3 perpendicular = (*this) - parallel;
|
---|
174 |
|
---|
175 | // form a unit vector perpendicular to parallel and perpendicular
|
---|
176 | SCVector3 third_axis = axis.perp_unit(perpendicular);
|
---|
177 | third_axis = third_axis * perpendicular.norm();
|
---|
178 |
|
---|
179 | result = parallel + cos(theta) * perpendicular + sin(theta) * third_axis;
|
---|
180 | (*this) = result;
|
---|
181 | }
|
---|
182 |
|
---|
183 | void SCVector3::normalize()
|
---|
184 | {
|
---|
185 | double tmp=0.0;
|
---|
186 | int i;
|
---|
187 | for (i=0; i<3; i++) tmp += _v[i]*_v[i];
|
---|
188 | tmp = 1.0/sqrt(tmp);
|
---|
189 | for (i=0; i<3; i++) _v[i] *= tmp;
|
---|
190 | }
|
---|
191 |
|
---|
192 | double
|
---|
193 | SCVector3::maxabs() const
|
---|
194 | {
|
---|
195 | double result = fabs(_v[0]);
|
---|
196 | double tmp;
|
---|
197 | if ((tmp = fabs(_v[1])) > result) result = tmp;
|
---|
198 | if ((tmp = fabs(_v[2])) > result) result = tmp;
|
---|
199 | return result;
|
---|
200 | }
|
---|
201 |
|
---|
202 | void
|
---|
203 | SCVector3::spherical_to_cartesian(SCVector3&cart) const
|
---|
204 | {
|
---|
205 | cart.spherical_coord(theta(), phi(), r());
|
---|
206 | }
|
---|
207 |
|
---|
208 | void SCVector3::print(ostream& os) const
|
---|
209 | {
|
---|
210 | os << indent << "{"
|
---|
211 | << setw(8) << setprecision(5) << x() << " "
|
---|
212 | << setw(8) << setprecision(5) << y() << " "
|
---|
213 | << setw(8) << setprecision(5) << z() << "}"
|
---|
214 | << endl;
|
---|
215 | }
|
---|
216 |
|
---|
217 | ostream &
|
---|
218 | operator<<(ostream&o, const SCVector3 &v)
|
---|
219 | {
|
---|
220 | o << scprintf("{% 8.5f % 8.5f % 8.5f}", v.x(), v.y(), v.z());
|
---|
221 | return o;
|
---|
222 | }
|
---|
223 |
|
---|
224 | }
|
---|
225 |
|
---|
226 | /////////////////////////////////////////////////////////////////////////////
|
---|
227 |
|
---|
228 | // Local Variables:
|
---|
229 | // mode: c++
|
---|
230 | // c-file-style: "CLJ"
|
---|
231 | // End:
|
---|