1 | * Modified by Curtis Janssen (cljanss@ca.sandia.gov) to update only a
|
---|
2 | * portion of the eigenvector matrix.
|
---|
3 | SUBROUTINE PDSTEQR(N, D, E, Z, LDZ, nz, WORK, INFO )
|
---|
4 | *
|
---|
5 | * -- LAPACK routine (version 3.0) --
|
---|
6 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
7 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
8 | * September 30, 1994
|
---|
9 | *
|
---|
10 | * .. Scalar Arguments ..
|
---|
11 | INTEGER INFO, LDZ, N
|
---|
12 | integer nz
|
---|
13 | * ..
|
---|
14 | * .. Array Arguments ..
|
---|
15 | DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
|
---|
16 | * ..
|
---|
17 | *
|
---|
18 | * Purpose
|
---|
19 | * =======
|
---|
20 | *
|
---|
21 | * DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
|
---|
22 | * symmetric tridiagonal matrix using the implicit QL or QR method.
|
---|
23 | * The eigenvectors of a full or band symmetric matrix can also be found
|
---|
24 | * if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
|
---|
25 | * tridiagonal form.
|
---|
26 | *
|
---|
27 | * Arguments
|
---|
28 | * =========
|
---|
29 | *
|
---|
30 | * COMPZ (input) CHARACTER*1
|
---|
31 | * = 'N': Compute eigenvalues only.
|
---|
32 | * = 'V': Compute eigenvalues and eigenvectors of the original
|
---|
33 | * symmetric matrix. On entry, Z must contain the
|
---|
34 | * orthogonal matrix used to reduce the original matrix
|
---|
35 | * to tridiagonal form.
|
---|
36 | * = 'I': Compute eigenvalues and eigenvectors of the
|
---|
37 | * tridiagonal matrix. Z is initialized to the identity
|
---|
38 | * matrix.
|
---|
39 | *
|
---|
40 | * N (input) INTEGER
|
---|
41 | * The order of the matrix. N >= 0.
|
---|
42 | *
|
---|
43 | * D (input/output) DOUBLE PRECISION array, dimension (N)
|
---|
44 | * On entry, the diagonal elements of the tridiagonal matrix.
|
---|
45 | * On exit, if INFO = 0, the eigenvalues in ascending order.
|
---|
46 | *
|
---|
47 | * E (input/output) DOUBLE PRECISION array, dimension (N-1)
|
---|
48 | * On entry, the (n-1) subdiagonal elements of the tridiagonal
|
---|
49 | * matrix.
|
---|
50 | * On exit, E has been destroyed.
|
---|
51 | *
|
---|
52 | * Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
|
---|
53 | * On entry, if COMPZ = 'V', then Z contains the orthogonal
|
---|
54 | * matrix used in the reduction to tridiagonal form.
|
---|
55 | * On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
|
---|
56 | * orthonormal eigenvectors of the original symmetric matrix,
|
---|
57 | * and if COMPZ = 'I', Z contains the orthonormal eigenvectors
|
---|
58 | * of the symmetric tridiagonal matrix.
|
---|
59 | * If COMPZ = 'N', then Z is not referenced.
|
---|
60 | *
|
---|
61 | * LDZ (input) INTEGER
|
---|
62 | * The leading dimension of the array Z. LDZ >= 1, and if
|
---|
63 | * eigenvectors are desired, then LDZ >= max(1,N).
|
---|
64 | *
|
---|
65 | * WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
|
---|
66 | * If COMPZ = 'N', then WORK is not referenced.
|
---|
67 | *
|
---|
68 | * INFO (output) INTEGER
|
---|
69 | * = 0: successful exit
|
---|
70 | * < 0: if INFO = -i, the i-th argument had an illegal value
|
---|
71 | * > 0: the algorithm has failed to find all the eigenvalues in
|
---|
72 | * a total of 30*N iterations; if INFO = i, then i
|
---|
73 | * elements of E have not converged to zero; on exit, D
|
---|
74 | * and E contain the elements of a symmetric tridiagonal
|
---|
75 | * matrix which is orthogonally similar to the original
|
---|
76 | * matrix.
|
---|
77 | *
|
---|
78 | * =====================================================================
|
---|
79 | *
|
---|
80 | * .. Parameters ..
|
---|
81 | DOUBLE PRECISION ZERO, ONE, TWO, THREE
|
---|
82 | PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
|
---|
83 | $ THREE = 3.0D0 )
|
---|
84 | INTEGER MAXIT
|
---|
85 | PARAMETER ( MAXIT = 30 )
|
---|
86 | * ..
|
---|
87 | * .. Local Scalars ..
|
---|
88 | INTEGER I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND,
|
---|
89 | $ LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1,
|
---|
90 | $ NM1, NMAXIT
|
---|
91 | DOUBLE PRECISION ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2,
|
---|
92 | $ S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
|
---|
93 | * ..
|
---|
94 | * .. External Functions ..
|
---|
95 | LOGICAL PLSAME
|
---|
96 | DOUBLE PRECISION PDLAMCH, PDLANST, PDLAPY2
|
---|
97 | EXTERNAL PLSAME, PDLAMCH, PDLANST, PDLAPY2
|
---|
98 | * ..
|
---|
99 | * .. External Subroutines ..
|
---|
100 | EXTERNAL PDLAE2,PDLAEV2,PDLARTG,PDLASCL,PDLASET,PDLASR,
|
---|
101 | $ PDLASRT, DSWAP, PXERBLA
|
---|
102 | * ..
|
---|
103 | * .. Intrinsic Functions ..
|
---|
104 | INTRINSIC ABS, MAX, SIGN, SQRT
|
---|
105 | * ..
|
---|
106 | * .. Executable Statements ..
|
---|
107 | *
|
---|
108 | * Test the input parameters.
|
---|
109 | *
|
---|
110 | INFO = 0
|
---|
111 | *
|
---|
112 | ICOMPZ = 1
|
---|
113 | IF( ICOMPZ.LT.0 ) THEN
|
---|
114 | INFO = -1
|
---|
115 | ELSE IF( N.LT.0 ) THEN
|
---|
116 | INFO = -2
|
---|
117 | ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
|
---|
118 | $ nz ) ) ) THEN
|
---|
119 | INFO = -6
|
---|
120 | END IF
|
---|
121 | IF( INFO.NE.0 ) THEN
|
---|
122 | CALL PXERBLA( 'DSTEQR', -INFO )
|
---|
123 | RETURN
|
---|
124 | END IF
|
---|
125 | *
|
---|
126 | * Quick return if possible
|
---|
127 | *
|
---|
128 | IF( N.EQ.0 )
|
---|
129 | $ RETURN
|
---|
130 | *
|
---|
131 | IF( N.EQ.1 ) THEN
|
---|
132 | RETURN
|
---|
133 | END IF
|
---|
134 | *
|
---|
135 | * Determine the unit roundoff and over/underflow thresholds.
|
---|
136 | *
|
---|
137 | EPS = PDLAMCH( 'E' )
|
---|
138 | EPS2 = EPS**2
|
---|
139 | SAFMIN = PDLAMCH( 'S' )
|
---|
140 | SAFMAX = ONE / SAFMIN
|
---|
141 | SSFMAX = SQRT( SAFMAX ) / THREE
|
---|
142 | SSFMIN = SQRT( SAFMIN ) / EPS2
|
---|
143 | *
|
---|
144 | * Compute the eigenvalues and eigenvectors of the tridiagonal
|
---|
145 | * matrix.
|
---|
146 | *
|
---|
147 | IF( ICOMPZ.EQ.2 )
|
---|
148 | $ CALL PDLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
|
---|
149 | *
|
---|
150 | NMAXIT = N*MAXIT
|
---|
151 | JTOT = 0
|
---|
152 | *
|
---|
153 | * Determine where the matrix splits and choose QL or QR iteration
|
---|
154 | * for each block, according to whether top or bottom diagonal
|
---|
155 | * element is smaller.
|
---|
156 | *
|
---|
157 | L1 = 1
|
---|
158 | NM1 = N - 1
|
---|
159 | *
|
---|
160 | 10 CONTINUE
|
---|
161 | IF( L1.GT.N )
|
---|
162 | $ GO TO 160
|
---|
163 | IF( L1.GT.1 )
|
---|
164 | $ E( L1-1 ) = ZERO
|
---|
165 | IF( L1.LE.NM1 ) THEN
|
---|
166 | DO 20 M = L1, NM1
|
---|
167 | TST = ABS( E( M ) )
|
---|
168 | IF( TST.EQ.ZERO )
|
---|
169 | $ GO TO 30
|
---|
170 | IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
|
---|
171 | $ 1 ) ) ) )*EPS ) THEN
|
---|
172 | E( M ) = ZERO
|
---|
173 | GO TO 30
|
---|
174 | END IF
|
---|
175 | 20 CONTINUE
|
---|
176 | END IF
|
---|
177 | M = N
|
---|
178 | *
|
---|
179 | 30 CONTINUE
|
---|
180 | L = L1
|
---|
181 | LSV = L
|
---|
182 | LEND = M
|
---|
183 | LENDSV = LEND
|
---|
184 | L1 = M + 1
|
---|
185 | IF( LEND.EQ.L )
|
---|
186 | $ GO TO 10
|
---|
187 | *
|
---|
188 | * Scale submatrix in rows and columns L to LEND
|
---|
189 | *
|
---|
190 | ANORM = PDLANST( 'I', LEND-L+1, D( L ), E( L ) )
|
---|
191 | ISCALE = 0
|
---|
192 | IF( ANORM.EQ.ZERO )
|
---|
193 | $ GO TO 10
|
---|
194 | IF( ANORM.GT.SSFMAX ) THEN
|
---|
195 | ISCALE = 1
|
---|
196 | CALL PDLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
|
---|
197 | $ INFO )
|
---|
198 | CALL PDLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
|
---|
199 | $ INFO )
|
---|
200 | ELSE IF( ANORM.LT.SSFMIN ) THEN
|
---|
201 | ISCALE = 2
|
---|
202 | CALL PDLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
|
---|
203 | $ INFO )
|
---|
204 | CALL PDLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
|
---|
205 | $ INFO )
|
---|
206 | END IF
|
---|
207 | *
|
---|
208 | * Choose between QL and QR iteration
|
---|
209 | *
|
---|
210 | IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
|
---|
211 | LEND = LSV
|
---|
212 | L = LENDSV
|
---|
213 | END IF
|
---|
214 | *
|
---|
215 | IF( LEND.GT.L ) THEN
|
---|
216 | *
|
---|
217 | * QL Iteration
|
---|
218 | *
|
---|
219 | * Look for small subdiagonal element.
|
---|
220 | *
|
---|
221 | 40 CONTINUE
|
---|
222 | IF( L.NE.LEND ) THEN
|
---|
223 | LENDM1 = LEND - 1
|
---|
224 | DO 50 M = L, LENDM1
|
---|
225 | TST = ABS( E( M ) )**2
|
---|
226 | IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
|
---|
227 | $ SAFMIN )GO TO 60
|
---|
228 | 50 CONTINUE
|
---|
229 | END IF
|
---|
230 | *
|
---|
231 | M = LEND
|
---|
232 | *
|
---|
233 | 60 CONTINUE
|
---|
234 | IF( M.LT.LEND )
|
---|
235 | $ E( M ) = ZERO
|
---|
236 | P = D( L )
|
---|
237 | IF( M.EQ.L )
|
---|
238 | $ GO TO 80
|
---|
239 | *
|
---|
240 | * If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
|
---|
241 | * to compute its eigensystem.
|
---|
242 | *
|
---|
243 | IF( M.EQ.L+1 ) THEN
|
---|
244 | IF( ICOMPZ.GT.0 ) THEN
|
---|
245 | CALL PDLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
|
---|
246 | WORK( L ) = C
|
---|
247 | WORK( N-1+L ) = S
|
---|
248 | CALL PDLASR( 'R', 'V', 'B', nz, 2, WORK( L ),
|
---|
249 | $ WORK( N-1+L ), Z( 1, L ), nz )
|
---|
250 | ELSE
|
---|
251 | CALL PDLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
|
---|
252 | END IF
|
---|
253 | D( L ) = RT1
|
---|
254 | D( L+1 ) = RT2
|
---|
255 | E( L ) = ZERO
|
---|
256 | L = L + 2
|
---|
257 | IF( L.LE.LEND )
|
---|
258 | $ GO TO 40
|
---|
259 | GO TO 140
|
---|
260 | END IF
|
---|
261 | *
|
---|
262 | IF( JTOT.EQ.NMAXIT )
|
---|
263 | $ GO TO 140
|
---|
264 | JTOT = JTOT + 1
|
---|
265 | *
|
---|
266 | * Form shift.
|
---|
267 | *
|
---|
268 | G = ( D( L+1 )-P ) / ( TWO*E( L ) )
|
---|
269 | R = PDLAPY2( G, ONE )
|
---|
270 | G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
|
---|
271 | *
|
---|
272 | S = ONE
|
---|
273 | C = ONE
|
---|
274 | P = ZERO
|
---|
275 | *
|
---|
276 | * Inner loop
|
---|
277 | *
|
---|
278 | MM1 = M - 1
|
---|
279 | DO 70 I = MM1, L, -1
|
---|
280 | F = S*E( I )
|
---|
281 | B = C*E( I )
|
---|
282 | CALL PDLARTG( G, F, C, S, R )
|
---|
283 | IF( I.NE.M-1 )
|
---|
284 | $ E( I+1 ) = R
|
---|
285 | G = D( I+1 ) - P
|
---|
286 | R = ( D( I )-G )*S + TWO*C*B
|
---|
287 | P = S*R
|
---|
288 | D( I+1 ) = G + P
|
---|
289 | G = C*R - B
|
---|
290 | *
|
---|
291 | * If eigenvectors are desired, then save rotations.
|
---|
292 | *
|
---|
293 | IF( ICOMPZ.GT.0 ) THEN
|
---|
294 | WORK( I ) = C
|
---|
295 | WORK( N-1+I ) = -S
|
---|
296 | END IF
|
---|
297 | *
|
---|
298 | 70 CONTINUE
|
---|
299 | *
|
---|
300 | * If eigenvectors are desired, then apply saved rotations.
|
---|
301 | *
|
---|
302 | IF( ICOMPZ.GT.0 ) THEN
|
---|
303 | MM = M - L + 1
|
---|
304 | CALL PDLASR('R', 'V', 'B', nz, MM, WORK( L ), WORK( N-1+L ),
|
---|
305 | $ Z( 1, L ), nz )
|
---|
306 | END IF
|
---|
307 | *
|
---|
308 | D( L ) = D( L ) - P
|
---|
309 | E( L ) = G
|
---|
310 | GO TO 40
|
---|
311 | *
|
---|
312 | * Eigenvalue found.
|
---|
313 | *
|
---|
314 | 80 CONTINUE
|
---|
315 | D( L ) = P
|
---|
316 | *
|
---|
317 | L = L + 1
|
---|
318 | IF( L.LE.LEND )
|
---|
319 | $ GO TO 40
|
---|
320 | GO TO 140
|
---|
321 | *
|
---|
322 | ELSE
|
---|
323 | *
|
---|
324 | * QR Iteration
|
---|
325 | *
|
---|
326 | * Look for small superdiagonal element.
|
---|
327 | *
|
---|
328 | 90 CONTINUE
|
---|
329 | IF( L.NE.LEND ) THEN
|
---|
330 | LENDP1 = LEND + 1
|
---|
331 | DO 100 M = L, LENDP1, -1
|
---|
332 | TST = ABS( E( M-1 ) )**2
|
---|
333 | IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
|
---|
334 | $ SAFMIN )GO TO 110
|
---|
335 | 100 CONTINUE
|
---|
336 | END IF
|
---|
337 | *
|
---|
338 | M = LEND
|
---|
339 | *
|
---|
340 | 110 CONTINUE
|
---|
341 | IF( M.GT.LEND )
|
---|
342 | $ E( M-1 ) = ZERO
|
---|
343 | P = D( L )
|
---|
344 | IF( M.EQ.L )
|
---|
345 | $ GO TO 130
|
---|
346 | *
|
---|
347 | * If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
|
---|
348 | * to compute its eigensystem.
|
---|
349 | *
|
---|
350 | IF( M.EQ.L-1 ) THEN
|
---|
351 | IF( ICOMPZ.GT.0 ) THEN
|
---|
352 | CALL PDLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C,S)
|
---|
353 | WORK( M ) = C
|
---|
354 | WORK( N-1+M ) = S
|
---|
355 | CALL PDLASR( 'R', 'V', 'F', nz, 2, WORK( M ),
|
---|
356 | $ WORK( N-1+M ), Z( 1, L-1 ), nz )
|
---|
357 | ELSE
|
---|
358 | CALL PDLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
|
---|
359 | END IF
|
---|
360 | D( L-1 ) = RT1
|
---|
361 | D( L ) = RT2
|
---|
362 | E( L-1 ) = ZERO
|
---|
363 | L = L - 2
|
---|
364 | IF( L.GE.LEND )
|
---|
365 | $ GO TO 90
|
---|
366 | GO TO 140
|
---|
367 | END IF
|
---|
368 | *
|
---|
369 | IF( JTOT.EQ.NMAXIT )
|
---|
370 | $ GO TO 140
|
---|
371 | JTOT = JTOT + 1
|
---|
372 | *
|
---|
373 | * Form shift.
|
---|
374 | *
|
---|
375 | G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
|
---|
376 | R = PDLAPY2( G, ONE )
|
---|
377 | G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
|
---|
378 | *
|
---|
379 | S = ONE
|
---|
380 | C = ONE
|
---|
381 | P = ZERO
|
---|
382 | *
|
---|
383 | * Inner loop
|
---|
384 | *
|
---|
385 | LM1 = L - 1
|
---|
386 | DO 120 I = M, LM1
|
---|
387 | F = S*E( I )
|
---|
388 | B = C*E( I )
|
---|
389 | CALL PDLARTG( G, F, C, S, R )
|
---|
390 | IF( I.NE.M )
|
---|
391 | $ E( I-1 ) = R
|
---|
392 | G = D( I ) - P
|
---|
393 | R = ( D( I+1 )-G )*S + TWO*C*B
|
---|
394 | P = S*R
|
---|
395 | D( I ) = G + P
|
---|
396 | G = C*R - B
|
---|
397 | *
|
---|
398 | * If eigenvectors are desired, then save rotations.
|
---|
399 | *
|
---|
400 | IF( ICOMPZ.GT.0 ) THEN
|
---|
401 | WORK( I ) = C
|
---|
402 | WORK( N-1+I ) = S
|
---|
403 | END IF
|
---|
404 | *
|
---|
405 | 120 CONTINUE
|
---|
406 | *
|
---|
407 | * If eigenvectors are desired, then apply saved rotations.
|
---|
408 | *
|
---|
409 | IF( ICOMPZ.GT.0 ) THEN
|
---|
410 | MM = L - M + 1
|
---|
411 | CALL PDLASR('R', 'V', 'F', nz, MM, WORK( M ), WORK( N-1+M ),
|
---|
412 | $ Z( 1, M ), nz )
|
---|
413 | END IF
|
---|
414 | *
|
---|
415 | D( L ) = D( L ) - P
|
---|
416 | E( LM1 ) = G
|
---|
417 | GO TO 90
|
---|
418 | *
|
---|
419 | * Eigenvalue found.
|
---|
420 | *
|
---|
421 | 130 CONTINUE
|
---|
422 | D( L ) = P
|
---|
423 | *
|
---|
424 | L = L - 1
|
---|
425 | IF( L.GE.LEND )
|
---|
426 | $ GO TO 90
|
---|
427 | GO TO 140
|
---|
428 | *
|
---|
429 | END IF
|
---|
430 | *
|
---|
431 | * Undo scaling if necessary
|
---|
432 | *
|
---|
433 | 140 CONTINUE
|
---|
434 | IF( ISCALE.EQ.1 ) THEN
|
---|
435 | CALL PDLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
|
---|
436 | $ D( LSV ), N, INFO )
|
---|
437 | CALL PDLASCL('G',0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
|
---|
438 | $ N, INFO )
|
---|
439 | ELSE IF( ISCALE.EQ.2 ) THEN
|
---|
440 | CALL PDLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
|
---|
441 | $ D( LSV ), N, INFO )
|
---|
442 | CALL PDLASCL ('G',0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
|
---|
443 | $ N, INFO )
|
---|
444 | END IF
|
---|
445 | *
|
---|
446 | * Check for no convergence to an eigenvalue after a total
|
---|
447 | * of N*MAXIT iterations.
|
---|
448 | *
|
---|
449 | IF( JTOT.LT.NMAXIT )
|
---|
450 | $ GO TO 10
|
---|
451 | DO 150 I = 1, N - 1
|
---|
452 | IF( E( I ).NE.ZERO )
|
---|
453 | $ INFO = INFO + 1
|
---|
454 | 150 CONTINUE
|
---|
455 | GO TO 190
|
---|
456 | *
|
---|
457 | * Order eigenvalues and eigenvectors.
|
---|
458 | *
|
---|
459 | 160 CONTINUE
|
---|
460 | IF( ICOMPZ.EQ.0 ) THEN
|
---|
461 | *
|
---|
462 | * Use Quick Sort
|
---|
463 | *
|
---|
464 | CALL PDLASRT( 'I', N, D, INFO )
|
---|
465 | *
|
---|
466 | ELSE
|
---|
467 | *
|
---|
468 | * Use Selection Sort to minimize swaps of eigenvectors
|
---|
469 | *
|
---|
470 | DO 180 II = 2, N
|
---|
471 | I = II - 1
|
---|
472 | K = I
|
---|
473 | P = D( I )
|
---|
474 | DO 170 J = II, N
|
---|
475 | IF( D( J ).LT.P ) THEN
|
---|
476 | K = J
|
---|
477 | P = D( J )
|
---|
478 | END IF
|
---|
479 | 170 CONTINUE
|
---|
480 | IF( K.NE.I ) THEN
|
---|
481 | D( K ) = D( I )
|
---|
482 | D( I ) = P
|
---|
483 | CALL DSWAP( nz, Z( 1, I ), 1, Z( 1, K ), 1 )
|
---|
484 | END IF
|
---|
485 | 180 CONTINUE
|
---|
486 | END IF
|
---|
487 | *
|
---|
488 | 190 CONTINUE
|
---|
489 | RETURN
|
---|
490 | *
|
---|
491 | * End of DSTEQR
|
---|
492 | *
|
---|
493 | END
|
---|
494 |
|
---|
495 | * Auxiliary routines are not provided with all commerical lapacks,
|
---|
496 | * so a local copy for use by PDSTEQR is provided here.
|
---|
497 | SUBROUTINE PDLAE2( A, B, C, RT1, RT2 )
|
---|
498 | *
|
---|
499 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
500 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
501 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
502 | * October 31, 1992
|
---|
503 | *
|
---|
504 | * .. Scalar Arguments ..
|
---|
505 | DOUBLE PRECISION A, B, C, RT1, RT2
|
---|
506 | * ..
|
---|
507 | *
|
---|
508 | * Purpose
|
---|
509 | * =======
|
---|
510 | *
|
---|
511 | * DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix
|
---|
512 | * [ A B ]
|
---|
513 | * [ B C ].
|
---|
514 | * On return, RT1 is the eigenvalue of larger absolute value, and RT2
|
---|
515 | * is the eigenvalue of smaller absolute value.
|
---|
516 | *
|
---|
517 | * Arguments
|
---|
518 | * =========
|
---|
519 | *
|
---|
520 | * A (input) DOUBLE PRECISION
|
---|
521 | * The (1,1) element of the 2-by-2 matrix.
|
---|
522 | *
|
---|
523 | * B (input) DOUBLE PRECISION
|
---|
524 | * The (1,2) and (2,1) elements of the 2-by-2 matrix.
|
---|
525 | *
|
---|
526 | * C (input) DOUBLE PRECISION
|
---|
527 | * The (2,2) element of the 2-by-2 matrix.
|
---|
528 | *
|
---|
529 | * RT1 (output) DOUBLE PRECISION
|
---|
530 | * The eigenvalue of larger absolute value.
|
---|
531 | *
|
---|
532 | * RT2 (output) DOUBLE PRECISION
|
---|
533 | * The eigenvalue of smaller absolute value.
|
---|
534 | *
|
---|
535 | * Further Details
|
---|
536 | * ===============
|
---|
537 | *
|
---|
538 | * RT1 is accurate to a few ulps barring over/underflow.
|
---|
539 | *
|
---|
540 | * RT2 may be inaccurate if there is massive cancellation in the
|
---|
541 | * determinant A*C-B*B; higher precision or correctly rounded or
|
---|
542 | * correctly truncated arithmetic would be needed to compute RT2
|
---|
543 | * accurately in all cases.
|
---|
544 | *
|
---|
545 | * Overflow is possible only if RT1 is within a factor of 5 of overflow.
|
---|
546 | * Underflow is harmless if the input data is 0 or exceeds
|
---|
547 | * underflow_threshold / macheps.
|
---|
548 | *
|
---|
549 | * =====================================================================
|
---|
550 | *
|
---|
551 | * .. Parameters ..
|
---|
552 | DOUBLE PRECISION ONE
|
---|
553 | PARAMETER ( ONE = 1.0D0 )
|
---|
554 | DOUBLE PRECISION TWO
|
---|
555 | PARAMETER ( TWO = 2.0D0 )
|
---|
556 | DOUBLE PRECISION ZERO
|
---|
557 | PARAMETER ( ZERO = 0.0D0 )
|
---|
558 | DOUBLE PRECISION HALF
|
---|
559 | PARAMETER ( HALF = 0.5D0 )
|
---|
560 | * ..
|
---|
561 | * .. Local Scalars ..
|
---|
562 | DOUBLE PRECISION AB, ACMN, ACMX, ADF, DF, RT, SM, TB
|
---|
563 | * ..
|
---|
564 | * .. Intrinsic Functions ..
|
---|
565 | INTRINSIC ABS, SQRT
|
---|
566 | * ..
|
---|
567 | * .. Executable Statements ..
|
---|
568 | *
|
---|
569 | * Compute the eigenvalues
|
---|
570 | *
|
---|
571 | SM = A + C
|
---|
572 | DF = A - C
|
---|
573 | ADF = ABS( DF )
|
---|
574 | TB = B + B
|
---|
575 | AB = ABS( TB )
|
---|
576 | IF( ABS( A ).GT.ABS( C ) ) THEN
|
---|
577 | ACMX = A
|
---|
578 | ACMN = C
|
---|
579 | ELSE
|
---|
580 | ACMX = C
|
---|
581 | ACMN = A
|
---|
582 | END IF
|
---|
583 | IF( ADF.GT.AB ) THEN
|
---|
584 | RT = ADF*SQRT( ONE+( AB / ADF )**2 )
|
---|
585 | ELSE IF( ADF.LT.AB ) THEN
|
---|
586 | RT = AB*SQRT( ONE+( ADF / AB )**2 )
|
---|
587 | ELSE
|
---|
588 | *
|
---|
589 | * Includes case AB=ADF=0
|
---|
590 | *
|
---|
591 | RT = AB*SQRT( TWO )
|
---|
592 | END IF
|
---|
593 | IF( SM.LT.ZERO ) THEN
|
---|
594 | RT1 = HALF*( SM-RT )
|
---|
595 | *
|
---|
596 | * Order of execution important.
|
---|
597 | * To get fully accurate smaller eigenvalue,
|
---|
598 | * next line needs to be executed in higher precision.
|
---|
599 | *
|
---|
600 | RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
|
---|
601 | ELSE IF( SM.GT.ZERO ) THEN
|
---|
602 | RT1 = HALF*( SM+RT )
|
---|
603 | *
|
---|
604 | * Order of execution important.
|
---|
605 | * To get fully accurate smaller eigenvalue,
|
---|
606 | * next line needs to be executed in higher precision.
|
---|
607 | *
|
---|
608 | RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
|
---|
609 | ELSE
|
---|
610 | *
|
---|
611 | * Includes case RT1 = RT2 = 0
|
---|
612 | *
|
---|
613 | RT1 = HALF*RT
|
---|
614 | RT2 = -HALF*RT
|
---|
615 | END IF
|
---|
616 | RETURN
|
---|
617 | *
|
---|
618 | * End of DLAE2
|
---|
619 | *
|
---|
620 | END
|
---|
621 | SUBROUTINE PDLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
|
---|
622 | *
|
---|
623 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
624 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
625 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
626 | * October 31, 1992
|
---|
627 | *
|
---|
628 | * .. Scalar Arguments ..
|
---|
629 | DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1
|
---|
630 | * ..
|
---|
631 | *
|
---|
632 | * Purpose
|
---|
633 | * =======
|
---|
634 | *
|
---|
635 | * DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
|
---|
636 | * [ A B ]
|
---|
637 | * [ B C ].
|
---|
638 | * On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
|
---|
639 | * eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
|
---|
640 | * eigenvector for RT1, giving the decomposition
|
---|
641 | *
|
---|
642 | * [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
|
---|
643 | * [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
|
---|
644 | *
|
---|
645 | * Arguments
|
---|
646 | * =========
|
---|
647 | *
|
---|
648 | * A (input) DOUBLE PRECISION
|
---|
649 | * The (1,1) element of the 2-by-2 matrix.
|
---|
650 | *
|
---|
651 | * B (input) DOUBLE PRECISION
|
---|
652 | * The (1,2) element and the conjugate of the (2,1) element of
|
---|
653 | * the 2-by-2 matrix.
|
---|
654 | *
|
---|
655 | * C (input) DOUBLE PRECISION
|
---|
656 | * The (2,2) element of the 2-by-2 matrix.
|
---|
657 | *
|
---|
658 | * RT1 (output) DOUBLE PRECISION
|
---|
659 | * The eigenvalue of larger absolute value.
|
---|
660 | *
|
---|
661 | * RT2 (output) DOUBLE PRECISION
|
---|
662 | * The eigenvalue of smaller absolute value.
|
---|
663 | *
|
---|
664 | * CS1 (output) DOUBLE PRECISION
|
---|
665 | * SN1 (output) DOUBLE PRECISION
|
---|
666 | * The vector (CS1, SN1) is a unit right eigenvector for RT1.
|
---|
667 | *
|
---|
668 | * Further Details
|
---|
669 | * ===============
|
---|
670 | *
|
---|
671 | * RT1 is accurate to a few ulps barring over/underflow.
|
---|
672 | *
|
---|
673 | * RT2 may be inaccurate if there is massive cancellation in the
|
---|
674 | * determinant A*C-B*B; higher precision or correctly rounded or
|
---|
675 | * correctly truncated arithmetic would be needed to compute RT2
|
---|
676 | * accurately in all cases.
|
---|
677 | *
|
---|
678 | * CS1 and SN1 are accurate to a few ulps barring over/underflow.
|
---|
679 | *
|
---|
680 | * Overflow is possible only if RT1 is within a factor of 5 of overflow.
|
---|
681 | * Underflow is harmless if the input data is 0 or exceeds
|
---|
682 | * underflow_threshold / macheps.
|
---|
683 | *
|
---|
684 | * =====================================================================
|
---|
685 | *
|
---|
686 | * .. Parameters ..
|
---|
687 | DOUBLE PRECISION ONE
|
---|
688 | PARAMETER ( ONE = 1.0D0 )
|
---|
689 | DOUBLE PRECISION TWO
|
---|
690 | PARAMETER ( TWO = 2.0D0 )
|
---|
691 | DOUBLE PRECISION ZERO
|
---|
692 | PARAMETER ( ZERO = 0.0D0 )
|
---|
693 | DOUBLE PRECISION HALF
|
---|
694 | PARAMETER ( HALF = 0.5D0 )
|
---|
695 | * ..
|
---|
696 | * .. Local Scalars ..
|
---|
697 | INTEGER SGN1, SGN2
|
---|
698 | DOUBLE PRECISION AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
|
---|
699 | $ TB, TN
|
---|
700 | * ..
|
---|
701 | * .. Intrinsic Functions ..
|
---|
702 | INTRINSIC ABS, SQRT
|
---|
703 | * ..
|
---|
704 | * .. Executable Statements ..
|
---|
705 | *
|
---|
706 | * Compute the eigenvalues
|
---|
707 | *
|
---|
708 | SM = A + C
|
---|
709 | DF = A - C
|
---|
710 | ADF = ABS( DF )
|
---|
711 | TB = B + B
|
---|
712 | AB = ABS( TB )
|
---|
713 | IF( ABS( A ).GT.ABS( C ) ) THEN
|
---|
714 | ACMX = A
|
---|
715 | ACMN = C
|
---|
716 | ELSE
|
---|
717 | ACMX = C
|
---|
718 | ACMN = A
|
---|
719 | END IF
|
---|
720 | IF( ADF.GT.AB ) THEN
|
---|
721 | RT = ADF*SQRT( ONE+( AB / ADF )**2 )
|
---|
722 | ELSE IF( ADF.LT.AB ) THEN
|
---|
723 | RT = AB*SQRT( ONE+( ADF / AB )**2 )
|
---|
724 | ELSE
|
---|
725 | *
|
---|
726 | * Includes case AB=ADF=0
|
---|
727 | *
|
---|
728 | RT = AB*SQRT( TWO )
|
---|
729 | END IF
|
---|
730 | IF( SM.LT.ZERO ) THEN
|
---|
731 | RT1 = HALF*( SM-RT )
|
---|
732 | SGN1 = -1
|
---|
733 | *
|
---|
734 | * Order of execution important.
|
---|
735 | * To get fully accurate smaller eigenvalue,
|
---|
736 | * next line needs to be executed in higher precision.
|
---|
737 | *
|
---|
738 | RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
|
---|
739 | ELSE IF( SM.GT.ZERO ) THEN
|
---|
740 | RT1 = HALF*( SM+RT )
|
---|
741 | SGN1 = 1
|
---|
742 | *
|
---|
743 | * Order of execution important.
|
---|
744 | * To get fully accurate smaller eigenvalue,
|
---|
745 | * next line needs to be executed in higher precision.
|
---|
746 | *
|
---|
747 | RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
|
---|
748 | ELSE
|
---|
749 | *
|
---|
750 | * Includes case RT1 = RT2 = 0
|
---|
751 | *
|
---|
752 | RT1 = HALF*RT
|
---|
753 | RT2 = -HALF*RT
|
---|
754 | SGN1 = 1
|
---|
755 | END IF
|
---|
756 | *
|
---|
757 | * Compute the eigenvector
|
---|
758 | *
|
---|
759 | IF( DF.GE.ZERO ) THEN
|
---|
760 | CS = DF + RT
|
---|
761 | SGN2 = 1
|
---|
762 | ELSE
|
---|
763 | CS = DF - RT
|
---|
764 | SGN2 = -1
|
---|
765 | END IF
|
---|
766 | ACS = ABS( CS )
|
---|
767 | IF( ACS.GT.AB ) THEN
|
---|
768 | CT = -TB / CS
|
---|
769 | SN1 = ONE / SQRT( ONE+CT*CT )
|
---|
770 | CS1 = CT*SN1
|
---|
771 | ELSE
|
---|
772 | IF( AB.EQ.ZERO ) THEN
|
---|
773 | CS1 = ONE
|
---|
774 | SN1 = ZERO
|
---|
775 | ELSE
|
---|
776 | TN = -CS / TB
|
---|
777 | CS1 = ONE / SQRT( ONE+TN*TN )
|
---|
778 | SN1 = TN*CS1
|
---|
779 | END IF
|
---|
780 | END IF
|
---|
781 | IF( SGN1.EQ.SGN2 ) THEN
|
---|
782 | TN = CS1
|
---|
783 | CS1 = -SN1
|
---|
784 | SN1 = TN
|
---|
785 | END IF
|
---|
786 | RETURN
|
---|
787 | *
|
---|
788 | * End of DLAEV2
|
---|
789 | *
|
---|
790 | END
|
---|
791 | DOUBLE PRECISION FUNCTION PDLAMCH( CMACH )
|
---|
792 | *
|
---|
793 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
794 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
795 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
796 | * October 31, 1992
|
---|
797 | *
|
---|
798 | * .. Scalar Arguments ..
|
---|
799 | CHARACTER CMACH
|
---|
800 | * ..
|
---|
801 | *
|
---|
802 | * Purpose
|
---|
803 | * =======
|
---|
804 | *
|
---|
805 | * DLAMCH determines double precision machine parameters.
|
---|
806 | *
|
---|
807 | * Arguments
|
---|
808 | * =========
|
---|
809 | *
|
---|
810 | * CMACH (input) CHARACTER*1
|
---|
811 | * Specifies the value to be returned by DLAMCH:
|
---|
812 | * = 'E' or 'e', DLAMCH := eps
|
---|
813 | * = 'S' or 's , DLAMCH := sfmin
|
---|
814 | * = 'B' or 'b', DLAMCH := base
|
---|
815 | * = 'P' or 'p', DLAMCH := eps*base
|
---|
816 | * = 'N' or 'n', DLAMCH := t
|
---|
817 | * = 'R' or 'r', DLAMCH := rnd
|
---|
818 | * = 'M' or 'm', DLAMCH := emin
|
---|
819 | * = 'U' or 'u', DLAMCH := rmin
|
---|
820 | * = 'L' or 'l', DLAMCH := emax
|
---|
821 | * = 'O' or 'o', DLAMCH := rmax
|
---|
822 | *
|
---|
823 | * where
|
---|
824 | *
|
---|
825 | * eps = relative machine precision
|
---|
826 | * sfmin = safe minimum, such that 1/sfmin does not overflow
|
---|
827 | * base = base of the machine
|
---|
828 | * prec = eps*base
|
---|
829 | * t = number of (base) digits in the mantissa
|
---|
830 | * rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
|
---|
831 | * emin = minimum exponent before (gradual) underflow
|
---|
832 | * rmin = underflow threshold - base**(emin-1)
|
---|
833 | * emax = largest exponent before overflow
|
---|
834 | * rmax = overflow threshold - (base**emax)*(1-eps)
|
---|
835 | *
|
---|
836 | * =====================================================================
|
---|
837 | *
|
---|
838 | * .. Parameters ..
|
---|
839 | DOUBLE PRECISION ONE, ZERO
|
---|
840 | PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
---|
841 | * ..
|
---|
842 | * .. Local Scalars ..
|
---|
843 | LOGICAL FIRST, LRND
|
---|
844 | INTEGER BETA, IMAX, IMIN, IT
|
---|
845 | DOUBLE PRECISION BASE, EMAX, EMIN, EPS, PREC, RMACH, RMAX, RMIN,
|
---|
846 | $ RND, SFMIN, SMALL, T
|
---|
847 | * ..
|
---|
848 | * .. External Functions ..
|
---|
849 | LOGICAL PLSAME
|
---|
850 | EXTERNAL PLSAME
|
---|
851 | * ..
|
---|
852 | * .. External Subroutines ..
|
---|
853 | EXTERNAL PDLAMC2
|
---|
854 | * ..
|
---|
855 | * .. Save statement ..
|
---|
856 | SAVE FIRST, EPS, SFMIN, BASE, T, RND, EMIN, RMIN,
|
---|
857 | $ EMAX, RMAX, PREC
|
---|
858 | * ..
|
---|
859 | * .. Data statements ..
|
---|
860 | DATA FIRST / .TRUE. /
|
---|
861 | * ..
|
---|
862 | * .. Executable Statements ..
|
---|
863 | *
|
---|
864 | IF( FIRST ) THEN
|
---|
865 | FIRST = .FALSE.
|
---|
866 | CALL PDLAMC2( BETA, IT, LRND, EPS, IMIN, RMIN, IMAX, RMAX )
|
---|
867 | BASE = BETA
|
---|
868 | T = IT
|
---|
869 | IF( LRND ) THEN
|
---|
870 | RND = ONE
|
---|
871 | EPS = ( BASE**( 1-IT ) ) / 2
|
---|
872 | ELSE
|
---|
873 | RND = ZERO
|
---|
874 | EPS = BASE**( 1-IT )
|
---|
875 | END IF
|
---|
876 | PREC = EPS*BASE
|
---|
877 | EMIN = IMIN
|
---|
878 | EMAX = IMAX
|
---|
879 | SFMIN = RMIN
|
---|
880 | SMALL = ONE / RMAX
|
---|
881 | IF( SMALL.GE.SFMIN ) THEN
|
---|
882 | *
|
---|
883 | * Use SMALL plus a bit, to avoid the possibility of rounding
|
---|
884 | * causing overflow when computing 1/sfmin.
|
---|
885 | *
|
---|
886 | SFMIN = SMALL*( ONE+EPS )
|
---|
887 | END IF
|
---|
888 | END IF
|
---|
889 | *
|
---|
890 | IF( PLSAME( CMACH, 'E' ) ) THEN
|
---|
891 | RMACH = EPS
|
---|
892 | ELSE IF( PLSAME( CMACH, 'S' ) ) THEN
|
---|
893 | RMACH = SFMIN
|
---|
894 | ELSE IF( PLSAME( CMACH, 'B' ) ) THEN
|
---|
895 | RMACH = BASE
|
---|
896 | ELSE IF( PLSAME( CMACH, 'P' ) ) THEN
|
---|
897 | RMACH = PREC
|
---|
898 | ELSE IF( PLSAME( CMACH, 'N' ) ) THEN
|
---|
899 | RMACH = T
|
---|
900 | ELSE IF( PLSAME( CMACH, 'R' ) ) THEN
|
---|
901 | RMACH = RND
|
---|
902 | ELSE IF( PLSAME( CMACH, 'M' ) ) THEN
|
---|
903 | RMACH = EMIN
|
---|
904 | ELSE IF( PLSAME( CMACH, 'U' ) ) THEN
|
---|
905 | RMACH = RMIN
|
---|
906 | ELSE IF( PLSAME( CMACH, 'L' ) ) THEN
|
---|
907 | RMACH = EMAX
|
---|
908 | ELSE IF( PLSAME( CMACH, 'O' ) ) THEN
|
---|
909 | RMACH = RMAX
|
---|
910 | END IF
|
---|
911 | *
|
---|
912 | PDLAMCH = RMACH
|
---|
913 | RETURN
|
---|
914 | *
|
---|
915 | * End of DLAMCH
|
---|
916 | *
|
---|
917 | END
|
---|
918 | *
|
---|
919 | ************************************************************************
|
---|
920 | *
|
---|
921 | SUBROUTINE PDLAMC1( BETA, T, RND, IEEE1 )
|
---|
922 | *
|
---|
923 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
924 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
925 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
926 | * October 31, 1992
|
---|
927 | *
|
---|
928 | * .. Scalar Arguments ..
|
---|
929 | LOGICAL IEEE1, RND
|
---|
930 | INTEGER BETA, T
|
---|
931 | * ..
|
---|
932 | *
|
---|
933 | * Purpose
|
---|
934 | * =======
|
---|
935 | *
|
---|
936 | * DLAMC1 determines the machine parameters given by BETA, T, RND, and
|
---|
937 | * IEEE1.
|
---|
938 | *
|
---|
939 | * Arguments
|
---|
940 | * =========
|
---|
941 | *
|
---|
942 | * BETA (output) INTEGER
|
---|
943 | * The base of the machine.
|
---|
944 | *
|
---|
945 | * T (output) INTEGER
|
---|
946 | * The number of ( BETA ) digits in the mantissa.
|
---|
947 | *
|
---|
948 | * RND (output) LOGICAL
|
---|
949 | * Specifies whether proper rounding ( RND = .TRUE. ) or
|
---|
950 | * chopping ( RND = .FALSE. ) occurs in addition. This may not
|
---|
951 | * be a reliable guide to the way in which the machine performs
|
---|
952 | * its arithmetic.
|
---|
953 | *
|
---|
954 | * IEEE1 (output) LOGICAL
|
---|
955 | * Specifies whether rounding appears to be done in the IEEE
|
---|
956 | * 'round to nearest' style.
|
---|
957 | *
|
---|
958 | * Further Details
|
---|
959 | * ===============
|
---|
960 | *
|
---|
961 | * The routine is based on the routine ENVRON by Malcolm and
|
---|
962 | * incorporates suggestions by Gentleman and Marovich. See
|
---|
963 | *
|
---|
964 | * Malcolm M. A. (1972) Algorithms to reveal properties of
|
---|
965 | * floating-point arithmetic. Comms. of the ACM, 15, 949-951.
|
---|
966 | *
|
---|
967 | * Gentleman W. M. and Marovich S. B. (1974) More on algorithms
|
---|
968 | * that reveal properties of floating point arithmetic units.
|
---|
969 | * Comms. of the ACM, 17, 276-277.
|
---|
970 | *
|
---|
971 | * =====================================================================
|
---|
972 | *
|
---|
973 | * .. Local Scalars ..
|
---|
974 | LOGICAL FIRST, LIEEE1, LRND
|
---|
975 | INTEGER LBETA, LT
|
---|
976 | DOUBLE PRECISION A, B, C, F, ONE, QTR, SAVEC, T1, T2
|
---|
977 | * ..
|
---|
978 | * .. External Functions ..
|
---|
979 | DOUBLE PRECISION PDLAMC3
|
---|
980 | EXTERNAL PDLAMC3
|
---|
981 | * ..
|
---|
982 | * .. Save statement ..
|
---|
983 | SAVE FIRST, LIEEE1, LBETA, LRND, LT
|
---|
984 | * ..
|
---|
985 | * .. Data statements ..
|
---|
986 | DATA FIRST / .TRUE. /
|
---|
987 | * ..
|
---|
988 | * .. Executable Statements ..
|
---|
989 | *
|
---|
990 | IF( FIRST ) THEN
|
---|
991 | FIRST = .FALSE.
|
---|
992 | ONE = 1
|
---|
993 | *
|
---|
994 | * LBETA, LIEEE1, LT and LRND are the local values of BETA,
|
---|
995 | * IEEE1, T and RND.
|
---|
996 | *
|
---|
997 | * Throughout this routine we use the function DLAMC3 to ensure
|
---|
998 | * that relevant values are stored and not held in registers, or
|
---|
999 | * are not affected by optimizers.
|
---|
1000 | *
|
---|
1001 | * Compute a = 2.0**m with the smallest positive integer m such
|
---|
1002 | * that
|
---|
1003 | *
|
---|
1004 | * fl( a + 1.0 ) = a.
|
---|
1005 | *
|
---|
1006 | A = 1
|
---|
1007 | C = 1
|
---|
1008 | *
|
---|
1009 | *+ WHILE( C.EQ.ONE )LOOP
|
---|
1010 | 10 CONTINUE
|
---|
1011 | IF( C.EQ.ONE ) THEN
|
---|
1012 | A = 2*A
|
---|
1013 | C = PDLAMC3( A, ONE )
|
---|
1014 | C = PDLAMC3( C, -A )
|
---|
1015 | GO TO 10
|
---|
1016 | END IF
|
---|
1017 | *+ END WHILE
|
---|
1018 | *
|
---|
1019 | * Now compute b = 2.0**m with the smallest positive integer m
|
---|
1020 | * such that
|
---|
1021 | *
|
---|
1022 | * fl( a + b ) .gt. a.
|
---|
1023 | *
|
---|
1024 | B = 1
|
---|
1025 | C = PDLAMC3( A, B )
|
---|
1026 | *
|
---|
1027 | *+ WHILE( C.EQ.A )LOOP
|
---|
1028 | 20 CONTINUE
|
---|
1029 | IF( C.EQ.A ) THEN
|
---|
1030 | B = 2*B
|
---|
1031 | C = PDLAMC3( A, B )
|
---|
1032 | GO TO 20
|
---|
1033 | END IF
|
---|
1034 | *+ END WHILE
|
---|
1035 | *
|
---|
1036 | * Now compute the base. a and c are neighbouring floating point
|
---|
1037 | * numbers in the interval ( beta**t, beta**( t + 1 ) ) and so
|
---|
1038 | * their difference is beta. Adding 0.25 to c is to ensure that it
|
---|
1039 | * is truncated to beta and not ( beta - 1 ).
|
---|
1040 | *
|
---|
1041 | QTR = ONE / 4
|
---|
1042 | SAVEC = C
|
---|
1043 | C = PDLAMC3( C, -A )
|
---|
1044 | LBETA = C + QTR
|
---|
1045 | *
|
---|
1046 | * Now determine whether rounding or chopping occurs, by adding a
|
---|
1047 | * bit less than beta/2 and a bit more than beta/2 to a.
|
---|
1048 | *
|
---|
1049 | B = LBETA
|
---|
1050 | F = PDLAMC3( B / 2, -B / 100 )
|
---|
1051 | C = PDLAMC3( F, A )
|
---|
1052 | IF( C.EQ.A ) THEN
|
---|
1053 | LRND = .TRUE.
|
---|
1054 | ELSE
|
---|
1055 | LRND = .FALSE.
|
---|
1056 | END IF
|
---|
1057 | F = PDLAMC3( B / 2, B / 100 )
|
---|
1058 | C = PDLAMC3( F, A )
|
---|
1059 | IF( ( LRND ) .AND. ( C.EQ.A ) )
|
---|
1060 | $ LRND = .FALSE.
|
---|
1061 | *
|
---|
1062 | * Try and decide whether rounding is done in the IEEE 'round to
|
---|
1063 | * nearest' style. B/2 is half a unit in the last place of the two
|
---|
1064 | * numbers A and SAVEC. Furthermore, A is even, i.e. has last bit
|
---|
1065 | * zero, and SAVEC is odd. Thus adding B/2 to A should not change
|
---|
1066 | * A, but adding B/2 to SAVEC should change SAVEC.
|
---|
1067 | *
|
---|
1068 | T1 = PDLAMC3( B / 2, A )
|
---|
1069 | T2 = PDLAMC3( B / 2, SAVEC )
|
---|
1070 | LIEEE1 = ( T1.EQ.A ) .AND. ( T2.GT.SAVEC ) .AND. LRND
|
---|
1071 | *
|
---|
1072 | * Now find the mantissa, t. It should be the integer part of
|
---|
1073 | * log to the base beta of a, however it is safer to determine t
|
---|
1074 | * by powering. So we find t as the smallest positive integer for
|
---|
1075 | * which
|
---|
1076 | *
|
---|
1077 | * fl( beta**t + 1.0 ) = 1.0.
|
---|
1078 | *
|
---|
1079 | LT = 0
|
---|
1080 | A = 1
|
---|
1081 | C = 1
|
---|
1082 | *
|
---|
1083 | *+ WHILE( C.EQ.ONE )LOOP
|
---|
1084 | 30 CONTINUE
|
---|
1085 | IF( C.EQ.ONE ) THEN
|
---|
1086 | LT = LT + 1
|
---|
1087 | A = A*LBETA
|
---|
1088 | C = PDLAMC3( A, ONE )
|
---|
1089 | C = PDLAMC3( C, -A )
|
---|
1090 | GO TO 30
|
---|
1091 | END IF
|
---|
1092 | *+ END WHILE
|
---|
1093 | *
|
---|
1094 | END IF
|
---|
1095 | *
|
---|
1096 | BETA = LBETA
|
---|
1097 | T = LT
|
---|
1098 | RND = LRND
|
---|
1099 | IEEE1 = LIEEE1
|
---|
1100 | RETURN
|
---|
1101 | *
|
---|
1102 | * End of DLAMC1
|
---|
1103 | *
|
---|
1104 | END
|
---|
1105 | *
|
---|
1106 | ************************************************************************
|
---|
1107 | *
|
---|
1108 | SUBROUTINE PDLAMC2( BETA, T, RND, EPS, EMIN, RMIN, EMAX, RMAX )
|
---|
1109 | *
|
---|
1110 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
1111 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
1112 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
1113 | * October 31, 1992
|
---|
1114 | *
|
---|
1115 | * .. Scalar Arguments ..
|
---|
1116 | LOGICAL RND
|
---|
1117 | INTEGER BETA, EMAX, EMIN, T
|
---|
1118 | DOUBLE PRECISION EPS, RMAX, RMIN
|
---|
1119 | * ..
|
---|
1120 | *
|
---|
1121 | * Purpose
|
---|
1122 | * =======
|
---|
1123 | *
|
---|
1124 | * DLAMC2 determines the machine parameters specified in its argument
|
---|
1125 | * list.
|
---|
1126 | *
|
---|
1127 | * Arguments
|
---|
1128 | * =========
|
---|
1129 | *
|
---|
1130 | * BETA (output) INTEGER
|
---|
1131 | * The base of the machine.
|
---|
1132 | *
|
---|
1133 | * T (output) INTEGER
|
---|
1134 | * The number of ( BETA ) digits in the mantissa.
|
---|
1135 | *
|
---|
1136 | * RND (output) LOGICAL
|
---|
1137 | * Specifies whether proper rounding ( RND = .TRUE. ) or
|
---|
1138 | * chopping ( RND = .FALSE. ) occurs in addition. This may not
|
---|
1139 | * be a reliable guide to the way in which the machine performs
|
---|
1140 | * its arithmetic.
|
---|
1141 | *
|
---|
1142 | * EPS (output) DOUBLE PRECISION
|
---|
1143 | * The smallest positive number such that
|
---|
1144 | *
|
---|
1145 | * fl( 1.0 - EPS ) .LT. 1.0,
|
---|
1146 | *
|
---|
1147 | * where fl denotes the computed value.
|
---|
1148 | *
|
---|
1149 | * EMIN (output) INTEGER
|
---|
1150 | * The minimum exponent before (gradual) underflow occurs.
|
---|
1151 | *
|
---|
1152 | * RMIN (output) DOUBLE PRECISION
|
---|
1153 | * The smallest normalized number for the machine, given by
|
---|
1154 | * BASE**( EMIN - 1 ), where BASE is the floating point value
|
---|
1155 | * of BETA.
|
---|
1156 | *
|
---|
1157 | * EMAX (output) INTEGER
|
---|
1158 | * The maximum exponent before overflow occurs.
|
---|
1159 | *
|
---|
1160 | * RMAX (output) DOUBLE PRECISION
|
---|
1161 | * The largest positive number for the machine, given by
|
---|
1162 | * BASE**EMAX * ( 1 - EPS ), where BASE is the floating point
|
---|
1163 | * value of BETA.
|
---|
1164 | *
|
---|
1165 | * Further Details
|
---|
1166 | * ===============
|
---|
1167 | *
|
---|
1168 | * The computation of EPS is based on a routine PARANOIA by
|
---|
1169 | * W. Kahan of the University of California at Berkeley.
|
---|
1170 | *
|
---|
1171 | * =====================================================================
|
---|
1172 | *
|
---|
1173 | * .. Local Scalars ..
|
---|
1174 | LOGICAL FIRST, IEEE, IWARN, LIEEE1, LRND
|
---|
1175 | INTEGER GNMIN, GPMIN, I, LBETA, LEMAX, LEMIN, LT,
|
---|
1176 | $ NGNMIN, NGPMIN
|
---|
1177 | DOUBLE PRECISION A, B, C, HALF, LEPS, LRMAX, LRMIN, ONE, RBASE,
|
---|
1178 | $ SIXTH, SMALL, THIRD, TWO, ZERO
|
---|
1179 | * ..
|
---|
1180 | * .. External Functions ..
|
---|
1181 | DOUBLE PRECISION PDLAMC3
|
---|
1182 | EXTERNAL PDLAMC3
|
---|
1183 | * ..
|
---|
1184 | * .. External Subroutines ..
|
---|
1185 | EXTERNAL PDLAMC1, PDLAMC4, PDLAMC5
|
---|
1186 | * ..
|
---|
1187 | * .. Intrinsic Functions ..
|
---|
1188 | INTRINSIC ABS, MAX, MIN
|
---|
1189 | * ..
|
---|
1190 | * .. Save statement ..
|
---|
1191 | SAVE FIRST, IWARN, LBETA, LEMAX, LEMIN, LEPS, LRMAX,
|
---|
1192 | $ LRMIN, LT
|
---|
1193 | * ..
|
---|
1194 | * .. Data statements ..
|
---|
1195 | DATA FIRST / .TRUE. / , IWARN / .FALSE. /
|
---|
1196 | * ..
|
---|
1197 | * .. Executable Statements ..
|
---|
1198 | *
|
---|
1199 | IF( FIRST ) THEN
|
---|
1200 | FIRST = .FALSE.
|
---|
1201 | ZERO = 0
|
---|
1202 | ONE = 1
|
---|
1203 | TWO = 2
|
---|
1204 | *
|
---|
1205 | * LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of
|
---|
1206 | * BETA, T, RND, EPS, EMIN and RMIN.
|
---|
1207 | *
|
---|
1208 | * Throughout this routine we use the function DLAMC3 to ensure
|
---|
1209 | * that relevant values are stored and not held in registers, or
|
---|
1210 | * are not affected by optimizers.
|
---|
1211 | *
|
---|
1212 | * DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1.
|
---|
1213 | *
|
---|
1214 | CALL PDLAMC1( LBETA, LT, LRND, LIEEE1 )
|
---|
1215 | *
|
---|
1216 | * Start to find EPS.
|
---|
1217 | *
|
---|
1218 | B = LBETA
|
---|
1219 | A = B**( -LT )
|
---|
1220 | LEPS = A
|
---|
1221 | *
|
---|
1222 | * Try some tricks to see whether or not this is the correct EPS.
|
---|
1223 | *
|
---|
1224 | B = TWO / 3
|
---|
1225 | HALF = ONE / 2
|
---|
1226 | SIXTH = PDLAMC3( B, -HALF )
|
---|
1227 | THIRD = PDLAMC3( SIXTH, SIXTH )
|
---|
1228 | B = PDLAMC3( THIRD, -HALF )
|
---|
1229 | B = PDLAMC3( B, SIXTH )
|
---|
1230 | B = ABS( B )
|
---|
1231 | IF( B.LT.LEPS )
|
---|
1232 | $ B = LEPS
|
---|
1233 | *
|
---|
1234 | LEPS = 1
|
---|
1235 | *
|
---|
1236 | *+ WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP
|
---|
1237 | 10 CONTINUE
|
---|
1238 | IF( ( LEPS.GT.B ) .AND. ( B.GT.ZERO ) ) THEN
|
---|
1239 | LEPS = B
|
---|
1240 | C = PDLAMC3( HALF*LEPS, ( TWO**5 )*( LEPS**2 ) )
|
---|
1241 | C = PDLAMC3( HALF, -C )
|
---|
1242 | B = PDLAMC3( HALF, C )
|
---|
1243 | C = PDLAMC3( HALF, -B )
|
---|
1244 | B = PDLAMC3( HALF, C )
|
---|
1245 | GO TO 10
|
---|
1246 | END IF
|
---|
1247 | *+ END WHILE
|
---|
1248 | *
|
---|
1249 | IF( A.LT.LEPS )
|
---|
1250 | $ LEPS = A
|
---|
1251 | *
|
---|
1252 | * Computation of EPS complete.
|
---|
1253 | *
|
---|
1254 | * Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3)).
|
---|
1255 | * Keep dividing A by BETA until (gradual) underflow occurs. This
|
---|
1256 | * is detected when we cannot recover the previous A.
|
---|
1257 | *
|
---|
1258 | RBASE = ONE / LBETA
|
---|
1259 | SMALL = ONE
|
---|
1260 | DO 20 I = 1, 3
|
---|
1261 | SMALL = PDLAMC3( SMALL*RBASE, ZERO )
|
---|
1262 | 20 CONTINUE
|
---|
1263 | A = PDLAMC3( ONE, SMALL )
|
---|
1264 | CALL PDLAMC4( NGPMIN, ONE, LBETA )
|
---|
1265 | CALL PDLAMC4( NGNMIN, -ONE, LBETA )
|
---|
1266 | CALL PDLAMC4( GPMIN, A, LBETA )
|
---|
1267 | CALL PDLAMC4( GNMIN, -A, LBETA )
|
---|
1268 | IEEE = .FALSE.
|
---|
1269 | *
|
---|
1270 | IF( ( NGPMIN.EQ.NGNMIN ) .AND. ( GPMIN.EQ.GNMIN ) ) THEN
|
---|
1271 | IF( NGPMIN.EQ.GPMIN ) THEN
|
---|
1272 | LEMIN = NGPMIN
|
---|
1273 | * ( Non twos-complement machines, no gradual underflow;
|
---|
1274 | * e.g., VAX )
|
---|
1275 | ELSE IF( ( GPMIN-NGPMIN ).EQ.3 ) THEN
|
---|
1276 | LEMIN = NGPMIN - 1 + LT
|
---|
1277 | IEEE = .TRUE.
|
---|
1278 | * ( Non twos-complement machines, with gradual underflow;
|
---|
1279 | * e.g., IEEE standard followers )
|
---|
1280 | ELSE
|
---|
1281 | LEMIN = MIN( NGPMIN, GPMIN )
|
---|
1282 | * ( A guess; no known machine )
|
---|
1283 | IWARN = .TRUE.
|
---|
1284 | END IF
|
---|
1285 | *
|
---|
1286 | ELSE IF( ( NGPMIN.EQ.GPMIN ) .AND. ( NGNMIN.EQ.GNMIN ) ) THEN
|
---|
1287 | IF( ABS( NGPMIN-NGNMIN ).EQ.1 ) THEN
|
---|
1288 | LEMIN = MAX( NGPMIN, NGNMIN )
|
---|
1289 | * ( Twos-complement machines, no gradual underflow;
|
---|
1290 | * e.g., CYBER 205 )
|
---|
1291 | ELSE
|
---|
1292 | LEMIN = MIN( NGPMIN, NGNMIN )
|
---|
1293 | * ( A guess; no known machine )
|
---|
1294 | IWARN = .TRUE.
|
---|
1295 | END IF
|
---|
1296 | *
|
---|
1297 | ELSE IF( ( ABS( NGPMIN-NGNMIN ).EQ.1 ) .AND.
|
---|
1298 | $ ( GPMIN.EQ.GNMIN ) ) THEN
|
---|
1299 | IF( ( GPMIN-MIN( NGPMIN, NGNMIN ) ).EQ.3 ) THEN
|
---|
1300 | LEMIN = MAX( NGPMIN, NGNMIN ) - 1 + LT
|
---|
1301 | * ( Twos-complement machines with gradual underflow;
|
---|
1302 | * no known machine )
|
---|
1303 | ELSE
|
---|
1304 | LEMIN = MIN( NGPMIN, NGNMIN )
|
---|
1305 | * ( A guess; no known machine )
|
---|
1306 | IWARN = .TRUE.
|
---|
1307 | END IF
|
---|
1308 | *
|
---|
1309 | ELSE
|
---|
1310 | LEMIN = MIN( NGPMIN, NGNMIN, GPMIN, GNMIN )
|
---|
1311 | * ( A guess; no known machine )
|
---|
1312 | IWARN = .TRUE.
|
---|
1313 | END IF
|
---|
1314 | ***
|
---|
1315 | * Comment out this if block if EMIN is ok
|
---|
1316 | IF( IWARN ) THEN
|
---|
1317 | FIRST = .TRUE.
|
---|
1318 | WRITE( 6, FMT = 9999 )LEMIN
|
---|
1319 | END IF
|
---|
1320 | ***
|
---|
1321 | *
|
---|
1322 | * Assume IEEE arithmetic if we found denormalised numbers above,
|
---|
1323 | * or if arithmetic seems to round in the IEEE style, determined
|
---|
1324 | * in routine DLAMC1. A true IEEE machine should have both things
|
---|
1325 | * true; however, faulty machines may have one or the other.
|
---|
1326 | *
|
---|
1327 | IEEE = IEEE .OR. LIEEE1
|
---|
1328 | *
|
---|
1329 | * Compute RMIN by successive division by BETA. We could compute
|
---|
1330 | * RMIN as BASE**( EMIN - 1 ), but some machines underflow during
|
---|
1331 | * this computation.
|
---|
1332 | *
|
---|
1333 | LRMIN = 1
|
---|
1334 | DO 30 I = 1, 1 - LEMIN
|
---|
1335 | LRMIN = PDLAMC3( LRMIN*RBASE, ZERO )
|
---|
1336 | 30 CONTINUE
|
---|
1337 | *
|
---|
1338 | * Finally, call DLAMC5 to compute EMAX and RMAX.
|
---|
1339 | *
|
---|
1340 | CALL PDLAMC5( LBETA, LT, LEMIN, IEEE, LEMAX, LRMAX )
|
---|
1341 | END IF
|
---|
1342 | *
|
---|
1343 | BETA = LBETA
|
---|
1344 | T = LT
|
---|
1345 | RND = LRND
|
---|
1346 | EPS = LEPS
|
---|
1347 | EMIN = LEMIN
|
---|
1348 | RMIN = LRMIN
|
---|
1349 | EMAX = LEMAX
|
---|
1350 | RMAX = LRMAX
|
---|
1351 | *
|
---|
1352 | RETURN
|
---|
1353 | *
|
---|
1354 | 9999 FORMAT( / / ' WARNING. The value EMIN may be incorrect:-',
|
---|
1355 | $ ' EMIN = ', I8, /
|
---|
1356 | $ ' If, after inspection, the value EMIN looks',
|
---|
1357 | $ ' acceptable please comment out ',
|
---|
1358 | $ / ' the IF block as marked within the code of routine',
|
---|
1359 | $ ' DLAMC2,', / ' otherwise supply EMIN explicitly.', / )
|
---|
1360 | *
|
---|
1361 | * End of DLAMC2
|
---|
1362 | *
|
---|
1363 | END
|
---|
1364 | *
|
---|
1365 | ************************************************************************
|
---|
1366 | *
|
---|
1367 | DOUBLE PRECISION FUNCTION PDLAMC3( A, B )
|
---|
1368 | *
|
---|
1369 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
1370 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
1371 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
1372 | * October 31, 1992
|
---|
1373 | *
|
---|
1374 | * .. Scalar Arguments ..
|
---|
1375 | DOUBLE PRECISION A, B
|
---|
1376 | * ..
|
---|
1377 | *
|
---|
1378 | * Purpose
|
---|
1379 | * =======
|
---|
1380 | *
|
---|
1381 | * DLAMC3 is intended to force A and B to be stored prior to doing
|
---|
1382 | * the addition of A and B , for use in situations where optimizers
|
---|
1383 | * might hold one of these in a register.
|
---|
1384 | *
|
---|
1385 | * Arguments
|
---|
1386 | * =========
|
---|
1387 | *
|
---|
1388 | * A, B (input) DOUBLE PRECISION
|
---|
1389 | * The values A and B.
|
---|
1390 | *
|
---|
1391 | * =====================================================================
|
---|
1392 | *
|
---|
1393 | * .. Executable Statements ..
|
---|
1394 | *
|
---|
1395 | PDLAMC3 = A + B
|
---|
1396 | *
|
---|
1397 | RETURN
|
---|
1398 | *
|
---|
1399 | * End of DLAMC3
|
---|
1400 | *
|
---|
1401 | END
|
---|
1402 | *
|
---|
1403 | ************************************************************************
|
---|
1404 | *
|
---|
1405 | SUBROUTINE PDLAMC4( EMIN, START, BASE )
|
---|
1406 | *
|
---|
1407 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
1408 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
1409 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
1410 | * October 31, 1992
|
---|
1411 | *
|
---|
1412 | * .. Scalar Arguments ..
|
---|
1413 | INTEGER BASE, EMIN
|
---|
1414 | DOUBLE PRECISION START
|
---|
1415 | * ..
|
---|
1416 | *
|
---|
1417 | * Purpose
|
---|
1418 | * =======
|
---|
1419 | *
|
---|
1420 | * DLAMC4 is a service routine for DLAMC2.
|
---|
1421 | *
|
---|
1422 | * Arguments
|
---|
1423 | * =========
|
---|
1424 | *
|
---|
1425 | * EMIN (output) EMIN
|
---|
1426 | * The minimum exponent before (gradual) underflow, computed by
|
---|
1427 | * setting A = START and dividing by BASE until the previous A
|
---|
1428 | * can not be recovered.
|
---|
1429 | *
|
---|
1430 | * START (input) DOUBLE PRECISION
|
---|
1431 | * The starting point for determining EMIN.
|
---|
1432 | *
|
---|
1433 | * BASE (input) INTEGER
|
---|
1434 | * The base of the machine.
|
---|
1435 | *
|
---|
1436 | * =====================================================================
|
---|
1437 | *
|
---|
1438 | * .. Local Scalars ..
|
---|
1439 | INTEGER I
|
---|
1440 | DOUBLE PRECISION A, B1, B2, C1, C2, D1, D2, ONE, RBASE, ZERO
|
---|
1441 | * ..
|
---|
1442 | * .. External Functions ..
|
---|
1443 | DOUBLE PRECISION PDLAMC3
|
---|
1444 | EXTERNAL PDLAMC3
|
---|
1445 | * ..
|
---|
1446 | * .. Executable Statements ..
|
---|
1447 | *
|
---|
1448 | A = START
|
---|
1449 | ONE = 1
|
---|
1450 | RBASE = ONE / BASE
|
---|
1451 | ZERO = 0
|
---|
1452 | EMIN = 1
|
---|
1453 | B1 = PDLAMC3( A*RBASE, ZERO )
|
---|
1454 | C1 = A
|
---|
1455 | C2 = A
|
---|
1456 | D1 = A
|
---|
1457 | D2 = A
|
---|
1458 | *+ WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND.
|
---|
1459 | * $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP
|
---|
1460 | 10 CONTINUE
|
---|
1461 | IF( ( C1.EQ.A ) .AND. ( C2.EQ.A ) .AND. ( D1.EQ.A ) .AND.
|
---|
1462 | $ ( D2.EQ.A ) ) THEN
|
---|
1463 | EMIN = EMIN - 1
|
---|
1464 | A = B1
|
---|
1465 | B1 = PDLAMC3( A / BASE, ZERO )
|
---|
1466 | C1 = PDLAMC3( B1*BASE, ZERO )
|
---|
1467 | D1 = ZERO
|
---|
1468 | DO 20 I = 1, BASE
|
---|
1469 | D1 = D1 + B1
|
---|
1470 | 20 CONTINUE
|
---|
1471 | B2 = PDLAMC3( A*RBASE, ZERO )
|
---|
1472 | C2 = PDLAMC3( B2 / RBASE, ZERO )
|
---|
1473 | D2 = ZERO
|
---|
1474 | DO 30 I = 1, BASE
|
---|
1475 | D2 = D2 + B2
|
---|
1476 | 30 CONTINUE
|
---|
1477 | GO TO 10
|
---|
1478 | END IF
|
---|
1479 | *+ END WHILE
|
---|
1480 | *
|
---|
1481 | RETURN
|
---|
1482 | *
|
---|
1483 | * End of DLAMC4
|
---|
1484 | *
|
---|
1485 | END
|
---|
1486 | *
|
---|
1487 | ************************************************************************
|
---|
1488 | *
|
---|
1489 | SUBROUTINE PDLAMC5( BETA, P, EMIN, IEEE, EMAX, RMAX )
|
---|
1490 | *
|
---|
1491 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
1492 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
1493 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
1494 | * October 31, 1992
|
---|
1495 | *
|
---|
1496 | * .. Scalar Arguments ..
|
---|
1497 | LOGICAL IEEE
|
---|
1498 | INTEGER BETA, EMAX, EMIN, P
|
---|
1499 | DOUBLE PRECISION RMAX
|
---|
1500 | * ..
|
---|
1501 | *
|
---|
1502 | * Purpose
|
---|
1503 | * =======
|
---|
1504 | *
|
---|
1505 | * DLAMC5 attempts to compute RMAX, the largest machine floating-point
|
---|
1506 | * number, without overflow. It assumes that EMAX + abs(EMIN) sum
|
---|
1507 | * approximately to a power of 2. It will fail on machines where this
|
---|
1508 | * assumption does not hold, for example, the Cyber 205 (EMIN = -28625,
|
---|
1509 | * EMAX = 28718). It will also fail if the value supplied for EMIN is
|
---|
1510 | * too large (i.e. too close to zero), probably with overflow.
|
---|
1511 | *
|
---|
1512 | * Arguments
|
---|
1513 | * =========
|
---|
1514 | *
|
---|
1515 | * BETA (input) INTEGER
|
---|
1516 | * The base of floating-point arithmetic.
|
---|
1517 | *
|
---|
1518 | * P (input) INTEGER
|
---|
1519 | * The number of base BETA digits in the mantissa of a
|
---|
1520 | * floating-point value.
|
---|
1521 | *
|
---|
1522 | * EMIN (input) INTEGER
|
---|
1523 | * The minimum exponent before (gradual) underflow.
|
---|
1524 | *
|
---|
1525 | * IEEE (input) LOGICAL
|
---|
1526 | * A logical flag specifying whether or not the arithmetic
|
---|
1527 | * system is thought to comply with the IEEE standard.
|
---|
1528 | *
|
---|
1529 | * EMAX (output) INTEGER
|
---|
1530 | * The largest exponent before overflow
|
---|
1531 | *
|
---|
1532 | * RMAX (output) DOUBLE PRECISION
|
---|
1533 | * The largest machine floating-point number.
|
---|
1534 | *
|
---|
1535 | * =====================================================================
|
---|
1536 | *
|
---|
1537 | * .. Parameters ..
|
---|
1538 | DOUBLE PRECISION ZERO, ONE
|
---|
1539 | PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
---|
1540 | * ..
|
---|
1541 | * .. Local Scalars ..
|
---|
1542 | INTEGER EXBITS, EXPSUM, I, LEXP, NBITS, TRY, UEXP
|
---|
1543 | DOUBLE PRECISION OLDY, RECBAS, Y, Z
|
---|
1544 | * ..
|
---|
1545 | * .. External Functions ..
|
---|
1546 | DOUBLE PRECISION PDLAMC3
|
---|
1547 | EXTERNAL PDLAMC3
|
---|
1548 | * ..
|
---|
1549 | * .. Intrinsic Functions ..
|
---|
1550 | INTRINSIC MOD
|
---|
1551 | * ..
|
---|
1552 | * .. Executable Statements ..
|
---|
1553 | *
|
---|
1554 | * First compute LEXP and UEXP, two powers of 2 that bound
|
---|
1555 | * abs(EMIN). We then assume that EMAX + abs(EMIN) will sum
|
---|
1556 | * approximately to the bound that is closest to abs(EMIN).
|
---|
1557 | * (EMAX is the exponent of the required number RMAX).
|
---|
1558 | *
|
---|
1559 | LEXP = 1
|
---|
1560 | EXBITS = 1
|
---|
1561 | 10 CONTINUE
|
---|
1562 | TRY = LEXP*2
|
---|
1563 | IF( TRY.LE.( -EMIN ) ) THEN
|
---|
1564 | LEXP = TRY
|
---|
1565 | EXBITS = EXBITS + 1
|
---|
1566 | GO TO 10
|
---|
1567 | END IF
|
---|
1568 | IF( LEXP.EQ.-EMIN ) THEN
|
---|
1569 | UEXP = LEXP
|
---|
1570 | ELSE
|
---|
1571 | UEXP = TRY
|
---|
1572 | EXBITS = EXBITS + 1
|
---|
1573 | END IF
|
---|
1574 | *
|
---|
1575 | * Now -LEXP is less than or equal to EMIN, and -UEXP is greater
|
---|
1576 | * than or equal to EMIN. EXBITS is the number of bits needed to
|
---|
1577 | * store the exponent.
|
---|
1578 | *
|
---|
1579 | IF( ( UEXP+EMIN ).GT.( -LEXP-EMIN ) ) THEN
|
---|
1580 | EXPSUM = 2*LEXP
|
---|
1581 | ELSE
|
---|
1582 | EXPSUM = 2*UEXP
|
---|
1583 | END IF
|
---|
1584 | *
|
---|
1585 | * EXPSUM is the exponent range, approximately equal to
|
---|
1586 | * EMAX - EMIN + 1 .
|
---|
1587 | *
|
---|
1588 | EMAX = EXPSUM + EMIN - 1
|
---|
1589 | NBITS = 1 + EXBITS + P
|
---|
1590 | *
|
---|
1591 | * NBITS is the total number of bits needed to store a
|
---|
1592 | * floating-point number.
|
---|
1593 | *
|
---|
1594 | IF( ( MOD( NBITS, 2 ).EQ.1 ) .AND. ( BETA.EQ.2 ) ) THEN
|
---|
1595 | *
|
---|
1596 | * Either there are an odd number of bits used to store a
|
---|
1597 | * floating-point number, which is unlikely, or some bits are
|
---|
1598 | * not used in the representation of numbers, which is possible,
|
---|
1599 | * (e.g. Cray machines) or the mantissa has an implicit bit,
|
---|
1600 | * (e.g. IEEE machines, Dec Vax machines), which is perhaps the
|
---|
1601 | * most likely. We have to assume the last alternative.
|
---|
1602 | * If this is true, then we need to reduce EMAX by one because
|
---|
1603 | * there must be some way of representing zero in an implicit-bit
|
---|
1604 | * system. On machines like Cray, we are reducing EMAX by one
|
---|
1605 | * unnecessarily.
|
---|
1606 | *
|
---|
1607 | EMAX = EMAX - 1
|
---|
1608 | END IF
|
---|
1609 | *
|
---|
1610 | IF( IEEE ) THEN
|
---|
1611 | *
|
---|
1612 | * Assume we are on an IEEE machine which reserves one exponent
|
---|
1613 | * for infinity and NaN.
|
---|
1614 | *
|
---|
1615 | EMAX = EMAX - 1
|
---|
1616 | END IF
|
---|
1617 | *
|
---|
1618 | * Now create RMAX, the largest machine number, which should
|
---|
1619 | * be equal to (1.0 - BETA**(-P)) * BETA**EMAX .
|
---|
1620 | *
|
---|
1621 | * First compute 1.0 - BETA**(-P), being careful that the
|
---|
1622 | * result is less than 1.0 .
|
---|
1623 | *
|
---|
1624 | RECBAS = ONE / BETA
|
---|
1625 | Z = BETA - ONE
|
---|
1626 | Y = ZERO
|
---|
1627 | DO 20 I = 1, P
|
---|
1628 | Z = Z*RECBAS
|
---|
1629 | IF( Y.LT.ONE )
|
---|
1630 | $ OLDY = Y
|
---|
1631 | Y = PDLAMC3( Y, Z )
|
---|
1632 | 20 CONTINUE
|
---|
1633 | IF( Y.GE.ONE )
|
---|
1634 | $ Y = OLDY
|
---|
1635 | *
|
---|
1636 | * Now multiply by BETA**EMAX to get RMAX.
|
---|
1637 | *
|
---|
1638 | DO 30 I = 1, EMAX
|
---|
1639 | Y = PDLAMC3( Y*BETA, ZERO )
|
---|
1640 | 30 CONTINUE
|
---|
1641 | *
|
---|
1642 | RMAX = Y
|
---|
1643 | RETURN
|
---|
1644 | *
|
---|
1645 | * End of DLAMC5
|
---|
1646 | *
|
---|
1647 | END
|
---|
1648 | DOUBLE PRECISION FUNCTION PDLANST( NORM, N, D, E )
|
---|
1649 | *
|
---|
1650 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
1651 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
1652 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
1653 | * February 29, 1992
|
---|
1654 | *
|
---|
1655 | * .. Scalar Arguments ..
|
---|
1656 | CHARACTER NORM
|
---|
1657 | INTEGER N
|
---|
1658 | * ..
|
---|
1659 | * .. Array Arguments ..
|
---|
1660 | DOUBLE PRECISION D( * ), E( * )
|
---|
1661 | * ..
|
---|
1662 | *
|
---|
1663 | * Purpose
|
---|
1664 | * =======
|
---|
1665 | *
|
---|
1666 | * DLANST returns the value of the one norm, or the Frobenius norm, or
|
---|
1667 | * the infinity norm, or the element of largest absolute value of a
|
---|
1668 | * real symmetric tridiagonal matrix A.
|
---|
1669 | *
|
---|
1670 | * Description
|
---|
1671 | * ===========
|
---|
1672 | *
|
---|
1673 | * DLANST returns the value
|
---|
1674 | *
|
---|
1675 | * DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
|
---|
1676 | * (
|
---|
1677 | * ( norm1(A), NORM = '1', 'O' or 'o'
|
---|
1678 | * (
|
---|
1679 | * ( normI(A), NORM = 'I' or 'i'
|
---|
1680 | * (
|
---|
1681 | * ( normF(A), NORM = 'F', 'f', 'E' or 'e'
|
---|
1682 | *
|
---|
1683 | * where norm1 denotes the one norm of a matrix (maximum column sum),
|
---|
1684 | * normI denotes the infinity norm of a matrix (maximum row sum) and
|
---|
1685 | * normF denotes the Frobenius norm of a matrix (square root of sum of
|
---|
1686 | * squares). Note that max(abs(A(i,j))) is not a matrix norm.
|
---|
1687 | *
|
---|
1688 | * Arguments
|
---|
1689 | * =========
|
---|
1690 | *
|
---|
1691 | * NORM (input) CHARACTER*1
|
---|
1692 | * Specifies the value to be returned in DLANST as described
|
---|
1693 | * above.
|
---|
1694 | *
|
---|
1695 | * N (input) INTEGER
|
---|
1696 | * The order of the matrix A. N >= 0. When N = 0, DLANST is
|
---|
1697 | * set to zero.
|
---|
1698 | *
|
---|
1699 | * D (input) DOUBLE PRECISION array, dimension (N)
|
---|
1700 | * The diagonal elements of A.
|
---|
1701 | *
|
---|
1702 | * E (input) DOUBLE PRECISION array, dimension (N-1)
|
---|
1703 | * The (n-1) sub-diagonal or super-diagonal elements of A.
|
---|
1704 | *
|
---|
1705 | * =====================================================================
|
---|
1706 | *
|
---|
1707 | * .. Parameters ..
|
---|
1708 | DOUBLE PRECISION ONE, ZERO
|
---|
1709 | PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
---|
1710 | * ..
|
---|
1711 | * .. Local Scalars ..
|
---|
1712 | INTEGER I
|
---|
1713 | DOUBLE PRECISION ANORM, SCALE, SUM
|
---|
1714 | * ..
|
---|
1715 | * .. External Functions ..
|
---|
1716 | LOGICAL PLSAME
|
---|
1717 | EXTERNAL PLSAME
|
---|
1718 | * ..
|
---|
1719 | * .. External Subroutines ..
|
---|
1720 | EXTERNAL PDLASSQ
|
---|
1721 | * ..
|
---|
1722 | * .. Intrinsic Functions ..
|
---|
1723 | INTRINSIC ABS, MAX, SQRT
|
---|
1724 | * ..
|
---|
1725 | * .. Executable Statements ..
|
---|
1726 | *
|
---|
1727 | IF( N.LE.0 ) THEN
|
---|
1728 | ANORM = ZERO
|
---|
1729 | ELSE IF( PLSAME( NORM, 'M' ) ) THEN
|
---|
1730 | *
|
---|
1731 | * Find max(abs(A(i,j))).
|
---|
1732 | *
|
---|
1733 | ANORM = ABS( D( N ) )
|
---|
1734 | DO 10 I = 1, N - 1
|
---|
1735 | ANORM = MAX( ANORM, ABS( D( I ) ) )
|
---|
1736 | ANORM = MAX( ANORM, ABS( E( I ) ) )
|
---|
1737 | 10 CONTINUE
|
---|
1738 | ELSE IF( PLSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
|
---|
1739 | $ PLSAME( NORM, 'I' ) ) THEN
|
---|
1740 | *
|
---|
1741 | * Find norm1(A).
|
---|
1742 | *
|
---|
1743 | IF( N.EQ.1 ) THEN
|
---|
1744 | ANORM = ABS( D( 1 ) )
|
---|
1745 | ELSE
|
---|
1746 | ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ),
|
---|
1747 | $ ABS( E( N-1 ) )+ABS( D( N ) ) )
|
---|
1748 | DO 20 I = 2, N - 1
|
---|
1749 | ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+
|
---|
1750 | $ ABS( E( I-1 ) ) )
|
---|
1751 | 20 CONTINUE
|
---|
1752 | END IF
|
---|
1753 | ELSE IF( ( PLSAME( NORM, 'F' ) ) .OR. ( PLSAME( NORM, 'E'))) THEN
|
---|
1754 | *
|
---|
1755 | * Find normF(A).
|
---|
1756 | *
|
---|
1757 | SCALE = ZERO
|
---|
1758 | SUM = ONE
|
---|
1759 | IF( N.GT.1 ) THEN
|
---|
1760 | CALL PDLASSQ( N-1, E, 1, SCALE, SUM )
|
---|
1761 | SUM = 2*SUM
|
---|
1762 | END IF
|
---|
1763 | CALL PDLASSQ( N, D, 1, SCALE, SUM )
|
---|
1764 | ANORM = SCALE*SQRT( SUM )
|
---|
1765 | END IF
|
---|
1766 | *
|
---|
1767 | PDLANST = ANORM
|
---|
1768 | RETURN
|
---|
1769 | *
|
---|
1770 | * End of DLANST
|
---|
1771 | *
|
---|
1772 | END
|
---|
1773 | DOUBLE PRECISION FUNCTION PDLAPY2( X, Y )
|
---|
1774 | *
|
---|
1775 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
1776 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
1777 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
1778 | * October 31, 1992
|
---|
1779 | *
|
---|
1780 | * .. Scalar Arguments ..
|
---|
1781 | DOUBLE PRECISION X, Y
|
---|
1782 | * ..
|
---|
1783 | *
|
---|
1784 | * Purpose
|
---|
1785 | * =======
|
---|
1786 | *
|
---|
1787 | * DLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary
|
---|
1788 | * overflow.
|
---|
1789 | *
|
---|
1790 | * Arguments
|
---|
1791 | * =========
|
---|
1792 | *
|
---|
1793 | * X (input) DOUBLE PRECISION
|
---|
1794 | * Y (input) DOUBLE PRECISION
|
---|
1795 | * X and Y specify the values x and y.
|
---|
1796 | *
|
---|
1797 | * =====================================================================
|
---|
1798 | *
|
---|
1799 | * .. Parameters ..
|
---|
1800 | DOUBLE PRECISION ZERO
|
---|
1801 | PARAMETER ( ZERO = 0.0D0 )
|
---|
1802 | DOUBLE PRECISION ONE
|
---|
1803 | PARAMETER ( ONE = 1.0D0 )
|
---|
1804 | * ..
|
---|
1805 | * .. Local Scalars ..
|
---|
1806 | DOUBLE PRECISION W, XABS, YABS, Z
|
---|
1807 | * ..
|
---|
1808 | * .. Intrinsic Functions ..
|
---|
1809 | INTRINSIC ABS, MAX, MIN, SQRT
|
---|
1810 | * ..
|
---|
1811 | * .. Executable Statements ..
|
---|
1812 | *
|
---|
1813 | XABS = ABS( X )
|
---|
1814 | YABS = ABS( Y )
|
---|
1815 | W = MAX( XABS, YABS )
|
---|
1816 | Z = MIN( XABS, YABS )
|
---|
1817 | IF( Z.EQ.ZERO ) THEN
|
---|
1818 | PDLAPY2 = W
|
---|
1819 | ELSE
|
---|
1820 | PDLAPY2 = W*SQRT( ONE+( Z / W )**2 )
|
---|
1821 | END IF
|
---|
1822 | RETURN
|
---|
1823 | *
|
---|
1824 | * End of DLAPY2
|
---|
1825 | *
|
---|
1826 | END
|
---|
1827 | SUBROUTINE PDLARTG( F, G, CS, SN, R )
|
---|
1828 | *
|
---|
1829 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
1830 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
1831 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
1832 | * September 30, 1994
|
---|
1833 | *
|
---|
1834 | * .. Scalar Arguments ..
|
---|
1835 | DOUBLE PRECISION CS, F, G, R, SN
|
---|
1836 | * ..
|
---|
1837 | *
|
---|
1838 | * Purpose
|
---|
1839 | * =======
|
---|
1840 | *
|
---|
1841 | * DLARTG generate a plane rotation so that
|
---|
1842 | *
|
---|
1843 | * [ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1.
|
---|
1844 | * [ -SN CS ] [ G ] [ 0 ]
|
---|
1845 | *
|
---|
1846 | * This is a slower, more accurate version of the BLAS1 routine DROTG,
|
---|
1847 | * with the following other differences:
|
---|
1848 | * F and G are unchanged on return.
|
---|
1849 | * If G=0, then CS=1 and SN=0.
|
---|
1850 | * If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any
|
---|
1851 | * floating point operations (saves work in DBDSQR when
|
---|
1852 | * there are zeros on the diagonal).
|
---|
1853 | *
|
---|
1854 | * If F exceeds G in magnitude, CS will be positive.
|
---|
1855 | *
|
---|
1856 | * Arguments
|
---|
1857 | * =========
|
---|
1858 | *
|
---|
1859 | * F (input) DOUBLE PRECISION
|
---|
1860 | * The first component of vector to be rotated.
|
---|
1861 | *
|
---|
1862 | * G (input) DOUBLE PRECISION
|
---|
1863 | * The second component of vector to be rotated.
|
---|
1864 | *
|
---|
1865 | * CS (output) DOUBLE PRECISION
|
---|
1866 | * The cosine of the rotation.
|
---|
1867 | *
|
---|
1868 | * SN (output) DOUBLE PRECISION
|
---|
1869 | * The sine of the rotation.
|
---|
1870 | *
|
---|
1871 | * R (output) DOUBLE PRECISION
|
---|
1872 | * The nonzero component of the rotated vector.
|
---|
1873 | *
|
---|
1874 | * =====================================================================
|
---|
1875 | *
|
---|
1876 | * .. Parameters ..
|
---|
1877 | DOUBLE PRECISION ZERO
|
---|
1878 | PARAMETER ( ZERO = 0.0D0 )
|
---|
1879 | DOUBLE PRECISION ONE
|
---|
1880 | PARAMETER ( ONE = 1.0D0 )
|
---|
1881 | DOUBLE PRECISION TWO
|
---|
1882 | PARAMETER ( TWO = 2.0D0 )
|
---|
1883 | * ..
|
---|
1884 | * .. Local Scalars ..
|
---|
1885 | LOGICAL FIRST
|
---|
1886 | INTEGER COUNT, I
|
---|
1887 | DOUBLE PRECISION EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALE
|
---|
1888 | * ..
|
---|
1889 | * .. External Functions ..
|
---|
1890 | DOUBLE PRECISION PDLAMCH
|
---|
1891 | EXTERNAL PDLAMCH
|
---|
1892 | * ..
|
---|
1893 | * .. Intrinsic Functions ..
|
---|
1894 | INTRINSIC ABS, INT, LOG, MAX, SQRT
|
---|
1895 | * ..
|
---|
1896 | * .. Save statement ..
|
---|
1897 | SAVE FIRST, SAFMX2, SAFMIN, SAFMN2
|
---|
1898 | * ..
|
---|
1899 | * .. Data statements ..
|
---|
1900 | DATA FIRST / .TRUE. /
|
---|
1901 | * ..
|
---|
1902 | * .. Executable Statements ..
|
---|
1903 | *
|
---|
1904 | IF( FIRST ) THEN
|
---|
1905 | FIRST = .FALSE.
|
---|
1906 | SAFMIN = PDLAMCH( 'S' )
|
---|
1907 | EPS = PDLAMCH( 'E' )
|
---|
1908 | SAFMN2 = PDLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
|
---|
1909 | $ LOG( PDLAMCH( 'B' ) ) / TWO )
|
---|
1910 | SAFMX2 = ONE / SAFMN2
|
---|
1911 | END IF
|
---|
1912 | IF( G.EQ.ZERO ) THEN
|
---|
1913 | CS = ONE
|
---|
1914 | SN = ZERO
|
---|
1915 | R = F
|
---|
1916 | ELSE IF( F.EQ.ZERO ) THEN
|
---|
1917 | CS = ZERO
|
---|
1918 | SN = ONE
|
---|
1919 | R = G
|
---|
1920 | ELSE
|
---|
1921 | F1 = F
|
---|
1922 | G1 = G
|
---|
1923 | SCALE = MAX( ABS( F1 ), ABS( G1 ) )
|
---|
1924 | IF( SCALE.GE.SAFMX2 ) THEN
|
---|
1925 | COUNT = 0
|
---|
1926 | 10 CONTINUE
|
---|
1927 | COUNT = COUNT + 1
|
---|
1928 | F1 = F1*SAFMN2
|
---|
1929 | G1 = G1*SAFMN2
|
---|
1930 | SCALE = MAX( ABS( F1 ), ABS( G1 ) )
|
---|
1931 | IF( SCALE.GE.SAFMX2 )
|
---|
1932 | $ GO TO 10
|
---|
1933 | R = SQRT( F1**2+G1**2 )
|
---|
1934 | CS = F1 / R
|
---|
1935 | SN = G1 / R
|
---|
1936 | DO 20 I = 1, COUNT
|
---|
1937 | R = R*SAFMX2
|
---|
1938 | 20 CONTINUE
|
---|
1939 | ELSE IF( SCALE.LE.SAFMN2 ) THEN
|
---|
1940 | COUNT = 0
|
---|
1941 | 30 CONTINUE
|
---|
1942 | COUNT = COUNT + 1
|
---|
1943 | F1 = F1*SAFMX2
|
---|
1944 | G1 = G1*SAFMX2
|
---|
1945 | SCALE = MAX( ABS( F1 ), ABS( G1 ) )
|
---|
1946 | IF( SCALE.LE.SAFMN2 )
|
---|
1947 | $ GO TO 30
|
---|
1948 | R = SQRT( F1**2+G1**2 )
|
---|
1949 | CS = F1 / R
|
---|
1950 | SN = G1 / R
|
---|
1951 | DO 40 I = 1, COUNT
|
---|
1952 | R = R*SAFMN2
|
---|
1953 | 40 CONTINUE
|
---|
1954 | ELSE
|
---|
1955 | R = SQRT( F1**2+G1**2 )
|
---|
1956 | CS = F1 / R
|
---|
1957 | SN = G1 / R
|
---|
1958 | END IF
|
---|
1959 | IF( ABS( F ).GT.ABS( G ) .AND. CS.LT.ZERO ) THEN
|
---|
1960 | CS = -CS
|
---|
1961 | SN = -SN
|
---|
1962 | R = -R
|
---|
1963 | END IF
|
---|
1964 | END IF
|
---|
1965 | RETURN
|
---|
1966 | *
|
---|
1967 | * End of DLARTG
|
---|
1968 | *
|
---|
1969 | END
|
---|
1970 | SUBROUTINE PDLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
|
---|
1971 | *
|
---|
1972 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
1973 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
1974 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
1975 | * February 29, 1992
|
---|
1976 | *
|
---|
1977 | * .. Scalar Arguments ..
|
---|
1978 | CHARACTER TYPE
|
---|
1979 | INTEGER INFO, KL, KU, LDA, M, N
|
---|
1980 | DOUBLE PRECISION CFROM, CTO
|
---|
1981 | * ..
|
---|
1982 | * .. Array Arguments ..
|
---|
1983 | DOUBLE PRECISION A( LDA, * )
|
---|
1984 | * ..
|
---|
1985 | *
|
---|
1986 | * Purpose
|
---|
1987 | * =======
|
---|
1988 | *
|
---|
1989 | * DLASCL multiplies the M by N real matrix A by the real scalar
|
---|
1990 | * CTO/CFROM. This is done without over/underflow as long as the final
|
---|
1991 | * result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
|
---|
1992 | * A may be full, upper triangular, lower triangular, upper Hessenberg,
|
---|
1993 | * or banded.
|
---|
1994 | *
|
---|
1995 | * Arguments
|
---|
1996 | * =========
|
---|
1997 | *
|
---|
1998 | * TYPE (input) CHARACTER*1
|
---|
1999 | * TYPE indices the storage type of the input matrix.
|
---|
2000 | * = 'G': A is a full matrix.
|
---|
2001 | * = 'L': A is a lower triangular matrix.
|
---|
2002 | * = 'U': A is an upper triangular matrix.
|
---|
2003 | * = 'H': A is an upper Hessenberg matrix.
|
---|
2004 | * = 'B': A is a symmetric band matrix with lower bandwidth KL
|
---|
2005 | * and upper bandwidth KU and with the only the lower
|
---|
2006 | * half stored.
|
---|
2007 | * = 'Q': A is a symmetric band matrix with lower bandwidth KL
|
---|
2008 | * and upper bandwidth KU and with the only the upper
|
---|
2009 | * half stored.
|
---|
2010 | * = 'Z': A is a band matrix with lower bandwidth KL and upper
|
---|
2011 | * bandwidth KU.
|
---|
2012 | *
|
---|
2013 | * KL (input) INTEGER
|
---|
2014 | * The lower bandwidth of A. Referenced only if TYPE = 'B',
|
---|
2015 | * 'Q' or 'Z'.
|
---|
2016 | *
|
---|
2017 | * KU (input) INTEGER
|
---|
2018 | * The upper bandwidth of A. Referenced only if TYPE = 'B',
|
---|
2019 | * 'Q' or 'Z'.
|
---|
2020 | *
|
---|
2021 | * CFROM (input) DOUBLE PRECISION
|
---|
2022 | * CTO (input) DOUBLE PRECISION
|
---|
2023 | * The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
|
---|
2024 | * without over/underflow if the final result CTO*A(I,J)/CFROM
|
---|
2025 | * can be represented without over/underflow. CFROM must be
|
---|
2026 | * nonzero.
|
---|
2027 | *
|
---|
2028 | * M (input) INTEGER
|
---|
2029 | * The number of rows of the matrix A. M >= 0.
|
---|
2030 | *
|
---|
2031 | * N (input) INTEGER
|
---|
2032 | * The number of columns of the matrix A. N >= 0.
|
---|
2033 | *
|
---|
2034 | * A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
|
---|
2035 | * The matrix to be multiplied by CTO/CFROM. See TYPE for the
|
---|
2036 | * storage type.
|
---|
2037 | *
|
---|
2038 | * LDA (input) INTEGER
|
---|
2039 | * The leading dimension of the array A. LDA >= max(1,M).
|
---|
2040 | *
|
---|
2041 | * INFO (output) INTEGER
|
---|
2042 | * 0 - successful exit
|
---|
2043 | * <0 - if INFO = -i, the i-th argument had an illegal value.
|
---|
2044 | *
|
---|
2045 | * =====================================================================
|
---|
2046 | *
|
---|
2047 | * .. Parameters ..
|
---|
2048 | DOUBLE PRECISION ZERO, ONE
|
---|
2049 | PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
---|
2050 | * ..
|
---|
2051 | * .. Local Scalars ..
|
---|
2052 | LOGICAL DONE
|
---|
2053 | INTEGER I, ITYPE, J, K1, K2, K3, K4
|
---|
2054 | DOUBLE PRECISION BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
|
---|
2055 | * ..
|
---|
2056 | * .. External Functions ..
|
---|
2057 | LOGICAL PLSAME
|
---|
2058 | DOUBLE PRECISION PDLAMCH
|
---|
2059 | EXTERNAL PLSAME, PDLAMCH
|
---|
2060 | * ..
|
---|
2061 | * .. Intrinsic Functions ..
|
---|
2062 | INTRINSIC ABS, MAX, MIN
|
---|
2063 | * ..
|
---|
2064 | * .. External Subroutines ..
|
---|
2065 | EXTERNAL PXERBLA
|
---|
2066 | * ..
|
---|
2067 | * .. Executable Statements ..
|
---|
2068 | *
|
---|
2069 | * Test the input arguments
|
---|
2070 | *
|
---|
2071 | INFO = 0
|
---|
2072 | *
|
---|
2073 | IF( PLSAME( TYPE, 'G' ) ) THEN
|
---|
2074 | ITYPE = 0
|
---|
2075 | ELSE IF( PLSAME( TYPE, 'L' ) ) THEN
|
---|
2076 | ITYPE = 1
|
---|
2077 | ELSE IF( PLSAME( TYPE, 'U' ) ) THEN
|
---|
2078 | ITYPE = 2
|
---|
2079 | ELSE IF( PLSAME( TYPE, 'H' ) ) THEN
|
---|
2080 | ITYPE = 3
|
---|
2081 | ELSE IF( PLSAME( TYPE, 'B' ) ) THEN
|
---|
2082 | ITYPE = 4
|
---|
2083 | ELSE IF( PLSAME( TYPE, 'Q' ) ) THEN
|
---|
2084 | ITYPE = 5
|
---|
2085 | ELSE IF( PLSAME( TYPE, 'Z' ) ) THEN
|
---|
2086 | ITYPE = 6
|
---|
2087 | ELSE
|
---|
2088 | ITYPE = -1
|
---|
2089 | END IF
|
---|
2090 | *
|
---|
2091 | IF( ITYPE.EQ.-1 ) THEN
|
---|
2092 | INFO = -1
|
---|
2093 | ELSE IF( CFROM.EQ.ZERO ) THEN
|
---|
2094 | INFO = -4
|
---|
2095 | ELSE IF( M.LT.0 ) THEN
|
---|
2096 | INFO = -6
|
---|
2097 | ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR.
|
---|
2098 | $ ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
|
---|
2099 | INFO = -7
|
---|
2100 | ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
|
---|
2101 | INFO = -9
|
---|
2102 | ELSE IF( ITYPE.GE.4 ) THEN
|
---|
2103 | IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
|
---|
2104 | INFO = -2
|
---|
2105 | ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
|
---|
2106 | $ ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
|
---|
2107 | $ THEN
|
---|
2108 | INFO = -3
|
---|
2109 | ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
|
---|
2110 | $ ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
|
---|
2111 | $ ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
|
---|
2112 | INFO = -9
|
---|
2113 | END IF
|
---|
2114 | END IF
|
---|
2115 | *
|
---|
2116 | IF( INFO.NE.0 ) THEN
|
---|
2117 | CALL PXERBLA( 'PDLASCL', -INFO )
|
---|
2118 | RETURN
|
---|
2119 | END IF
|
---|
2120 | *
|
---|
2121 | * Quick return if possible
|
---|
2122 | *
|
---|
2123 | IF( N.EQ.0 .OR. M.EQ.0 )
|
---|
2124 | $ RETURN
|
---|
2125 | *
|
---|
2126 | * Get machine parameters
|
---|
2127 | *
|
---|
2128 | SMLNUM = PDLAMCH( 'S' )
|
---|
2129 | BIGNUM = ONE / SMLNUM
|
---|
2130 | *
|
---|
2131 | CFROMC = CFROM
|
---|
2132 | CTOC = CTO
|
---|
2133 | *
|
---|
2134 | 10 CONTINUE
|
---|
2135 | CFROM1 = CFROMC*SMLNUM
|
---|
2136 | CTO1 = CTOC / BIGNUM
|
---|
2137 | IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
|
---|
2138 | MUL = SMLNUM
|
---|
2139 | DONE = .FALSE.
|
---|
2140 | CFROMC = CFROM1
|
---|
2141 | ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
|
---|
2142 | MUL = BIGNUM
|
---|
2143 | DONE = .FALSE.
|
---|
2144 | CTOC = CTO1
|
---|
2145 | ELSE
|
---|
2146 | MUL = CTOC / CFROMC
|
---|
2147 | DONE = .TRUE.
|
---|
2148 | END IF
|
---|
2149 | *
|
---|
2150 | IF( ITYPE.EQ.0 ) THEN
|
---|
2151 | *
|
---|
2152 | * Full matrix
|
---|
2153 | *
|
---|
2154 | DO 30 J = 1, N
|
---|
2155 | DO 20 I = 1, M
|
---|
2156 | A( I, J ) = A( I, J )*MUL
|
---|
2157 | 20 CONTINUE
|
---|
2158 | 30 CONTINUE
|
---|
2159 | *
|
---|
2160 | ELSE IF( ITYPE.EQ.1 ) THEN
|
---|
2161 | *
|
---|
2162 | * Lower triangular matrix
|
---|
2163 | *
|
---|
2164 | DO 50 J = 1, N
|
---|
2165 | DO 40 I = J, M
|
---|
2166 | A( I, J ) = A( I, J )*MUL
|
---|
2167 | 40 CONTINUE
|
---|
2168 | 50 CONTINUE
|
---|
2169 | *
|
---|
2170 | ELSE IF( ITYPE.EQ.2 ) THEN
|
---|
2171 | *
|
---|
2172 | * Upper triangular matrix
|
---|
2173 | *
|
---|
2174 | DO 70 J = 1, N
|
---|
2175 | DO 60 I = 1, MIN( J, M )
|
---|
2176 | A( I, J ) = A( I, J )*MUL
|
---|
2177 | 60 CONTINUE
|
---|
2178 | 70 CONTINUE
|
---|
2179 | *
|
---|
2180 | ELSE IF( ITYPE.EQ.3 ) THEN
|
---|
2181 | *
|
---|
2182 | * Upper Hessenberg matrix
|
---|
2183 | *
|
---|
2184 | DO 90 J = 1, N
|
---|
2185 | DO 80 I = 1, MIN( J+1, M )
|
---|
2186 | A( I, J ) = A( I, J )*MUL
|
---|
2187 | 80 CONTINUE
|
---|
2188 | 90 CONTINUE
|
---|
2189 | *
|
---|
2190 | ELSE IF( ITYPE.EQ.4 ) THEN
|
---|
2191 | *
|
---|
2192 | * Lower half of a symmetric band matrix
|
---|
2193 | *
|
---|
2194 | K3 = KL + 1
|
---|
2195 | K4 = N + 1
|
---|
2196 | DO 110 J = 1, N
|
---|
2197 | DO 100 I = 1, MIN( K3, K4-J )
|
---|
2198 | A( I, J ) = A( I, J )*MUL
|
---|
2199 | 100 CONTINUE
|
---|
2200 | 110 CONTINUE
|
---|
2201 | *
|
---|
2202 | ELSE IF( ITYPE.EQ.5 ) THEN
|
---|
2203 | *
|
---|
2204 | * Upper half of a symmetric band matrix
|
---|
2205 | *
|
---|
2206 | K1 = KU + 2
|
---|
2207 | K3 = KU + 1
|
---|
2208 | DO 130 J = 1, N
|
---|
2209 | DO 120 I = MAX( K1-J, 1 ), K3
|
---|
2210 | A( I, J ) = A( I, J )*MUL
|
---|
2211 | 120 CONTINUE
|
---|
2212 | 130 CONTINUE
|
---|
2213 | *
|
---|
2214 | ELSE IF( ITYPE.EQ.6 ) THEN
|
---|
2215 | *
|
---|
2216 | * Band matrix
|
---|
2217 | *
|
---|
2218 | K1 = KL + KU + 2
|
---|
2219 | K2 = KL + 1
|
---|
2220 | K3 = 2*KL + KU + 1
|
---|
2221 | K4 = KL + KU + 1 + M
|
---|
2222 | DO 150 J = 1, N
|
---|
2223 | DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
|
---|
2224 | A( I, J ) = A( I, J )*MUL
|
---|
2225 | 140 CONTINUE
|
---|
2226 | 150 CONTINUE
|
---|
2227 | *
|
---|
2228 | END IF
|
---|
2229 | *
|
---|
2230 | IF( .NOT.DONE )
|
---|
2231 | $ GO TO 10
|
---|
2232 | *
|
---|
2233 | RETURN
|
---|
2234 | *
|
---|
2235 | * End of DLASCL
|
---|
2236 | *
|
---|
2237 | END
|
---|
2238 | SUBROUTINE PDLASET( UPLO, M, N, ALPHA, BETA, A, LDA )
|
---|
2239 | *
|
---|
2240 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
2241 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
2242 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
2243 | * October 31, 1992
|
---|
2244 | *
|
---|
2245 | * .. Scalar Arguments ..
|
---|
2246 | CHARACTER UPLO
|
---|
2247 | INTEGER LDA, M, N
|
---|
2248 | DOUBLE PRECISION ALPHA, BETA
|
---|
2249 | * ..
|
---|
2250 | * .. Array Arguments ..
|
---|
2251 | DOUBLE PRECISION A( LDA, * )
|
---|
2252 | * ..
|
---|
2253 | *
|
---|
2254 | * Purpose
|
---|
2255 | * =======
|
---|
2256 | *
|
---|
2257 | * DLASET initializes an m-by-n matrix A to BETA on the diagonal and
|
---|
2258 | * ALPHA on the offdiagonals.
|
---|
2259 | *
|
---|
2260 | * Arguments
|
---|
2261 | * =========
|
---|
2262 | *
|
---|
2263 | * UPLO (input) CHARACTER*1
|
---|
2264 | * Specifies the part of the matrix A to be set.
|
---|
2265 | * = 'U': Upper triangular part is set; the strictly lower
|
---|
2266 | * triangular part of A is not changed.
|
---|
2267 | * = 'L': Lower triangular part is set; the strictly upper
|
---|
2268 | * triangular part of A is not changed.
|
---|
2269 | * Otherwise: All of the matrix A is set.
|
---|
2270 | *
|
---|
2271 | * M (input) INTEGER
|
---|
2272 | * The number of rows of the matrix A. M >= 0.
|
---|
2273 | *
|
---|
2274 | * N (input) INTEGER
|
---|
2275 | * The number of columns of the matrix A. N >= 0.
|
---|
2276 | *
|
---|
2277 | * ALPHA (input) DOUBLE PRECISION
|
---|
2278 | * The constant to which the offdiagonal elements are to be set.
|
---|
2279 | *
|
---|
2280 | * BETA (input) DOUBLE PRECISION
|
---|
2281 | * The constant to which the diagonal elements are to be set.
|
---|
2282 | *
|
---|
2283 | * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
---|
2284 | * On exit, the leading m-by-n submatrix of A is set as follows:
|
---|
2285 | *
|
---|
2286 | * if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n,
|
---|
2287 | * if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n,
|
---|
2288 | * otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j,
|
---|
2289 | *
|
---|
2290 | * and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n).
|
---|
2291 | *
|
---|
2292 | * LDA (input) INTEGER
|
---|
2293 | * The leading dimension of the array A. LDA >= max(1,M).
|
---|
2294 | *
|
---|
2295 | * =====================================================================
|
---|
2296 | *
|
---|
2297 | * .. Local Scalars ..
|
---|
2298 | INTEGER I, J
|
---|
2299 | * ..
|
---|
2300 | * .. External Functions ..
|
---|
2301 | LOGICAL PLSAME
|
---|
2302 | EXTERNAL PLSAME
|
---|
2303 | * ..
|
---|
2304 | * .. Intrinsic Functions ..
|
---|
2305 | INTRINSIC MIN
|
---|
2306 | * ..
|
---|
2307 | * .. Executable Statements ..
|
---|
2308 | *
|
---|
2309 | IF( PLSAME( UPLO, 'U' ) ) THEN
|
---|
2310 | *
|
---|
2311 | * Set the strictly upper triangular or trapezoidal part of the
|
---|
2312 | * array to ALPHA.
|
---|
2313 | *
|
---|
2314 | DO 20 J = 2, N
|
---|
2315 | DO 10 I = 1, MIN( J-1, M )
|
---|
2316 | A( I, J ) = ALPHA
|
---|
2317 | 10 CONTINUE
|
---|
2318 | 20 CONTINUE
|
---|
2319 | *
|
---|
2320 | ELSE IF( PLSAME( UPLO, 'L' ) ) THEN
|
---|
2321 | *
|
---|
2322 | * Set the strictly lower triangular or trapezoidal part of the
|
---|
2323 | * array to ALPHA.
|
---|
2324 | *
|
---|
2325 | DO 40 J = 1, MIN( M, N )
|
---|
2326 | DO 30 I = J + 1, M
|
---|
2327 | A( I, J ) = ALPHA
|
---|
2328 | 30 CONTINUE
|
---|
2329 | 40 CONTINUE
|
---|
2330 | *
|
---|
2331 | ELSE
|
---|
2332 | *
|
---|
2333 | * Set the leading m-by-n submatrix to ALPHA.
|
---|
2334 | *
|
---|
2335 | DO 60 J = 1, N
|
---|
2336 | DO 50 I = 1, M
|
---|
2337 | A( I, J ) = ALPHA
|
---|
2338 | 50 CONTINUE
|
---|
2339 | 60 CONTINUE
|
---|
2340 | END IF
|
---|
2341 | *
|
---|
2342 | * Set the first min(M,N) diagonal elements to BETA.
|
---|
2343 | *
|
---|
2344 | DO 70 I = 1, MIN( M, N )
|
---|
2345 | A( I, I ) = BETA
|
---|
2346 | 70 CONTINUE
|
---|
2347 | *
|
---|
2348 | RETURN
|
---|
2349 | *
|
---|
2350 | * End of DLASET
|
---|
2351 | *
|
---|
2352 | END
|
---|
2353 | SUBROUTINE PDLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
|
---|
2354 | *
|
---|
2355 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
2356 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
2357 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
2358 | * October 31, 1992
|
---|
2359 | *
|
---|
2360 | * .. Scalar Arguments ..
|
---|
2361 | CHARACTER DIRECT, PIVOT, SIDE
|
---|
2362 | INTEGER LDA, M, N
|
---|
2363 | * ..
|
---|
2364 | * .. Array Arguments ..
|
---|
2365 | DOUBLE PRECISION A( LDA, * ), C( * ), S( * )
|
---|
2366 | * ..
|
---|
2367 | *
|
---|
2368 | * Purpose
|
---|
2369 | * =======
|
---|
2370 | *
|
---|
2371 | * DLASR performs the transformation
|
---|
2372 | *
|
---|
2373 | * A := P*A, when SIDE = 'L' or 'l' ( Left-hand side )
|
---|
2374 | *
|
---|
2375 | * A := A*P', when SIDE = 'R' or 'r' ( Right-hand side )
|
---|
2376 | *
|
---|
2377 | * where A is an m by n real matrix and P is an orthogonal matrix,
|
---|
2378 | * consisting of a sequence of plane rotations determined by the
|
---|
2379 | * parameters PIVOT and DIRECT as follows ( z = m when SIDE = 'L' or 'l'
|
---|
2380 | * and z = n when SIDE = 'R' or 'r' ):
|
---|
2381 | *
|
---|
2382 | * When DIRECT = 'F' or 'f' ( Forward sequence ) then
|
---|
2383 | *
|
---|
2384 | * P = P( z - 1 )*...*P( 2 )*P( 1 ),
|
---|
2385 | *
|
---|
2386 | * and when DIRECT = 'B' or 'b' ( Backward sequence ) then
|
---|
2387 | *
|
---|
2388 | * P = P( 1 )*P( 2 )*...*P( z - 1 ),
|
---|
2389 | *
|
---|
2390 | * where P( k ) is a plane rotation matrix for the following planes:
|
---|
2391 | *
|
---|
2392 | * when PIVOT = 'V' or 'v' ( Variable pivot ),
|
---|
2393 | * the plane ( k, k + 1 )
|
---|
2394 | *
|
---|
2395 | * when PIVOT = 'T' or 't' ( Top pivot ),
|
---|
2396 | * the plane ( 1, k + 1 )
|
---|
2397 | *
|
---|
2398 | * when PIVOT = 'B' or 'b' ( Bottom pivot ),
|
---|
2399 | * the plane ( k, z )
|
---|
2400 | *
|
---|
2401 | * c( k ) and s( k ) must contain the cosine and sine that define the
|
---|
2402 | * matrix P( k ). The two by two plane rotation part of the matrix
|
---|
2403 | * P( k ), R( k ), is assumed to be of the form
|
---|
2404 | *
|
---|
2405 | * R( k ) = ( c( k ) s( k ) ).
|
---|
2406 | * ( -s( k ) c( k ) )
|
---|
2407 | *
|
---|
2408 | * This version vectorises across rows of the array A when SIDE = 'L'.
|
---|
2409 | *
|
---|
2410 | * Arguments
|
---|
2411 | * =========
|
---|
2412 | *
|
---|
2413 | * SIDE (input) CHARACTER*1
|
---|
2414 | * Specifies whether the plane rotation matrix P is applied to
|
---|
2415 | * A on the left or the right.
|
---|
2416 | * = 'L': Left, compute A := P*A
|
---|
2417 | * = 'R': Right, compute A:= A*P'
|
---|
2418 | *
|
---|
2419 | * DIRECT (input) CHARACTER*1
|
---|
2420 | * Specifies whether P is a forward or backward sequence of
|
---|
2421 | * plane rotations.
|
---|
2422 | * = 'F': Forward, P = P( z - 1 )*...*P( 2 )*P( 1 )
|
---|
2423 | * = 'B': Backward, P = P( 1 )*P( 2 )*...*P( z - 1 )
|
---|
2424 | *
|
---|
2425 | * PIVOT (input) CHARACTER*1
|
---|
2426 | * Specifies the plane for which P(k) is a plane rotation
|
---|
2427 | * matrix.
|
---|
2428 | * = 'V': Variable pivot, the plane (k,k+1)
|
---|
2429 | * = 'T': Top pivot, the plane (1,k+1)
|
---|
2430 | * = 'B': Bottom pivot, the plane (k,z)
|
---|
2431 | *
|
---|
2432 | * M (input) INTEGER
|
---|
2433 | * The number of rows of the matrix A. If m <= 1, an immediate
|
---|
2434 | * return is effected.
|
---|
2435 | *
|
---|
2436 | * N (input) INTEGER
|
---|
2437 | * The number of columns of the matrix A. If n <= 1, an
|
---|
2438 | * immediate return is effected.
|
---|
2439 | *
|
---|
2440 | * C, S (input) DOUBLE PRECISION arrays, dimension
|
---|
2441 | * (M-1) if SIDE = 'L'
|
---|
2442 | * (N-1) if SIDE = 'R'
|
---|
2443 | * c(k) and s(k) contain the cosine and sine that define the
|
---|
2444 | * matrix P(k). The two by two plane rotation part of the
|
---|
2445 | * matrix P(k), R(k), is assumed to be of the form
|
---|
2446 | * R( k ) = ( c( k ) s( k ) ).
|
---|
2447 | * ( -s( k ) c( k ) )
|
---|
2448 | *
|
---|
2449 | * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
---|
2450 | * The m by n matrix A. On exit, A is overwritten by P*A if
|
---|
2451 | * SIDE = 'R' or by A*P' if SIDE = 'L'.
|
---|
2452 | *
|
---|
2453 | * LDA (input) INTEGER
|
---|
2454 | * The leading dimension of the array A. LDA >= max(1,M).
|
---|
2455 | *
|
---|
2456 | * =====================================================================
|
---|
2457 | *
|
---|
2458 | * .. Parameters ..
|
---|
2459 | DOUBLE PRECISION ONE, ZERO
|
---|
2460 | PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
---|
2461 | * ..
|
---|
2462 | * .. Local Scalars ..
|
---|
2463 | INTEGER I, INFO, J
|
---|
2464 | DOUBLE PRECISION CTEMP, STEMP, TEMP
|
---|
2465 | * ..
|
---|
2466 | * .. External Functions ..
|
---|
2467 | LOGICAL PLSAME
|
---|
2468 | EXTERNAL PLSAME
|
---|
2469 | * ..
|
---|
2470 | * .. External Subroutines ..
|
---|
2471 | EXTERNAL PXERBLA
|
---|
2472 | * ..
|
---|
2473 | * .. Intrinsic Functions ..
|
---|
2474 | INTRINSIC MAX
|
---|
2475 | * ..
|
---|
2476 | * .. Executable Statements ..
|
---|
2477 | *
|
---|
2478 | * Test the input parameters
|
---|
2479 | *
|
---|
2480 | INFO = 0
|
---|
2481 | IF( .NOT.( PLSAME( SIDE, 'L' ) .OR. PLSAME( SIDE, 'R' ) ) ) THEN
|
---|
2482 | INFO = 1
|
---|
2483 | ELSE IF( .NOT.( PLSAME( PIVOT, 'V' ) .OR. PLSAME( PIVOT,
|
---|
2484 | $ 'T' ) .OR. PLSAME( PIVOT, 'B' ) ) ) THEN
|
---|
2485 | INFO = 2
|
---|
2486 | ELSE IF( .NOT.( PLSAME( DIRECT, 'F' ) .OR. PLSAME( DIRECT, 'B' )))
|
---|
2487 | $ THEN
|
---|
2488 | INFO = 3
|
---|
2489 | ELSE IF( M.LT.0 ) THEN
|
---|
2490 | INFO = 4
|
---|
2491 | ELSE IF( N.LT.0 ) THEN
|
---|
2492 | INFO = 5
|
---|
2493 | ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
---|
2494 | INFO = 9
|
---|
2495 | END IF
|
---|
2496 | IF( INFO.NE.0 ) THEN
|
---|
2497 | CALL PXERBLA( 'PDLASR ', INFO )
|
---|
2498 | RETURN
|
---|
2499 | END IF
|
---|
2500 | *
|
---|
2501 | * Quick return if possible
|
---|
2502 | *
|
---|
2503 | IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
|
---|
2504 | $ RETURN
|
---|
2505 | IF( PLSAME( SIDE, 'L' ) ) THEN
|
---|
2506 | *
|
---|
2507 | * Form P * A
|
---|
2508 | *
|
---|
2509 | IF( PLSAME( PIVOT, 'V' ) ) THEN
|
---|
2510 | IF( PLSAME( DIRECT, 'F' ) ) THEN
|
---|
2511 | DO 20 J = 1, M - 1
|
---|
2512 | CTEMP = C( J )
|
---|
2513 | STEMP = S( J )
|
---|
2514 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
---|
2515 | DO 10 I = 1, N
|
---|
2516 | TEMP = A( J+1, I )
|
---|
2517 | A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
|
---|
2518 | A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
|
---|
2519 | 10 CONTINUE
|
---|
2520 | END IF
|
---|
2521 | 20 CONTINUE
|
---|
2522 | ELSE IF( PLSAME( DIRECT, 'B' ) ) THEN
|
---|
2523 | DO 40 J = M - 1, 1, -1
|
---|
2524 | CTEMP = C( J )
|
---|
2525 | STEMP = S( J )
|
---|
2526 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
---|
2527 | DO 30 I = 1, N
|
---|
2528 | TEMP = A( J+1, I )
|
---|
2529 | A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
|
---|
2530 | A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
|
---|
2531 | 30 CONTINUE
|
---|
2532 | END IF
|
---|
2533 | 40 CONTINUE
|
---|
2534 | END IF
|
---|
2535 | ELSE IF( PLSAME( PIVOT, 'T' ) ) THEN
|
---|
2536 | IF( PLSAME( DIRECT, 'F' ) ) THEN
|
---|
2537 | DO 60 J = 2, M
|
---|
2538 | CTEMP = C( J-1 )
|
---|
2539 | STEMP = S( J-1 )
|
---|
2540 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
---|
2541 | DO 50 I = 1, N
|
---|
2542 | TEMP = A( J, I )
|
---|
2543 | A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
|
---|
2544 | A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
|
---|
2545 | 50 CONTINUE
|
---|
2546 | END IF
|
---|
2547 | 60 CONTINUE
|
---|
2548 | ELSE IF( PLSAME( DIRECT, 'B' ) ) THEN
|
---|
2549 | DO 80 J = M, 2, -1
|
---|
2550 | CTEMP = C( J-1 )
|
---|
2551 | STEMP = S( J-1 )
|
---|
2552 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
---|
2553 | DO 70 I = 1, N
|
---|
2554 | TEMP = A( J, I )
|
---|
2555 | A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
|
---|
2556 | A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
|
---|
2557 | 70 CONTINUE
|
---|
2558 | END IF
|
---|
2559 | 80 CONTINUE
|
---|
2560 | END IF
|
---|
2561 | ELSE IF( PLSAME( PIVOT, 'B' ) ) THEN
|
---|
2562 | IF( PLSAME( DIRECT, 'F' ) ) THEN
|
---|
2563 | DO 100 J = 1, M - 1
|
---|
2564 | CTEMP = C( J )
|
---|
2565 | STEMP = S( J )
|
---|
2566 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
---|
2567 | DO 90 I = 1, N
|
---|
2568 | TEMP = A( J, I )
|
---|
2569 | A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
|
---|
2570 | A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
|
---|
2571 | 90 CONTINUE
|
---|
2572 | END IF
|
---|
2573 | 100 CONTINUE
|
---|
2574 | ELSE IF( PLSAME( DIRECT, 'B' ) ) THEN
|
---|
2575 | DO 120 J = M - 1, 1, -1
|
---|
2576 | CTEMP = C( J )
|
---|
2577 | STEMP = S( J )
|
---|
2578 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
---|
2579 | DO 110 I = 1, N
|
---|
2580 | TEMP = A( J, I )
|
---|
2581 | A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
|
---|
2582 | A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
|
---|
2583 | 110 CONTINUE
|
---|
2584 | END IF
|
---|
2585 | 120 CONTINUE
|
---|
2586 | END IF
|
---|
2587 | END IF
|
---|
2588 | ELSE IF( PLSAME( SIDE, 'R' ) ) THEN
|
---|
2589 | *
|
---|
2590 | * Form A * P'
|
---|
2591 | *
|
---|
2592 | IF( PLSAME( PIVOT, 'V' ) ) THEN
|
---|
2593 | IF( PLSAME( DIRECT, 'F' ) ) THEN
|
---|
2594 | DO 140 J = 1, N - 1
|
---|
2595 | CTEMP = C( J )
|
---|
2596 | STEMP = S( J )
|
---|
2597 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
---|
2598 | DO 130 I = 1, M
|
---|
2599 | TEMP = A( I, J+1 )
|
---|
2600 | A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
|
---|
2601 | A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
|
---|
2602 | 130 CONTINUE
|
---|
2603 | END IF
|
---|
2604 | 140 CONTINUE
|
---|
2605 | ELSE IF( PLSAME( DIRECT, 'B' ) ) THEN
|
---|
2606 | DO 160 J = N - 1, 1, -1
|
---|
2607 | CTEMP = C( J )
|
---|
2608 | STEMP = S( J )
|
---|
2609 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
---|
2610 | DO 150 I = 1, M
|
---|
2611 | TEMP = A( I, J+1 )
|
---|
2612 | A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
|
---|
2613 | A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
|
---|
2614 | 150 CONTINUE
|
---|
2615 | END IF
|
---|
2616 | 160 CONTINUE
|
---|
2617 | END IF
|
---|
2618 | ELSE IF( PLSAME( PIVOT, 'T' ) ) THEN
|
---|
2619 | IF( PLSAME( DIRECT, 'F' ) ) THEN
|
---|
2620 | DO 180 J = 2, N
|
---|
2621 | CTEMP = C( J-1 )
|
---|
2622 | STEMP = S( J-1 )
|
---|
2623 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
---|
2624 | DO 170 I = 1, M
|
---|
2625 | TEMP = A( I, J )
|
---|
2626 | A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
|
---|
2627 | A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
|
---|
2628 | 170 CONTINUE
|
---|
2629 | END IF
|
---|
2630 | 180 CONTINUE
|
---|
2631 | ELSE IF( PLSAME( DIRECT, 'B' ) ) THEN
|
---|
2632 | DO 200 J = N, 2, -1
|
---|
2633 | CTEMP = C( J-1 )
|
---|
2634 | STEMP = S( J-1 )
|
---|
2635 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
---|
2636 | DO 190 I = 1, M
|
---|
2637 | TEMP = A( I, J )
|
---|
2638 | A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
|
---|
2639 | A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
|
---|
2640 | 190 CONTINUE
|
---|
2641 | END IF
|
---|
2642 | 200 CONTINUE
|
---|
2643 | END IF
|
---|
2644 | ELSE IF( PLSAME( PIVOT, 'B' ) ) THEN
|
---|
2645 | IF( PLSAME( DIRECT, 'F' ) ) THEN
|
---|
2646 | DO 220 J = 1, N - 1
|
---|
2647 | CTEMP = C( J )
|
---|
2648 | STEMP = S( J )
|
---|
2649 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
---|
2650 | DO 210 I = 1, M
|
---|
2651 | TEMP = A( I, J )
|
---|
2652 | A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
|
---|
2653 | A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
|
---|
2654 | 210 CONTINUE
|
---|
2655 | END IF
|
---|
2656 | 220 CONTINUE
|
---|
2657 | ELSE IF( PLSAME( DIRECT, 'B' ) ) THEN
|
---|
2658 | DO 240 J = N - 1, 1, -1
|
---|
2659 | CTEMP = C( J )
|
---|
2660 | STEMP = S( J )
|
---|
2661 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
|
---|
2662 | DO 230 I = 1, M
|
---|
2663 | TEMP = A( I, J )
|
---|
2664 | A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
|
---|
2665 | A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
|
---|
2666 | 230 CONTINUE
|
---|
2667 | END IF
|
---|
2668 | 240 CONTINUE
|
---|
2669 | END IF
|
---|
2670 | END IF
|
---|
2671 | END IF
|
---|
2672 | *
|
---|
2673 | RETURN
|
---|
2674 | *
|
---|
2675 | * End of DLASR
|
---|
2676 | *
|
---|
2677 | END
|
---|
2678 | SUBROUTINE PDLASRT( ID, N, D, INFO )
|
---|
2679 | *
|
---|
2680 | * -- LAPACK routine (version 3.0) --
|
---|
2681 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
2682 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
2683 | * September 30, 1994
|
---|
2684 | *
|
---|
2685 | * .. Scalar Arguments ..
|
---|
2686 | CHARACTER ID
|
---|
2687 | INTEGER INFO, N
|
---|
2688 | * ..
|
---|
2689 | * .. Array Arguments ..
|
---|
2690 | DOUBLE PRECISION D( * )
|
---|
2691 | * ..
|
---|
2692 | *
|
---|
2693 | * Purpose
|
---|
2694 | * =======
|
---|
2695 | *
|
---|
2696 | * Sort the numbers in D in increasing order (if ID = 'I') or
|
---|
2697 | * in decreasing order (if ID = 'D' ).
|
---|
2698 | *
|
---|
2699 | * Use Quick Sort, reverting to Insertion sort on arrays of
|
---|
2700 | * size <= 20. Dimension of STACK limits N to about 2**32.
|
---|
2701 | *
|
---|
2702 | * Arguments
|
---|
2703 | * =========
|
---|
2704 | *
|
---|
2705 | * ID (input) CHARACTER*1
|
---|
2706 | * = 'I': sort D in increasing order;
|
---|
2707 | * = 'D': sort D in decreasing order.
|
---|
2708 | *
|
---|
2709 | * N (input) INTEGER
|
---|
2710 | * The length of the array D.
|
---|
2711 | *
|
---|
2712 | * D (input/output) DOUBLE PRECISION array, dimension (N)
|
---|
2713 | * On entry, the array to be sorted.
|
---|
2714 | * On exit, D has been sorted into increasing order
|
---|
2715 | * (D(1) <= ... <= D(N) ) or into decreasing order
|
---|
2716 | * (D(1) >= ... >= D(N) ), depending on ID.
|
---|
2717 | *
|
---|
2718 | * INFO (output) INTEGER
|
---|
2719 | * = 0: successful exit
|
---|
2720 | * < 0: if INFO = -i, the i-th argument had an illegal value
|
---|
2721 | *
|
---|
2722 | * =====================================================================
|
---|
2723 | *
|
---|
2724 | * .. Parameters ..
|
---|
2725 | INTEGER SELECT
|
---|
2726 | PARAMETER ( SELECT = 20 )
|
---|
2727 | * ..
|
---|
2728 | * .. Local Scalars ..
|
---|
2729 | INTEGER DIR, ENDD, I, J, START, STKPNT
|
---|
2730 | DOUBLE PRECISION D1, D2, D3, DMNMX, TMP
|
---|
2731 | * ..
|
---|
2732 | * .. Local Arrays ..
|
---|
2733 | INTEGER STACK( 2, 32 )
|
---|
2734 | * ..
|
---|
2735 | * .. External Functions ..
|
---|
2736 | LOGICAL PLSAME
|
---|
2737 | EXTERNAL PLSAME
|
---|
2738 | * ..
|
---|
2739 | * .. External Subroutines ..
|
---|
2740 | EXTERNAL PXERBLA
|
---|
2741 | * ..
|
---|
2742 | * .. Executable Statements ..
|
---|
2743 | *
|
---|
2744 | * Test the input paramters.
|
---|
2745 | *
|
---|
2746 | INFO = 0
|
---|
2747 | DIR = -1
|
---|
2748 | IF( PLSAME( ID, 'D' ) ) THEN
|
---|
2749 | DIR = 0
|
---|
2750 | ELSE IF( PLSAME( ID, 'I' ) ) THEN
|
---|
2751 | DIR = 1
|
---|
2752 | END IF
|
---|
2753 | IF( DIR.EQ.-1 ) THEN
|
---|
2754 | INFO = -1
|
---|
2755 | ELSE IF( N.LT.0 ) THEN
|
---|
2756 | INFO = -2
|
---|
2757 | END IF
|
---|
2758 | IF( INFO.NE.0 ) THEN
|
---|
2759 | CALL PXERBLA( 'PDLASRT', -INFO )
|
---|
2760 | RETURN
|
---|
2761 | END IF
|
---|
2762 | *
|
---|
2763 | * Quick return if possible
|
---|
2764 | *
|
---|
2765 | IF( N.LE.1 )
|
---|
2766 | $ RETURN
|
---|
2767 | *
|
---|
2768 | STKPNT = 1
|
---|
2769 | STACK( 1, 1 ) = 1
|
---|
2770 | STACK( 2, 1 ) = N
|
---|
2771 | 10 CONTINUE
|
---|
2772 | START = STACK( 1, STKPNT )
|
---|
2773 | ENDD = STACK( 2, STKPNT )
|
---|
2774 | STKPNT = STKPNT - 1
|
---|
2775 | IF( ENDD-START.LE.SELECT .AND. ENDD-START.GT.0 ) THEN
|
---|
2776 | *
|
---|
2777 | * Do Insertion sort on D( START:ENDD )
|
---|
2778 | *
|
---|
2779 | IF( DIR.EQ.0 ) THEN
|
---|
2780 | *
|
---|
2781 | * Sort into decreasing order
|
---|
2782 | *
|
---|
2783 | DO 30 I = START + 1, ENDD
|
---|
2784 | DO 20 J = I, START + 1, -1
|
---|
2785 | IF( D( J ).GT.D( J-1 ) ) THEN
|
---|
2786 | DMNMX = D( J )
|
---|
2787 | D( J ) = D( J-1 )
|
---|
2788 | D( J-1 ) = DMNMX
|
---|
2789 | ELSE
|
---|
2790 | GO TO 30
|
---|
2791 | END IF
|
---|
2792 | 20 CONTINUE
|
---|
2793 | 30 CONTINUE
|
---|
2794 | *
|
---|
2795 | ELSE
|
---|
2796 | *
|
---|
2797 | * Sort into increasing order
|
---|
2798 | *
|
---|
2799 | DO 50 I = START + 1, ENDD
|
---|
2800 | DO 40 J = I, START + 1, -1
|
---|
2801 | IF( D( J ).LT.D( J-1 ) ) THEN
|
---|
2802 | DMNMX = D( J )
|
---|
2803 | D( J ) = D( J-1 )
|
---|
2804 | D( J-1 ) = DMNMX
|
---|
2805 | ELSE
|
---|
2806 | GO TO 50
|
---|
2807 | END IF
|
---|
2808 | 40 CONTINUE
|
---|
2809 | 50 CONTINUE
|
---|
2810 | *
|
---|
2811 | END IF
|
---|
2812 | *
|
---|
2813 | ELSE IF( ENDD-START.GT.SELECT ) THEN
|
---|
2814 | *
|
---|
2815 | * Partition D( START:ENDD ) and stack parts, largest one first
|
---|
2816 | *
|
---|
2817 | * Choose partition entry as median of 3
|
---|
2818 | *
|
---|
2819 | D1 = D( START )
|
---|
2820 | D2 = D( ENDD )
|
---|
2821 | I = ( START+ENDD ) / 2
|
---|
2822 | D3 = D( I )
|
---|
2823 | IF( D1.LT.D2 ) THEN
|
---|
2824 | IF( D3.LT.D1 ) THEN
|
---|
2825 | DMNMX = D1
|
---|
2826 | ELSE IF( D3.LT.D2 ) THEN
|
---|
2827 | DMNMX = D3
|
---|
2828 | ELSE
|
---|
2829 | DMNMX = D2
|
---|
2830 | END IF
|
---|
2831 | ELSE
|
---|
2832 | IF( D3.LT.D2 ) THEN
|
---|
2833 | DMNMX = D2
|
---|
2834 | ELSE IF( D3.LT.D1 ) THEN
|
---|
2835 | DMNMX = D3
|
---|
2836 | ELSE
|
---|
2837 | DMNMX = D1
|
---|
2838 | END IF
|
---|
2839 | END IF
|
---|
2840 | *
|
---|
2841 | IF( DIR.EQ.0 ) THEN
|
---|
2842 | *
|
---|
2843 | * Sort into decreasing order
|
---|
2844 | *
|
---|
2845 | I = START - 1
|
---|
2846 | J = ENDD + 1
|
---|
2847 | 60 CONTINUE
|
---|
2848 | 70 CONTINUE
|
---|
2849 | J = J - 1
|
---|
2850 | IF( D( J ).LT.DMNMX )
|
---|
2851 | $ GO TO 70
|
---|
2852 | 80 CONTINUE
|
---|
2853 | I = I + 1
|
---|
2854 | IF( D( I ).GT.DMNMX )
|
---|
2855 | $ GO TO 80
|
---|
2856 | IF( I.LT.J ) THEN
|
---|
2857 | TMP = D( I )
|
---|
2858 | D( I ) = D( J )
|
---|
2859 | D( J ) = TMP
|
---|
2860 | GO TO 60
|
---|
2861 | END IF
|
---|
2862 | IF( J-START.GT.ENDD-J-1 ) THEN
|
---|
2863 | STKPNT = STKPNT + 1
|
---|
2864 | STACK( 1, STKPNT ) = START
|
---|
2865 | STACK( 2, STKPNT ) = J
|
---|
2866 | STKPNT = STKPNT + 1
|
---|
2867 | STACK( 1, STKPNT ) = J + 1
|
---|
2868 | STACK( 2, STKPNT ) = ENDD
|
---|
2869 | ELSE
|
---|
2870 | STKPNT = STKPNT + 1
|
---|
2871 | STACK( 1, STKPNT ) = J + 1
|
---|
2872 | STACK( 2, STKPNT ) = ENDD
|
---|
2873 | STKPNT = STKPNT + 1
|
---|
2874 | STACK( 1, STKPNT ) = START
|
---|
2875 | STACK( 2, STKPNT ) = J
|
---|
2876 | END IF
|
---|
2877 | ELSE
|
---|
2878 | *
|
---|
2879 | * Sort into increasing order
|
---|
2880 | *
|
---|
2881 | I = START - 1
|
---|
2882 | J = ENDD + 1
|
---|
2883 | 90 CONTINUE
|
---|
2884 | 100 CONTINUE
|
---|
2885 | J = J - 1
|
---|
2886 | IF( D( J ).GT.DMNMX )
|
---|
2887 | $ GO TO 100
|
---|
2888 | 110 CONTINUE
|
---|
2889 | I = I + 1
|
---|
2890 | IF( D( I ).LT.DMNMX )
|
---|
2891 | $ GO TO 110
|
---|
2892 | IF( I.LT.J ) THEN
|
---|
2893 | TMP = D( I )
|
---|
2894 | D( I ) = D( J )
|
---|
2895 | D( J ) = TMP
|
---|
2896 | GO TO 90
|
---|
2897 | END IF
|
---|
2898 | IF( J-START.GT.ENDD-J-1 ) THEN
|
---|
2899 | STKPNT = STKPNT + 1
|
---|
2900 | STACK( 1, STKPNT ) = START
|
---|
2901 | STACK( 2, STKPNT ) = J
|
---|
2902 | STKPNT = STKPNT + 1
|
---|
2903 | STACK( 1, STKPNT ) = J + 1
|
---|
2904 | STACK( 2, STKPNT ) = ENDD
|
---|
2905 | ELSE
|
---|
2906 | STKPNT = STKPNT + 1
|
---|
2907 | STACK( 1, STKPNT ) = J + 1
|
---|
2908 | STACK( 2, STKPNT ) = ENDD
|
---|
2909 | STKPNT = STKPNT + 1
|
---|
2910 | STACK( 1, STKPNT ) = START
|
---|
2911 | STACK( 2, STKPNT ) = J
|
---|
2912 | END IF
|
---|
2913 | END IF
|
---|
2914 | END IF
|
---|
2915 | IF( STKPNT.GT.0 )
|
---|
2916 | $ GO TO 10
|
---|
2917 | RETURN
|
---|
2918 | *
|
---|
2919 | * End of PDLASRT
|
---|
2920 | *
|
---|
2921 | END
|
---|
2922 | SUBROUTINE PDLASSQ( N, X, INCX, SCALE, SUMSQ )
|
---|
2923 | *
|
---|
2924 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
2925 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
2926 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
2927 | * June 30, 1999
|
---|
2928 | *
|
---|
2929 | * .. Scalar Arguments ..
|
---|
2930 | INTEGER INCX, N
|
---|
2931 | DOUBLE PRECISION SCALE, SUMSQ
|
---|
2932 | * ..
|
---|
2933 | * .. Array Arguments ..
|
---|
2934 | DOUBLE PRECISION X( * )
|
---|
2935 | * ..
|
---|
2936 | *
|
---|
2937 | * Purpose
|
---|
2938 | * =======
|
---|
2939 | *
|
---|
2940 | * DLASSQ returns the values scl and smsq such that
|
---|
2941 | *
|
---|
2942 | * ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
|
---|
2943 | *
|
---|
2944 | * where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
|
---|
2945 | * assumed to be non-negative and scl returns the value
|
---|
2946 | *
|
---|
2947 | * scl = max( scale, abs( x( i ) ) ).
|
---|
2948 | *
|
---|
2949 | * scale and sumsq must be supplied in SCALE and SUMSQ and
|
---|
2950 | * scl and smsq are overwritten on SCALE and SUMSQ respectively.
|
---|
2951 | *
|
---|
2952 | * The routine makes only one pass through the vector x.
|
---|
2953 | *
|
---|
2954 | * Arguments
|
---|
2955 | * =========
|
---|
2956 | *
|
---|
2957 | * N (input) INTEGER
|
---|
2958 | * The number of elements to be used from the vector X.
|
---|
2959 | *
|
---|
2960 | * X (input) DOUBLE PRECISION array, dimension (N)
|
---|
2961 | * The vector for which a scaled sum of squares is computed.
|
---|
2962 | * x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
---|
2963 | *
|
---|
2964 | * INCX (input) INTEGER
|
---|
2965 | * The increment between successive values of the vector X.
|
---|
2966 | * INCX > 0.
|
---|
2967 | *
|
---|
2968 | * SCALE (input/output) DOUBLE PRECISION
|
---|
2969 | * On entry, the value scale in the equation above.
|
---|
2970 | * On exit, SCALE is overwritten with scl , the scaling factor
|
---|
2971 | * for the sum of squares.
|
---|
2972 | *
|
---|
2973 | * SUMSQ (input/output) DOUBLE PRECISION
|
---|
2974 | * On entry, the value sumsq in the equation above.
|
---|
2975 | * On exit, SUMSQ is overwritten with smsq , the basic sum of
|
---|
2976 | * squares from which scl has been factored out.
|
---|
2977 | *
|
---|
2978 | * =====================================================================
|
---|
2979 | *
|
---|
2980 | * .. Parameters ..
|
---|
2981 | DOUBLE PRECISION ZERO
|
---|
2982 | PARAMETER ( ZERO = 0.0D+0 )
|
---|
2983 | * ..
|
---|
2984 | * .. Local Scalars ..
|
---|
2985 | INTEGER IX
|
---|
2986 | DOUBLE PRECISION ABSXI
|
---|
2987 | * ..
|
---|
2988 | * .. Intrinsic Functions ..
|
---|
2989 | INTRINSIC ABS
|
---|
2990 | * ..
|
---|
2991 | * .. Executable Statements ..
|
---|
2992 | *
|
---|
2993 | IF( N.GT.0 ) THEN
|
---|
2994 | DO 10 IX = 1, 1 + ( N-1 )*INCX, INCX
|
---|
2995 | IF( X( IX ).NE.ZERO ) THEN
|
---|
2996 | ABSXI = ABS( X( IX ) )
|
---|
2997 | IF( SCALE.LT.ABSXI ) THEN
|
---|
2998 | SUMSQ = 1 + SUMSQ*( SCALE / ABSXI )**2
|
---|
2999 | SCALE = ABSXI
|
---|
3000 | ELSE
|
---|
3001 | SUMSQ = SUMSQ + ( ABSXI / SCALE )**2
|
---|
3002 | END IF
|
---|
3003 | END IF
|
---|
3004 | 10 CONTINUE
|
---|
3005 | END IF
|
---|
3006 | RETURN
|
---|
3007 | *
|
---|
3008 | * End of DLASSQ
|
---|
3009 | *
|
---|
3010 | END
|
---|
3011 | LOGICAL FUNCTION PLSAME( CA, CB )
|
---|
3012 | *
|
---|
3013 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
3014 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
3015 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
3016 | * September 30, 1994
|
---|
3017 | *
|
---|
3018 | * .. Scalar Arguments ..
|
---|
3019 | CHARACTER CA, CB
|
---|
3020 | * ..
|
---|
3021 | *
|
---|
3022 | * Purpose
|
---|
3023 | * =======
|
---|
3024 | *
|
---|
3025 | * LSAME returns .TRUE. if CA is the same letter as CB regardless of
|
---|
3026 | * case.
|
---|
3027 | *
|
---|
3028 | * Arguments
|
---|
3029 | * =========
|
---|
3030 | *
|
---|
3031 | * CA (input) CHARACTER*1
|
---|
3032 | * CB (input) CHARACTER*1
|
---|
3033 | * CA and CB specify the single characters to be compared.
|
---|
3034 | *
|
---|
3035 | * =====================================================================
|
---|
3036 | *
|
---|
3037 | * .. Intrinsic Functions ..
|
---|
3038 | INTRINSIC ICHAR
|
---|
3039 | * ..
|
---|
3040 | * .. Local Scalars ..
|
---|
3041 | INTEGER INTA, INTB, ZCODE
|
---|
3042 | * ..
|
---|
3043 | * .. Executable Statements ..
|
---|
3044 | *
|
---|
3045 | * Test if the characters are equal
|
---|
3046 | *
|
---|
3047 | PLSAME = CA.EQ.CB
|
---|
3048 | IF( PLSAME )
|
---|
3049 | $ RETURN
|
---|
3050 | *
|
---|
3051 | * Now test for equivalence if both characters are alphabetic.
|
---|
3052 | *
|
---|
3053 | ZCODE = ICHAR( 'Z' )
|
---|
3054 | *
|
---|
3055 | * Use 'Z' rather than 'A' so that ASCII can be detected on Prime
|
---|
3056 | * machines, on which ICHAR returns a value with bit 8 set.
|
---|
3057 | * ICHAR('A') on Prime machines returns 193 which is the same as
|
---|
3058 | * ICHAR('A') on an EBCDIC machine.
|
---|
3059 | *
|
---|
3060 | INTA = ICHAR( CA )
|
---|
3061 | INTB = ICHAR( CB )
|
---|
3062 | *
|
---|
3063 | IF( ZCODE.EQ.90 .OR. ZCODE.EQ.122 ) THEN
|
---|
3064 | *
|
---|
3065 | * ASCII is assumed - ZCODE is the ASCII code of either lower or
|
---|
3066 | * upper case 'Z'.
|
---|
3067 | *
|
---|
3068 | IF( INTA.GE.97 .AND. INTA.LE.122 ) INTA = INTA - 32
|
---|
3069 | IF( INTB.GE.97 .AND. INTB.LE.122 ) INTB = INTB - 32
|
---|
3070 | *
|
---|
3071 | ELSE IF( ZCODE.EQ.233 .OR. ZCODE.EQ.169 ) THEN
|
---|
3072 | *
|
---|
3073 | * EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
|
---|
3074 | * upper case 'Z'.
|
---|
3075 | *
|
---|
3076 | IF( INTA.GE.129 .AND. INTA.LE.137 .OR.
|
---|
3077 | $ INTA.GE.145 .AND. INTA.LE.153 .OR.
|
---|
3078 | $ INTA.GE.162 .AND. INTA.LE.169 ) INTA = INTA + 64
|
---|
3079 | IF( INTB.GE.129 .AND. INTB.LE.137 .OR.
|
---|
3080 | $ INTB.GE.145 .AND. INTB.LE.153 .OR.
|
---|
3081 | $ INTB.GE.162 .AND. INTB.LE.169 ) INTB = INTB + 64
|
---|
3082 | *
|
---|
3083 | ELSE IF( ZCODE.EQ.218 .OR. ZCODE.EQ.250 ) THEN
|
---|
3084 | *
|
---|
3085 | * ASCII is assumed, on Prime machines - ZCODE is the ASCII code
|
---|
3086 | * plus 128 of either lower or upper case 'Z'.
|
---|
3087 | *
|
---|
3088 | IF( INTA.GE.225 .AND. INTA.LE.250 ) INTA = INTA - 32
|
---|
3089 | IF( INTB.GE.225 .AND. INTB.LE.250 ) INTB = INTB - 32
|
---|
3090 | END IF
|
---|
3091 | PLSAME = INTA.EQ.INTB
|
---|
3092 | *
|
---|
3093 | * RETURN
|
---|
3094 | *
|
---|
3095 | * End of LSAME
|
---|
3096 | *
|
---|
3097 | END
|
---|
3098 | SUBROUTINE PXERBLA( SRNAME, INFO )
|
---|
3099 | *
|
---|
3100 | * -- LAPACK auxiliary routine (version 3.0) --
|
---|
3101 | * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
3102 | * Courant Institute, Argonne National Lab, and Rice University
|
---|
3103 | * September 30, 1994
|
---|
3104 | *
|
---|
3105 | * .. Scalar Arguments ..
|
---|
3106 | CHARACTER*6 SRNAME
|
---|
3107 | INTEGER INFO
|
---|
3108 | * ..
|
---|
3109 | *
|
---|
3110 | * Purpose
|
---|
3111 | * =======
|
---|
3112 | *
|
---|
3113 | * XERBLA is an error handler for the LAPACK routines.
|
---|
3114 | * It is called by an LAPACK routine if an input parameter has an
|
---|
3115 | * invalid value. A message is printed and execution stops.
|
---|
3116 | *
|
---|
3117 | * Installers may consider modifying the STOP statement in order to
|
---|
3118 | * call system-specific exception-handling facilities.
|
---|
3119 | *
|
---|
3120 | * Arguments
|
---|
3121 | * =========
|
---|
3122 | *
|
---|
3123 | * SRNAME (input) CHARACTER*6
|
---|
3124 | * The name of the routine which called XERBLA.
|
---|
3125 | *
|
---|
3126 | * INFO (input) INTEGER
|
---|
3127 | * The position of the invalid parameter in the parameter list
|
---|
3128 | * of the calling routine.
|
---|
3129 | *
|
---|
3130 | * =====================================================================
|
---|
3131 | *
|
---|
3132 | * .. Executable Statements ..
|
---|
3133 | *
|
---|
3134 | WRITE( *, FMT = 9999 )SRNAME, INFO
|
---|
3135 | *
|
---|
3136 | STOP
|
---|
3137 | *
|
---|
3138 | 9999 FORMAT( ' ** On entry to ', A6, ' parameter number ', I2, ' had ',
|
---|
3139 | $ 'an illegal value' )
|
---|
3140 | *
|
---|
3141 | * End of XERBLA
|
---|
3142 | *
|
---|
3143 | END
|
---|