1 |
|
---|
2 | #include <iostream>
|
---|
3 |
|
---|
4 | #include <math.h>
|
---|
5 |
|
---|
6 | #include <util/group/message.h>
|
---|
7 |
|
---|
8 | #include <math/scmat/disthql.h>
|
---|
9 |
|
---|
10 | #include <math/scmat/f77sym.h>
|
---|
11 |
|
---|
12 | using namespace std;
|
---|
13 | using namespace sc;
|
---|
14 |
|
---|
15 | extern "C" {
|
---|
16 | void F77_PDSTEQR(int *n, double *d, double *e,
|
---|
17 | double *z, int *ldz, int *nz, double *work,
|
---|
18 | int *info);
|
---|
19 | void F77_DCOPY(int *n, double *dx, int *incx, double *dy, int *incy);
|
---|
20 | double F77_DNRM2(int *n, double *dx, int *incx);
|
---|
21 | double F77_DDOT(int *n, double *dx, int *incx, double *dy, int *incy);
|
---|
22 | void F77_DSCAL(int *n, double *da, double *dx, int *incx);
|
---|
23 | void F77_DAXPY(int *n, double *da, double *dx, int *incx, double *dy, int *incy);
|
---|
24 | }
|
---|
25 |
|
---|
26 | namespace sc {
|
---|
27 |
|
---|
28 | static void dist_diagonalize_(int n, int m, double *a, double *d, double *e,
|
---|
29 | double *sigma, double *z, double *v, double *w,
|
---|
30 | int *ind, const Ref<MessageGrp>&);
|
---|
31 |
|
---|
32 | static void pflip(int id,int n,int m,int p,double *ar,double *ac,double *w,
|
---|
33 | const Ref<MessageGrp>&);
|
---|
34 |
|
---|
35 | static void
|
---|
36 | ptred2_(double *a, int *lda, int *n, int *m, int *p, int *id,
|
---|
37 | double *d, double *e, double *z, double *work,
|
---|
38 | const Ref<MessageGrp>& grp);
|
---|
39 |
|
---|
40 | static void
|
---|
41 | ptred_single(double *a,int *lda,int *n,int *m,int *p,int *id,
|
---|
42 | double *d,double *e,double *z,double *work);
|
---|
43 | static void
|
---|
44 | ptred_parallel(double *a, int *lda, int *n, int *m, int *p, int *id,
|
---|
45 | double *d, double *e, double *z, double *work,
|
---|
46 | const Ref<MessageGrp>&);
|
---|
47 |
|
---|
48 | /* ******************************************************** */
|
---|
49 | /* Function of this subroutine : */
|
---|
50 | /* Diagonalize a real, symmetric matrix */
|
---|
51 | /* */
|
---|
52 | /* Parameters : */
|
---|
53 | /* n - size of the matrix */
|
---|
54 | /* m - number of locally held columns */
|
---|
55 | /* a[n][m] - locally held submatrix */
|
---|
56 | /* d[n] - returned with eigenvalues */
|
---|
57 | /* v[n][m] - returned with eigenvectors */
|
---|
58 | /* -------------------------------------------------------- */
|
---|
59 | void
|
---|
60 | dist_diagonalize(int n, int m, double *a, double *d, double *v,
|
---|
61 | const Ref<MessageGrp> &grp)
|
---|
62 | {
|
---|
63 | double *e = new double[n];
|
---|
64 | double *sigma = new double[n];
|
---|
65 | double *z = new double[n*m];
|
---|
66 | double *w = new double[3*n];
|
---|
67 | int *ind = new int[n];
|
---|
68 | dist_diagonalize_(n, m, a, d, e, sigma, z, v, w, ind, grp);
|
---|
69 | delete[] e;
|
---|
70 | delete[] sigma;
|
---|
71 | delete[] z;
|
---|
72 | delete[] w;
|
---|
73 | delete[] ind;
|
---|
74 | }
|
---|
75 |
|
---|
76 | /* ******************************************************** */
|
---|
77 | /* Function of this subroutine : */
|
---|
78 | /* Diagonalize a real, symmetric matrix */
|
---|
79 | /* */
|
---|
80 | /* Parameters : */
|
---|
81 | /* n - size of the matrix */
|
---|
82 | /* m - number of locally held columns */
|
---|
83 | /* a[n][m] - locally held submatrix */
|
---|
84 | /* d[n] - returned with eigenvalues */
|
---|
85 | /* e[n] - scratch space */
|
---|
86 | /* sigma[n]- scratch space */
|
---|
87 | /* z[m][n] - scratch space */
|
---|
88 | /* v[n][m] - returned with eigenvectors */
|
---|
89 | /* w[3*n] - scratch space */
|
---|
90 | /* ind[n] - scratch space (integer) */
|
---|
91 | /* -------------------------------------------------------- */
|
---|
92 | static void
|
---|
93 | dist_diagonalize_(int n, int m, double *a, double *d, double *e,
|
---|
94 | double *sigma, double *z, double *v, double *w, int *ind,
|
---|
95 | const Ref<MessageGrp>& grp)
|
---|
96 | {
|
---|
97 | int i,info,one=1;
|
---|
98 | int nproc = grp->n();
|
---|
99 | int id = grp->me();
|
---|
100 |
|
---|
101 | /* reduce A to tridiagonal matrix using Householder transformation */
|
---|
102 |
|
---|
103 | ptred2_(&a[0],&n,&n,&m,&nproc,&id,&d[0],&e[0],&z[0],&w[0],grp);
|
---|
104 |
|
---|
105 | /* diagonalize tridiagonal matrix using implicit QL method */
|
---|
106 |
|
---|
107 | for (i=1; i<n; i++) e[i-1] = e[i];
|
---|
108 | F77_PDSTEQR(&n, d, e, z, &m, &m, w, &info);
|
---|
109 |
|
---|
110 | /* rearrange the eigenvectors by transposition */
|
---|
111 |
|
---|
112 | i = m * n;
|
---|
113 | F77_DCOPY(&i,&z[0],&one,&a[0],&one);
|
---|
114 | pflip(id,n,m,nproc,&a[0],&v[0],&w[0],grp);
|
---|
115 | }
|
---|
116 |
|
---|
117 | /* ******************************************************** */
|
---|
118 | /* Function : transpose matrix */
|
---|
119 | /* -------------------------------------------------------- */
|
---|
120 |
|
---|
121 | static void
|
---|
122 | pflip(int id,int n,int m,int p,double *ar,double *ac,double *w,
|
---|
123 | const Ref<MessageGrp>& grp)
|
---|
124 | {
|
---|
125 | int i,k,r,dpsize=sizeof(double),one=1;
|
---|
126 |
|
---|
127 | i = 0;
|
---|
128 | for (k=0; k<n; k++) {
|
---|
129 | r = k % p;
|
---|
130 | if (id == r) {
|
---|
131 | F77_DCOPY(&n,&ar[i],&m,&w[0],&one);
|
---|
132 | i++;
|
---|
133 | }
|
---|
134 | grp->raw_bcast(&w[0], n*dpsize, r);
|
---|
135 | F77_DCOPY(&m,&w[id],&p,&ac[k],&n);
|
---|
136 | }
|
---|
137 | }
|
---|
138 |
|
---|
139 | /*******************************************************************/
|
---|
140 |
|
---|
141 | static void
|
---|
142 | ptred2_(double *a, int *lda, int *n, int *m, int *p, int *id,
|
---|
143 | double *d, double *e, double *z, double *work,
|
---|
144 | const Ref<MessageGrp>& grp)
|
---|
145 | {
|
---|
146 | if (*p==1)
|
---|
147 | ptred_single(a, lda, n, m, p, id, d, e, z, work);
|
---|
148 | else
|
---|
149 | ptred_parallel(a, lda, n, m, p, id, d, e, z, work, grp);
|
---|
150 | }
|
---|
151 |
|
---|
152 | /* ******************************************************** */
|
---|
153 | /* Function of this subroutine : */
|
---|
154 | /* tridiagonalize a real, symmetric matrix using */
|
---|
155 | /* Householder transformation */
|
---|
156 | /* Parameters : */
|
---|
157 | /* a[lda][m] - locally held submatrix */
|
---|
158 | /* lda - leading dimension of array a */
|
---|
159 | /* n - size of the matrix a */
|
---|
160 | /* m - number of locally held columns */
|
---|
161 | /* p - number of nodes used */
|
---|
162 | /* id - my node id */
|
---|
163 | /* on return : */
|
---|
164 | /* d[n] - the diagonal of the tridiagonal result */
|
---|
165 | /* e[n] - the offdiagonal of the result(e[1]-e[n-1]) */
|
---|
166 | /* z[m][n] - m rows of transformation matrix */
|
---|
167 | /* matrix a will be destroyed */
|
---|
168 | /* -------------------------------------------------------- */
|
---|
169 |
|
---|
170 | static void
|
---|
171 | ptred_single(double *a,int *lda,int *n,int *m,int *p,int *id,
|
---|
172 | double *d,double *e,double *z,double *work)
|
---|
173 | {
|
---|
174 | double alpha=0.0, beta, gamma, alpha2;
|
---|
175 | double oobeta;
|
---|
176 | int i,j,k,l,ld,r;
|
---|
177 | int slda, sn, sm, sp, sid, q, inc=1;
|
---|
178 |
|
---|
179 | /* extract parameters and get cube information */
|
---|
180 |
|
---|
181 | slda = *lda;
|
---|
182 | sn = *n;
|
---|
183 | sm = *m;
|
---|
184 | sp = *p;
|
---|
185 | sid = *id;
|
---|
186 |
|
---|
187 | /* initialize eigenvector matrix to be identity */
|
---|
188 |
|
---|
189 | i = sn * sm;
|
---|
190 | alpha2 = 0.0;
|
---|
191 | j = 0;
|
---|
192 | F77_DCOPY(&i,&alpha2,&j,&z[0],&inc);
|
---|
193 | ld = sid;
|
---|
194 | for (i=0; i<sm; i++) {
|
---|
195 | z[ld*sm+i] = 1.0;
|
---|
196 | ld += sp;
|
---|
197 | }
|
---|
198 |
|
---|
199 | /* start reduction - one column at a time */
|
---|
200 |
|
---|
201 | l = 0;
|
---|
202 | ld = sid;
|
---|
203 | d[0] = 0.0;
|
---|
204 | e[0] = 0.0;
|
---|
205 | if (sid == 0) d[0] = a[0];
|
---|
206 | for (k=1; k<=sn-1; k++) {
|
---|
207 | r = (k-1) % sp;
|
---|
208 |
|
---|
209 | /* Use a Householder reflection to zero a(i,k), i = k+2,..., n .*/
|
---|
210 | /* Let a = (0, ..., 0, a(k+1,k) ... a(n,k))', */
|
---|
211 | /* u = a/norm(a) + (k+1-st unit vector), */
|
---|
212 | /* beta = -u(k+1) = -norm(u)**2/2 , */
|
---|
213 | /* H = I + u*u'/beta . */
|
---|
214 | /* Replace A by H*A*H . */
|
---|
215 | /* Store u in D(K+1) through D(N) . */
|
---|
216 | /* The root node, r, is the owner of column k. */
|
---|
217 |
|
---|
218 | if (sid == r) {
|
---|
219 | q = sn - k;
|
---|
220 | alpha = F77_DNRM2(&q,&a[l*slda+k],&inc);
|
---|
221 | if (a[l*slda+k] < 0.0) alpha = -alpha;
|
---|
222 | if (alpha != 0.0) {
|
---|
223 | alpha2 = 1.0 / alpha;
|
---|
224 | F77_DSCAL(&q,&alpha2,&a[l*slda+k],&inc);
|
---|
225 | a[l*slda+k] += 1.0;
|
---|
226 | }
|
---|
227 | F77_DCOPY(&q,&a[l*slda+k],&inc,&d[k],&inc);
|
---|
228 | l++;
|
---|
229 | ld += sp;
|
---|
230 | }
|
---|
231 |
|
---|
232 | beta = -d[k];
|
---|
233 | if (beta != 0.0) {
|
---|
234 |
|
---|
235 | /* Symmetric matrix times vector, v = A*u.*/
|
---|
236 | /* Store v in E(K+1) through E(N) . */
|
---|
237 |
|
---|
238 | alpha2 = 0.0;
|
---|
239 | j = 0;
|
---|
240 | q = sn - k;
|
---|
241 | F77_DCOPY(&q,&alpha2,&j,&e[k],&inc);
|
---|
242 | i = ld;
|
---|
243 | for (j=l; j<sm; j++) {
|
---|
244 | q = sn - i;
|
---|
245 | e[i] = e[i] + F77_DDOT(&q,&a[j*slda+i],&inc,&d[i],&inc);
|
---|
246 | q = sn - i - 1;
|
---|
247 | F77_DAXPY(&q,&d[i],&a[slda*j+i+1],&inc,&e[i+1],&inc);
|
---|
248 | i += sp;
|
---|
249 | }
|
---|
250 |
|
---|
251 | /* v = v/beta */
|
---|
252 | /* gamma = v'*u/(2*beta) */
|
---|
253 | /* v = v + gamma*u */
|
---|
254 |
|
---|
255 | if (sid == r) {
|
---|
256 | q = sn - k;
|
---|
257 | alpha2 = 1.0 / beta;
|
---|
258 | F77_DSCAL(&q,&alpha2,&e[k],&inc);
|
---|
259 | gamma = 0.5*F77_DDOT(&q,&d[k],&inc,&e[k],&inc)/beta;
|
---|
260 | F77_DAXPY(&q,&gamma,&d[k],&inc,&e[k],&inc);
|
---|
261 | }
|
---|
262 |
|
---|
263 | /* Rank two update of A, compute only lower half. */
|
---|
264 | /* A = A + u'*v + v'*u = H*A*H */
|
---|
265 |
|
---|
266 | i = ld;
|
---|
267 | for (j=l; j<sm; j++) {
|
---|
268 | q = sn - i;
|
---|
269 | F77_DAXPY(&q,&d[i],&e[i],&inc,&a[j*slda+i],&inc);
|
---|
270 | F77_DAXPY(&q,&e[i],&d[i],&inc,&a[j*slda+i],&inc);
|
---|
271 | i += sp;
|
---|
272 | }
|
---|
273 | q = sn - k;
|
---|
274 | oobeta=1.0/beta;
|
---|
275 | for (i=0; i<sm; i++) {
|
---|
276 | gamma = F77_DDOT(&q,&d[k],&inc,&z[k*sm+i],&sm)*oobeta;
|
---|
277 | F77_DAXPY(&q,&gamma,&d[k],&inc,&z[k*sm+i],&sm);
|
---|
278 | }
|
---|
279 | }
|
---|
280 |
|
---|
281 | d[k] = 0.0;
|
---|
282 | e[k] = 0.0;
|
---|
283 | if (sid == (k % sp)) d[k] = a[l*slda+ld];
|
---|
284 | if (sid == r) e[k] = -alpha;
|
---|
285 | }
|
---|
286 | r = 0;
|
---|
287 |
|
---|
288 | }
|
---|
289 |
|
---|
290 | /*
|
---|
291 | * Function of this subroutine :
|
---|
292 | * tridiagonalize a real, symmetric matrix using
|
---|
293 | * Householder transformation
|
---|
294 | *
|
---|
295 | * Parameters :
|
---|
296 | * a[lda][m] - locally held submatrix
|
---|
297 | * lda - leading dimension of array a
|
---|
298 | * n - size of the matrix a
|
---|
299 | * m - number of locally held columns
|
---|
300 | * p - number of nodes used
|
---|
301 | * id - my node id
|
---|
302 | *
|
---|
303 | * on return :
|
---|
304 | * d[n] - the diagonal of the tridiagonal result
|
---|
305 | * e[n] - the offdiagonal of the result(e[1]-e[n-1])
|
---|
306 | * z[m][n] - m rows of transformation matrix
|
---|
307 | * matrix a will be destroyed
|
---|
308 | *
|
---|
309 | * merge C code from libdmt with FORTRAN code modified by R. Chamberlain
|
---|
310 | * FORTRAN COMMENTS:
|
---|
311 | * This version dated 5/4/92
|
---|
312 | * Richard Chamberlain, Intel Supercomputer Systems Division
|
---|
313 | * Improvements:
|
---|
314 | * 1. gdcomb of Robert van de Geijn used.
|
---|
315 | * 2. look-ahead distribution of Householder vector. Here the node
|
---|
316 | * containing the next Householder vector defers updating the
|
---|
317 | * eigenvector matrix until the next Householder vector is sent.
|
---|
318 | */
|
---|
319 |
|
---|
320 | static void
|
---|
321 | ptred_parallel(double *a, int *lda, int *n, int *m, int *p, int *id,
|
---|
322 | double *d, double *e, double *z, double *work,
|
---|
323 | const Ref<MessageGrp>& grp)
|
---|
324 | {
|
---|
325 | int i, j, k, l, ld, r, dpsize = sizeof(double);
|
---|
326 | int kp1l;
|
---|
327 | int slda, sn, sm, sp, sid, q, inc = 1;
|
---|
328 | double alpha=0.0, beta=0.0, gamma, alpha2;
|
---|
329 | double oobeta, atemp;
|
---|
330 |
|
---|
331 | /* extract parameters and get cube information */
|
---|
332 |
|
---|
333 | slda = *lda;
|
---|
334 | sn = *n;
|
---|
335 | sm = *m;
|
---|
336 | sp = *p;
|
---|
337 | sid = *id;
|
---|
338 |
|
---|
339 | /* initialize eigenvector matrix to be identity */
|
---|
340 |
|
---|
341 | i = sn * sm;
|
---|
342 | alpha2 = 0.0;
|
---|
343 | j = 0;
|
---|
344 | F77_DCOPY(&i, &alpha2, &j, &z[0], &inc);
|
---|
345 | ld = sid;
|
---|
346 | for (i = 0; i < sm; i++) {
|
---|
347 | z[ld * sm + i] = 1.0;
|
---|
348 | ld += sp;
|
---|
349 | }
|
---|
350 |
|
---|
351 | /* start reduction - one column at a time */
|
---|
352 |
|
---|
353 | l = 0;
|
---|
354 | ld = sid;
|
---|
355 | d[0] = 0.0;
|
---|
356 | e[0] = 0.0;
|
---|
357 | if (sid == 0) d[0] = a[0];
|
---|
358 |
|
---|
359 | for (k = 1; k <= sn - 1; k++) {
|
---|
360 |
|
---|
361 | /* Use a Householder reflection to zero a(i,k), i = k+2,..., n .
|
---|
362 | * Let a = (0, ..., 0, a(k+1,k) ... a(n,k))',
|
---|
363 | * u = a/norm(a) + (k+1-st unit vector),
|
---|
364 | * beta = -u(k+1) = -norm(u)**2/2,
|
---|
365 | * H = I + u*u'/beta.
|
---|
366 | * Replace A by H*A*H.
|
---|
367 | * Store u in D(K+1) through D(N).
|
---|
368 | * The root node, r, is the owner of column k.
|
---|
369 | */
|
---|
370 |
|
---|
371 | r = (k - 1) % sp;
|
---|
372 | if (sid == r) {
|
---|
373 | kp1l=l*slda+k;
|
---|
374 | q = sn - k;
|
---|
375 | atemp = a[l * slda + ld];
|
---|
376 | alpha = F77_DNRM2(&q, &a[kp1l], &inc);
|
---|
377 | if (a[kp1l] < 0.0) alpha = -alpha;
|
---|
378 | if (alpha != 0.0) {
|
---|
379 | alpha2 = 1.0 / alpha;
|
---|
380 | F77_DSCAL(&q, &alpha2, &a[kp1l], &inc);
|
---|
381 | a[kp1l] += 1.0;
|
---|
382 | }
|
---|
383 |
|
---|
384 | grp->raw_bcast(&a[kp1l], (sn - k) * dpsize, r);
|
---|
385 |
|
---|
386 | /* this is the deferred update of the eigenvector matrix. It was
|
---|
387 | * deferred from the last step to accelerate the sending of the Householder
|
---|
388 | * vector. Don't do this on the first step.
|
---|
389 | */
|
---|
390 | if (k != 1) {
|
---|
391 | int ik = k - 1; /* ik is a temporary index to the previous step */
|
---|
392 | int nmik = sn - ik;
|
---|
393 |
|
---|
394 | if (beta != 0.0) {
|
---|
395 | for (i = 0; i < sm; i++) {
|
---|
396 | gamma = F77_DDOT(&nmik, &d[ik], &inc, &z[ik * sm + i], &sm) / beta;
|
---|
397 | F77_DAXPY(&nmik, &gamma, &d[ik], &inc, &z[ik * sm + i], &sm);
|
---|
398 | }
|
---|
399 | }
|
---|
400 | e[ik] = 0.0;
|
---|
401 | d[ik] = atemp;
|
---|
402 | }
|
---|
403 |
|
---|
404 | /* now resume normal service */
|
---|
405 | F77_DCOPY(&q, &a[kp1l], &inc, &d[k], &inc);
|
---|
406 | l++;
|
---|
407 | ld += sp;
|
---|
408 | }
|
---|
409 | else {
|
---|
410 | grp->raw_bcast(&d[k], (sn - k) * dpsize, r);
|
---|
411 | }
|
---|
412 |
|
---|
413 | beta = -d[k];
|
---|
414 | if (beta != 0.0) {
|
---|
415 |
|
---|
416 | /* Symmetric matrix times vector, v = A*u. */
|
---|
417 | /* Store v in E(K+1) through E(N) . */
|
---|
418 |
|
---|
419 | alpha2 = 0.0;
|
---|
420 | j = 0;
|
---|
421 | q = sn - k;
|
---|
422 | F77_DCOPY(&q, &alpha2, &j, &e[k], &inc);
|
---|
423 | i = ld;
|
---|
424 | for (j = l; j < sm; j++) {
|
---|
425 | int ij=j*slda+i;
|
---|
426 | q = sn - i;
|
---|
427 | e[i] += F77_DDOT(&q, &a[ij], &inc, &d[i], &inc);
|
---|
428 | q--;
|
---|
429 | F77_DAXPY(&q, &d[i], &a[ij+1], &inc, &e[i + 1], &inc);
|
---|
430 | i += sp;
|
---|
431 | }
|
---|
432 | grp->sum(&e[k], sn-k, work);
|
---|
433 |
|
---|
434 | /* v = v/beta
|
---|
435 | * gamma = v'*u/(2*beta)
|
---|
436 | * v = v + gamma*u
|
---|
437 | */
|
---|
438 |
|
---|
439 | q = sn - k;
|
---|
440 | alpha2 = 1.0 / beta;
|
---|
441 | F77_DSCAL(&q, &alpha2, &e[k], &inc);
|
---|
442 | gamma = 0.5 * F77_DDOT(&q, &d[k], &inc, &e[k], &inc) / beta;
|
---|
443 | F77_DAXPY(&q, &gamma, &d[k], &inc, &e[k], &inc);
|
---|
444 |
|
---|
445 | /* Rank two update of A, compute only lower half. */
|
---|
446 | /* A = A + u'*v + v'*u = H*A*H */
|
---|
447 |
|
---|
448 | i = ld;
|
---|
449 | for (j = l; j < sm; j++) {
|
---|
450 | double *atmp= &a[j*slda+i];
|
---|
451 | q = sn - i;
|
---|
452 | F77_DAXPY(&q, &d[i], &e[i], &inc, atmp, &inc);
|
---|
453 | F77_DAXPY(&q, &e[i], &d[i], &inc, atmp, &inc);
|
---|
454 | i += sp;
|
---|
455 | }
|
---|
456 |
|
---|
457 | /* Accumulate m rows of transformation matrix.
|
---|
458 | * Z = Z*H
|
---|
459 | *
|
---|
460 | * if I have next column, defer updating
|
---|
461 | */
|
---|
462 |
|
---|
463 | if (sid != k%sp || k == sn - 1) {
|
---|
464 | q = sn - k;
|
---|
465 | oobeta = 1.0 / beta;
|
---|
466 | for (i = 0; i < sm; i++) {
|
---|
467 | gamma = F77_DDOT(&q, &d[k], &inc, &z[k * sm + i], &sm) * oobeta;
|
---|
468 | F77_DAXPY(&q, &gamma, &d[k], &inc, &z[k * sm + i], &sm);
|
---|
469 | }
|
---|
470 | }
|
---|
471 | }
|
---|
472 |
|
---|
473 | /* another bit of calcs to be deferred */
|
---|
474 | if (sid != k%sp || k == sn - 1) {
|
---|
475 | d[k] = 0.0;
|
---|
476 | e[k] = 0.0;
|
---|
477 | if (sid == k%sp) d[k] = a[l * slda + ld];
|
---|
478 | if (sid == r) e[k] = -alpha;
|
---|
479 | }
|
---|
480 | }
|
---|
481 |
|
---|
482 | /* collect the whole tridiagonal matrix at every node */
|
---|
483 |
|
---|
484 | grp->sum(d, sn, work);
|
---|
485 | grp->sum(e, sn, work);
|
---|
486 | }
|
---|
487 |
|
---|
488 | }
|
---|