| [0b990d] | 1 |  | 
|---|
|  | 2 | #include <iostream> | 
|---|
|  | 3 |  | 
|---|
|  | 4 | #include <math.h> | 
|---|
|  | 5 |  | 
|---|
|  | 6 | #include <util/group/message.h> | 
|---|
|  | 7 |  | 
|---|
|  | 8 | #include <math/scmat/disthql.h> | 
|---|
|  | 9 |  | 
|---|
|  | 10 | #include <math/scmat/f77sym.h> | 
|---|
|  | 11 |  | 
|---|
|  | 12 | using namespace std; | 
|---|
|  | 13 | using namespace sc; | 
|---|
|  | 14 |  | 
|---|
|  | 15 | extern "C" { | 
|---|
|  | 16 | void F77_PDSTEQR(int *n, double *d, double *e, | 
|---|
|  | 17 | double *z, int *ldz, int *nz, double *work, | 
|---|
|  | 18 | int *info); | 
|---|
|  | 19 | void F77_DCOPY(int *n, double *dx, int *incx, double *dy, int *incy); | 
|---|
|  | 20 | double F77_DNRM2(int *n, double *dx, int *incx); | 
|---|
|  | 21 | double F77_DDOT(int *n, double *dx, int *incx, double *dy, int *incy); | 
|---|
|  | 22 | void F77_DSCAL(int *n, double *da, double *dx, int *incx); | 
|---|
|  | 23 | void F77_DAXPY(int *n, double *da, double *dx, int *incx, double *dy, int *incy); | 
|---|
|  | 24 | } | 
|---|
|  | 25 |  | 
|---|
|  | 26 | namespace sc { | 
|---|
|  | 27 |  | 
|---|
|  | 28 | static void dist_diagonalize_(int n, int m, double *a, double *d, double *e, | 
|---|
|  | 29 | double *sigma, double *z, double *v, double *w, | 
|---|
|  | 30 | int *ind, const Ref<MessageGrp>&); | 
|---|
|  | 31 |  | 
|---|
|  | 32 | static void pflip(int id,int n,int m,int p,double *ar,double *ac,double *w, | 
|---|
|  | 33 | const Ref<MessageGrp>&); | 
|---|
|  | 34 |  | 
|---|
|  | 35 | static void | 
|---|
|  | 36 | ptred2_(double *a, int *lda, int *n, int *m, int *p, int *id, | 
|---|
|  | 37 | double *d, double *e, double *z, double *work, | 
|---|
|  | 38 | const Ref<MessageGrp>& grp); | 
|---|
|  | 39 |  | 
|---|
|  | 40 | static void | 
|---|
|  | 41 | ptred_single(double *a,int *lda,int *n,int *m,int *p,int *id, | 
|---|
|  | 42 | double *d,double *e,double *z,double *work); | 
|---|
|  | 43 | static void | 
|---|
|  | 44 | ptred_parallel(double *a, int *lda, int *n, int *m, int *p, int *id, | 
|---|
|  | 45 | double *d, double *e, double *z, double *work, | 
|---|
|  | 46 | const Ref<MessageGrp>&); | 
|---|
|  | 47 |  | 
|---|
|  | 48 | /* ******************************************************** */ | 
|---|
|  | 49 | /* Function of this subroutine :                            */ | 
|---|
|  | 50 | /*    Diagonalize a real, symmetric matrix                  */ | 
|---|
|  | 51 | /*                                                          */ | 
|---|
|  | 52 | /* Parameters :                                             */ | 
|---|
|  | 53 | /*    n   - size of the matrix                              */ | 
|---|
|  | 54 | /*    m   - number of locally held columns                  */ | 
|---|
|  | 55 | /*    a[n][m] - locally held submatrix                      */ | 
|---|
|  | 56 | /*    d[n]    - returned with eigenvalues                   */ | 
|---|
|  | 57 | /*    v[n][m] - returned with eigenvectors                  */ | 
|---|
|  | 58 | /* -------------------------------------------------------- */ | 
|---|
|  | 59 | void | 
|---|
|  | 60 | dist_diagonalize(int n, int m, double *a, double *d, double *v, | 
|---|
|  | 61 | const Ref<MessageGrp> &grp) | 
|---|
|  | 62 | { | 
|---|
|  | 63 | double *e = new double[n]; | 
|---|
|  | 64 | double *sigma = new double[n]; | 
|---|
|  | 65 | double *z = new double[n*m]; | 
|---|
|  | 66 | double *w = new double[3*n]; | 
|---|
|  | 67 | int *ind = new int[n]; | 
|---|
|  | 68 | dist_diagonalize_(n, m, a, d, e, sigma, z, v, w, ind, grp); | 
|---|
|  | 69 | delete[] e; | 
|---|
|  | 70 | delete[] sigma; | 
|---|
|  | 71 | delete[] z; | 
|---|
|  | 72 | delete[] w; | 
|---|
|  | 73 | delete[] ind; | 
|---|
|  | 74 | } | 
|---|
|  | 75 |  | 
|---|
|  | 76 | /* ******************************************************** */ | 
|---|
|  | 77 | /* Function of this subroutine :                            */ | 
|---|
|  | 78 | /*    Diagonalize a real, symmetric matrix                  */ | 
|---|
|  | 79 | /*                                                          */ | 
|---|
|  | 80 | /* Parameters :                                             */ | 
|---|
|  | 81 | /*    n   - size of the matrix                              */ | 
|---|
|  | 82 | /*    m   - number of locally held columns                  */ | 
|---|
|  | 83 | /*    a[n][m] - locally held submatrix                      */ | 
|---|
|  | 84 | /*    d[n]    - returned with eigenvalues                   */ | 
|---|
|  | 85 | /*    e[n]    - scratch space                               */ | 
|---|
|  | 86 | /*    sigma[n]- scratch space                               */ | 
|---|
|  | 87 | /*    z[m][n] - scratch space                               */ | 
|---|
|  | 88 | /*    v[n][m] - returned with eigenvectors                  */ | 
|---|
|  | 89 | /*    w[3*n]  - scratch space                               */ | 
|---|
|  | 90 | /*    ind[n]  - scratch space (integer)                     */ | 
|---|
|  | 91 | /* -------------------------------------------------------- */ | 
|---|
|  | 92 | static void | 
|---|
|  | 93 | dist_diagonalize_(int n, int m, double *a, double *d, double *e, | 
|---|
|  | 94 | double *sigma, double *z, double *v, double *w, int *ind, | 
|---|
|  | 95 | const Ref<MessageGrp>& grp) | 
|---|
|  | 96 | { | 
|---|
|  | 97 | int i,info,one=1; | 
|---|
|  | 98 | int nproc = grp->n(); | 
|---|
|  | 99 | int id = grp->me(); | 
|---|
|  | 100 |  | 
|---|
|  | 101 | /* reduce A to tridiagonal matrix using Householder transformation */ | 
|---|
|  | 102 |  | 
|---|
|  | 103 | ptred2_(&a[0],&n,&n,&m,&nproc,&id,&d[0],&e[0],&z[0],&w[0],grp); | 
|---|
|  | 104 |  | 
|---|
|  | 105 | /* diagonalize tridiagonal matrix using implicit QL method */ | 
|---|
|  | 106 |  | 
|---|
|  | 107 | for (i=1; i<n; i++) e[i-1] = e[i]; | 
|---|
|  | 108 | F77_PDSTEQR(&n, d, e, z, &m, &m, w, &info); | 
|---|
|  | 109 |  | 
|---|
|  | 110 | /* rearrange the eigenvectors by transposition */ | 
|---|
|  | 111 |  | 
|---|
|  | 112 | i = m * n; | 
|---|
|  | 113 | F77_DCOPY(&i,&z[0],&one,&a[0],&one); | 
|---|
|  | 114 | pflip(id,n,m,nproc,&a[0],&v[0],&w[0],grp); | 
|---|
|  | 115 | } | 
|---|
|  | 116 |  | 
|---|
|  | 117 | /* ******************************************************** */ | 
|---|
|  | 118 | /* Function : transpose matrix                              */ | 
|---|
|  | 119 | /* -------------------------------------------------------- */ | 
|---|
|  | 120 |  | 
|---|
|  | 121 | static void | 
|---|
|  | 122 | pflip(int id,int n,int m,int p,double *ar,double *ac,double *w, | 
|---|
|  | 123 | const Ref<MessageGrp>& grp) | 
|---|
|  | 124 | { | 
|---|
|  | 125 | int i,k,r,dpsize=sizeof(double),one=1; | 
|---|
|  | 126 |  | 
|---|
|  | 127 | i = 0; | 
|---|
|  | 128 | for (k=0; k<n; k++) { | 
|---|
|  | 129 | r = k % p; | 
|---|
|  | 130 | if (id == r) { | 
|---|
|  | 131 | F77_DCOPY(&n,&ar[i],&m,&w[0],&one); | 
|---|
|  | 132 | i++; | 
|---|
|  | 133 | } | 
|---|
|  | 134 | grp->raw_bcast(&w[0], n*dpsize, r); | 
|---|
|  | 135 | F77_DCOPY(&m,&w[id],&p,&ac[k],&n); | 
|---|
|  | 136 | } | 
|---|
|  | 137 | } | 
|---|
|  | 138 |  | 
|---|
|  | 139 | /*******************************************************************/ | 
|---|
|  | 140 |  | 
|---|
|  | 141 | static void | 
|---|
|  | 142 | ptred2_(double *a, int *lda, int *n, int *m, int *p, int *id, | 
|---|
|  | 143 | double *d, double *e, double *z, double *work, | 
|---|
|  | 144 | const Ref<MessageGrp>& grp) | 
|---|
|  | 145 | { | 
|---|
|  | 146 | if (*p==1) | 
|---|
|  | 147 | ptred_single(a, lda, n, m, p, id, d, e, z, work); | 
|---|
|  | 148 | else | 
|---|
|  | 149 | ptred_parallel(a, lda, n, m, p, id, d, e, z, work, grp); | 
|---|
|  | 150 | } | 
|---|
|  | 151 |  | 
|---|
|  | 152 | /* ******************************************************** */ | 
|---|
|  | 153 | /* Function of this subroutine :                            */ | 
|---|
|  | 154 | /*    tridiagonalize a real, symmetric matrix using         */ | 
|---|
|  | 155 | /*    Householder transformation                            */ | 
|---|
|  | 156 | /* Parameters :                                             */ | 
|---|
|  | 157 | /*    a[lda][m] - locally held submatrix                    */ | 
|---|
|  | 158 | /*    lda - leading dimension of array a                    */ | 
|---|
|  | 159 | /*    n   - size of the matrix a                            */ | 
|---|
|  | 160 | /*    m   - number of locally held columns                  */ | 
|---|
|  | 161 | /*    p   - number of nodes used                            */ | 
|---|
|  | 162 | /*    id  - my node id                                      */ | 
|---|
|  | 163 | /*  on return :                                             */ | 
|---|
|  | 164 | /*    d[n]    - the diagonal of the tridiagonal result      */ | 
|---|
|  | 165 | /*    e[n]    - the offdiagonal of the result(e[1]-e[n-1])  */ | 
|---|
|  | 166 | /*    z[m][n] - m rows of transformation matrix             */ | 
|---|
|  | 167 | /*    matrix a will be destroyed                            */ | 
|---|
|  | 168 | /* -------------------------------------------------------- */ | 
|---|
|  | 169 |  | 
|---|
|  | 170 | static void | 
|---|
|  | 171 | ptred_single(double *a,int *lda,int *n,int *m,int *p,int *id, | 
|---|
|  | 172 | double *d,double *e,double *z,double *work) | 
|---|
|  | 173 | { | 
|---|
|  | 174 | double  alpha=0.0, beta, gamma, alpha2; | 
|---|
|  | 175 | double  oobeta; | 
|---|
|  | 176 | int     i,j,k,l,ld,r; | 
|---|
|  | 177 | int     slda, sn, sm, sp, sid, q, inc=1; | 
|---|
|  | 178 |  | 
|---|
|  | 179 | /* extract parameters and get  cube information */ | 
|---|
|  | 180 |  | 
|---|
|  | 181 | slda = *lda; | 
|---|
|  | 182 | sn = *n; | 
|---|
|  | 183 | sm = *m; | 
|---|
|  | 184 | sp = *p; | 
|---|
|  | 185 | sid = *id; | 
|---|
|  | 186 |  | 
|---|
|  | 187 | /* initialize eigenvector matrix to be identity */ | 
|---|
|  | 188 |  | 
|---|
|  | 189 | i = sn * sm; | 
|---|
|  | 190 | alpha2 = 0.0; | 
|---|
|  | 191 | j = 0; | 
|---|
|  | 192 | F77_DCOPY(&i,&alpha2,&j,&z[0],&inc); | 
|---|
|  | 193 | ld = sid; | 
|---|
|  | 194 | for (i=0; i<sm; i++) { | 
|---|
|  | 195 | z[ld*sm+i] = 1.0; | 
|---|
|  | 196 | ld += sp; | 
|---|
|  | 197 | } | 
|---|
|  | 198 |  | 
|---|
|  | 199 | /* start reduction - one column at a time */ | 
|---|
|  | 200 |  | 
|---|
|  | 201 | l = 0; | 
|---|
|  | 202 | ld = sid; | 
|---|
|  | 203 | d[0] = 0.0; | 
|---|
|  | 204 | e[0] = 0.0; | 
|---|
|  | 205 | if (sid == 0) d[0] = a[0]; | 
|---|
|  | 206 | for (k=1; k<=sn-1; k++) { | 
|---|
|  | 207 | r = (k-1) % sp; | 
|---|
|  | 208 |  | 
|---|
|  | 209 | /* Use a Householder reflection to zero a(i,k), i = k+2,..., n .*/ | 
|---|
|  | 210 | /* Let  a = (0, ..., 0, a(k+1,k) ... a(n,k))',                  */ | 
|---|
|  | 211 | /*      u =  a/norm(a) + (k+1-st unit vector),                  */ | 
|---|
|  | 212 | /*      beta = -u(k+1) = -norm(u)**2/2 ,                        */ | 
|---|
|  | 213 | /*      H = I + u*u'/beta .                                     */ | 
|---|
|  | 214 | /* Replace  A  by  H*A*H .                                      */ | 
|---|
|  | 215 | /* Store u in D(K+1) through D(N) .                             */ | 
|---|
|  | 216 | /* The root node, r, is the owner of column k.                  */ | 
|---|
|  | 217 |  | 
|---|
|  | 218 | if (sid == r) { | 
|---|
|  | 219 | q = sn - k; | 
|---|
|  | 220 | alpha = F77_DNRM2(&q,&a[l*slda+k],&inc); | 
|---|
|  | 221 | if (a[l*slda+k] < 0.0) alpha = -alpha; | 
|---|
|  | 222 | if (alpha != 0.0) { | 
|---|
|  | 223 | alpha2 = 1.0 / alpha; | 
|---|
|  | 224 | F77_DSCAL(&q,&alpha2,&a[l*slda+k],&inc); | 
|---|
|  | 225 | a[l*slda+k] += 1.0; | 
|---|
|  | 226 | } | 
|---|
|  | 227 | F77_DCOPY(&q,&a[l*slda+k],&inc,&d[k],&inc); | 
|---|
|  | 228 | l++; | 
|---|
|  | 229 | ld += sp; | 
|---|
|  | 230 | } | 
|---|
|  | 231 |  | 
|---|
|  | 232 | beta = -d[k]; | 
|---|
|  | 233 | if (beta != 0.0) { | 
|---|
|  | 234 |  | 
|---|
|  | 235 | /* Symmetric matrix times vector,  v = A*u.*/ | 
|---|
|  | 236 | /* Store  v  in  E(K+1) through E(N) .     */ | 
|---|
|  | 237 |  | 
|---|
|  | 238 | alpha2 = 0.0; | 
|---|
|  | 239 | j = 0; | 
|---|
|  | 240 | q = sn - k; | 
|---|
|  | 241 | F77_DCOPY(&q,&alpha2,&j,&e[k],&inc); | 
|---|
|  | 242 | i = ld; | 
|---|
|  | 243 | for (j=l; j<sm; j++) { | 
|---|
|  | 244 | q = sn - i; | 
|---|
|  | 245 | e[i] = e[i] + F77_DDOT(&q,&a[j*slda+i],&inc,&d[i],&inc); | 
|---|
|  | 246 | q = sn - i - 1; | 
|---|
|  | 247 | F77_DAXPY(&q,&d[i],&a[slda*j+i+1],&inc,&e[i+1],&inc); | 
|---|
|  | 248 | i += sp; | 
|---|
|  | 249 | } | 
|---|
|  | 250 |  | 
|---|
|  | 251 | /* v = v/beta            */ | 
|---|
|  | 252 | /* gamma = v'*u/(2*beta) */ | 
|---|
|  | 253 | /* v = v + gamma*u       */ | 
|---|
|  | 254 |  | 
|---|
|  | 255 | if (sid == r) { | 
|---|
|  | 256 | q = sn - k; | 
|---|
|  | 257 | alpha2 = 1.0 / beta; | 
|---|
|  | 258 | F77_DSCAL(&q,&alpha2,&e[k],&inc); | 
|---|
|  | 259 | gamma = 0.5*F77_DDOT(&q,&d[k],&inc,&e[k],&inc)/beta; | 
|---|
|  | 260 | F77_DAXPY(&q,&gamma,&d[k],&inc,&e[k],&inc); | 
|---|
|  | 261 | } | 
|---|
|  | 262 |  | 
|---|
|  | 263 | /* Rank two update of A, compute only lower half. */ | 
|---|
|  | 264 | /* A  =  A + u'*v + v'*u  =  H*A*H                */ | 
|---|
|  | 265 |  | 
|---|
|  | 266 | i = ld; | 
|---|
|  | 267 | for (j=l; j<sm; j++) { | 
|---|
|  | 268 | q = sn - i; | 
|---|
|  | 269 | F77_DAXPY(&q,&d[i],&e[i],&inc,&a[j*slda+i],&inc); | 
|---|
|  | 270 | F77_DAXPY(&q,&e[i],&d[i],&inc,&a[j*slda+i],&inc); | 
|---|
|  | 271 | i += sp; | 
|---|
|  | 272 | } | 
|---|
|  | 273 | q = sn - k; | 
|---|
|  | 274 | oobeta=1.0/beta; | 
|---|
|  | 275 | for (i=0; i<sm; i++) { | 
|---|
|  | 276 | gamma = F77_DDOT(&q,&d[k],&inc,&z[k*sm+i],&sm)*oobeta; | 
|---|
|  | 277 | F77_DAXPY(&q,&gamma,&d[k],&inc,&z[k*sm+i],&sm); | 
|---|
|  | 278 | } | 
|---|
|  | 279 | } | 
|---|
|  | 280 |  | 
|---|
|  | 281 | d[k] = 0.0; | 
|---|
|  | 282 | e[k] = 0.0; | 
|---|
|  | 283 | if (sid == (k % sp)) d[k] = a[l*slda+ld]; | 
|---|
|  | 284 | if (sid == r) e[k] = -alpha; | 
|---|
|  | 285 | } | 
|---|
|  | 286 | r = 0; | 
|---|
|  | 287 |  | 
|---|
|  | 288 | } | 
|---|
|  | 289 |  | 
|---|
|  | 290 | /* | 
|---|
|  | 291 | * Function of this subroutine : | 
|---|
|  | 292 | * tridiagonalize a real, symmetric matrix using | 
|---|
|  | 293 | * Householder transformation | 
|---|
|  | 294 | * | 
|---|
|  | 295 | * Parameters : | 
|---|
|  | 296 | *   a[lda][m] - locally held submatrix | 
|---|
|  | 297 | *   lda - leading dimension of array a | 
|---|
|  | 298 | *   n   - size of the matrix a | 
|---|
|  | 299 | *   m   - number of locally held columns | 
|---|
|  | 300 | *   p   - number of nodes used | 
|---|
|  | 301 | *   id  - my node id | 
|---|
|  | 302 | * | 
|---|
|  | 303 | * on return : | 
|---|
|  | 304 | *   d[n]    - the diagonal of the tridiagonal result | 
|---|
|  | 305 | *   e[n]    - the offdiagonal of the result(e[1]-e[n-1]) | 
|---|
|  | 306 | *   z[m][n] - m rows of transformation matrix | 
|---|
|  | 307 | *   matrix a will be destroyed | 
|---|
|  | 308 | * | 
|---|
|  | 309 | * merge C code from libdmt with FORTRAN code modified by R. Chamberlain | 
|---|
|  | 310 | * FORTRAN COMMENTS: | 
|---|
|  | 311 | *    This version dated 5/4/92 | 
|---|
|  | 312 | *    Richard Chamberlain, Intel Supercomputer Systems Division | 
|---|
|  | 313 | *    Improvements: | 
|---|
|  | 314 | *      1. gdcomb of Robert van de Geijn used. | 
|---|
|  | 315 | *      2. look-ahead distribution of Householder vector. Here the node | 
|---|
|  | 316 | *        containing the next Householder vector defers updating the | 
|---|
|  | 317 | *        eigenvector matrix until the next Householder vector is sent. | 
|---|
|  | 318 | */ | 
|---|
|  | 319 |  | 
|---|
|  | 320 | static void | 
|---|
|  | 321 | ptred_parallel(double *a, int *lda, int *n, int *m, int *p, int *id, | 
|---|
|  | 322 | double *d, double *e, double *z, double *work, | 
|---|
|  | 323 | const Ref<MessageGrp>& grp) | 
|---|
|  | 324 | { | 
|---|
|  | 325 | int i, j, k, l, ld, r, dpsize = sizeof(double); | 
|---|
|  | 326 | int kp1l; | 
|---|
|  | 327 | int slda, sn, sm, sp, sid, q, inc = 1; | 
|---|
|  | 328 | double alpha=0.0, beta=0.0, gamma, alpha2; | 
|---|
|  | 329 | double oobeta, atemp; | 
|---|
|  | 330 |  | 
|---|
|  | 331 | /* extract parameters and get  cube information */ | 
|---|
|  | 332 |  | 
|---|
|  | 333 | slda = *lda; | 
|---|
|  | 334 | sn = *n; | 
|---|
|  | 335 | sm = *m; | 
|---|
|  | 336 | sp = *p; | 
|---|
|  | 337 | sid = *id; | 
|---|
|  | 338 |  | 
|---|
|  | 339 | /* initialize eigenvector matrix to be identity */ | 
|---|
|  | 340 |  | 
|---|
|  | 341 | i = sn * sm; | 
|---|
|  | 342 | alpha2 = 0.0; | 
|---|
|  | 343 | j = 0; | 
|---|
|  | 344 | F77_DCOPY(&i, &alpha2, &j, &z[0], &inc); | 
|---|
|  | 345 | ld = sid; | 
|---|
|  | 346 | for (i = 0; i < sm; i++) { | 
|---|
|  | 347 | z[ld * sm + i] = 1.0; | 
|---|
|  | 348 | ld += sp; | 
|---|
|  | 349 | } | 
|---|
|  | 350 |  | 
|---|
|  | 351 | /* start reduction - one column at a time */ | 
|---|
|  | 352 |  | 
|---|
|  | 353 | l = 0; | 
|---|
|  | 354 | ld = sid; | 
|---|
|  | 355 | d[0] = 0.0; | 
|---|
|  | 356 | e[0] = 0.0; | 
|---|
|  | 357 | if (sid == 0) d[0] = a[0]; | 
|---|
|  | 358 |  | 
|---|
|  | 359 | for (k = 1; k <= sn - 1; k++) { | 
|---|
|  | 360 |  | 
|---|
|  | 361 | /* Use a Householder reflection to zero a(i,k), i = k+2,..., n . | 
|---|
|  | 362 | * Let  a = (0, ..., 0, a(k+1,k) ... a(n,k))', | 
|---|
|  | 363 | * u =  a/norm(a) + (k+1-st unit vector), | 
|---|
|  | 364 | * beta = -u(k+1) = -norm(u)**2/2, | 
|---|
|  | 365 | * H = I + u*u'/beta. | 
|---|
|  | 366 | * Replace  A  by  H*A*H. | 
|---|
|  | 367 | * Store u in D(K+1) through D(N). | 
|---|
|  | 368 | * The root node, r, is the owner of column k. | 
|---|
|  | 369 | */ | 
|---|
|  | 370 |  | 
|---|
|  | 371 | r = (k - 1) % sp; | 
|---|
|  | 372 | if (sid == r) { | 
|---|
|  | 373 | kp1l=l*slda+k; | 
|---|
|  | 374 | q = sn - k; | 
|---|
|  | 375 | atemp = a[l * slda + ld]; | 
|---|
|  | 376 | alpha = F77_DNRM2(&q, &a[kp1l], &inc); | 
|---|
|  | 377 | if (a[kp1l] < 0.0) alpha = -alpha; | 
|---|
|  | 378 | if (alpha != 0.0) { | 
|---|
|  | 379 | alpha2 = 1.0 / alpha; | 
|---|
|  | 380 | F77_DSCAL(&q, &alpha2, &a[kp1l], &inc); | 
|---|
|  | 381 | a[kp1l] += 1.0; | 
|---|
|  | 382 | } | 
|---|
|  | 383 |  | 
|---|
|  | 384 | grp->raw_bcast(&a[kp1l], (sn - k) * dpsize, r); | 
|---|
|  | 385 |  | 
|---|
|  | 386 | /* this is the deferred update of the eigenvector matrix. It was | 
|---|
|  | 387 | * deferred from the last step to accelerate the sending of the Householder | 
|---|
|  | 388 | * vector. Don't do this on the first step. | 
|---|
|  | 389 | */ | 
|---|
|  | 390 | if (k != 1) { | 
|---|
|  | 391 | int ik = k - 1; /* ik is a temporary index to the previous step */ | 
|---|
|  | 392 | int nmik = sn - ik; | 
|---|
|  | 393 |  | 
|---|
|  | 394 | if (beta != 0.0) { | 
|---|
|  | 395 | for (i = 0; i < sm; i++) { | 
|---|
|  | 396 | gamma = F77_DDOT(&nmik, &d[ik], &inc, &z[ik * sm + i], &sm) / beta; | 
|---|
|  | 397 | F77_DAXPY(&nmik, &gamma, &d[ik], &inc, &z[ik * sm + i], &sm); | 
|---|
|  | 398 | } | 
|---|
|  | 399 | } | 
|---|
|  | 400 | e[ik] = 0.0; | 
|---|
|  | 401 | d[ik] = atemp; | 
|---|
|  | 402 | } | 
|---|
|  | 403 |  | 
|---|
|  | 404 | /* now resume normal service */ | 
|---|
|  | 405 | F77_DCOPY(&q, &a[kp1l], &inc, &d[k], &inc); | 
|---|
|  | 406 | l++; | 
|---|
|  | 407 | ld += sp; | 
|---|
|  | 408 | } | 
|---|
|  | 409 | else { | 
|---|
|  | 410 | grp->raw_bcast(&d[k], (sn - k) * dpsize, r); | 
|---|
|  | 411 | } | 
|---|
|  | 412 |  | 
|---|
|  | 413 | beta = -d[k]; | 
|---|
|  | 414 | if (beta != 0.0) { | 
|---|
|  | 415 |  | 
|---|
|  | 416 | /* Symmetric matrix times vector,  v = A*u. */ | 
|---|
|  | 417 | /* Store  v  in  E(K+1) through E(N) .     */ | 
|---|
|  | 418 |  | 
|---|
|  | 419 | alpha2 = 0.0; | 
|---|
|  | 420 | j = 0; | 
|---|
|  | 421 | q = sn - k; | 
|---|
|  | 422 | F77_DCOPY(&q, &alpha2, &j, &e[k], &inc); | 
|---|
|  | 423 | i = ld; | 
|---|
|  | 424 | for (j = l; j < sm; j++) { | 
|---|
|  | 425 | int ij=j*slda+i; | 
|---|
|  | 426 | q = sn - i; | 
|---|
|  | 427 | e[i] += F77_DDOT(&q, &a[ij], &inc, &d[i], &inc); | 
|---|
|  | 428 | q--; | 
|---|
|  | 429 | F77_DAXPY(&q, &d[i], &a[ij+1], &inc, &e[i + 1], &inc); | 
|---|
|  | 430 | i += sp; | 
|---|
|  | 431 | } | 
|---|
|  | 432 | grp->sum(&e[k], sn-k, work); | 
|---|
|  | 433 |  | 
|---|
|  | 434 | /* v = v/beta | 
|---|
|  | 435 | * gamma = v'*u/(2*beta) | 
|---|
|  | 436 | * v = v + gamma*u | 
|---|
|  | 437 | */ | 
|---|
|  | 438 |  | 
|---|
|  | 439 | q = sn - k; | 
|---|
|  | 440 | alpha2 = 1.0 / beta; | 
|---|
|  | 441 | F77_DSCAL(&q, &alpha2, &e[k], &inc); | 
|---|
|  | 442 | gamma = 0.5 * F77_DDOT(&q, &d[k], &inc, &e[k], &inc) / beta; | 
|---|
|  | 443 | F77_DAXPY(&q, &gamma, &d[k], &inc, &e[k], &inc); | 
|---|
|  | 444 |  | 
|---|
|  | 445 | /* Rank two update of A, compute only lower half. */ | 
|---|
|  | 446 | /* A  =  A + u'*v + v'*u  =  H*A*H                */ | 
|---|
|  | 447 |  | 
|---|
|  | 448 | i = ld; | 
|---|
|  | 449 | for (j = l; j < sm; j++) { | 
|---|
|  | 450 | double *atmp= &a[j*slda+i]; | 
|---|
|  | 451 | q = sn - i; | 
|---|
|  | 452 | F77_DAXPY(&q, &d[i], &e[i], &inc, atmp, &inc); | 
|---|
|  | 453 | F77_DAXPY(&q, &e[i], &d[i], &inc, atmp, &inc); | 
|---|
|  | 454 | i += sp; | 
|---|
|  | 455 | } | 
|---|
|  | 456 |  | 
|---|
|  | 457 | /*  Accumulate m rows of transformation matrix. | 
|---|
|  | 458 | *  Z = Z*H | 
|---|
|  | 459 | * | 
|---|
|  | 460 | * if I have next column, defer updating | 
|---|
|  | 461 | */ | 
|---|
|  | 462 |  | 
|---|
|  | 463 | if (sid != k%sp || k == sn - 1) { | 
|---|
|  | 464 | q = sn - k; | 
|---|
|  | 465 | oobeta = 1.0 / beta; | 
|---|
|  | 466 | for (i = 0; i < sm; i++) { | 
|---|
|  | 467 | gamma = F77_DDOT(&q, &d[k], &inc, &z[k * sm + i], &sm) * oobeta; | 
|---|
|  | 468 | F77_DAXPY(&q, &gamma, &d[k], &inc, &z[k * sm + i], &sm); | 
|---|
|  | 469 | } | 
|---|
|  | 470 | } | 
|---|
|  | 471 | } | 
|---|
|  | 472 |  | 
|---|
|  | 473 | /* another bit of calcs to be deferred */ | 
|---|
|  | 474 | if (sid != k%sp || k == sn - 1) { | 
|---|
|  | 475 | d[k] = 0.0; | 
|---|
|  | 476 | e[k] = 0.0; | 
|---|
|  | 477 | if (sid == k%sp) d[k] = a[l * slda + ld]; | 
|---|
|  | 478 | if (sid == r) e[k] = -alpha; | 
|---|
|  | 479 | } | 
|---|
|  | 480 | } | 
|---|
|  | 481 |  | 
|---|
|  | 482 | /* collect the whole tridiagonal matrix at every node */ | 
|---|
|  | 483 |  | 
|---|
|  | 484 | grp->sum(d, sn, work); | 
|---|
|  | 485 | grp->sum(e, sn, work); | 
|---|
|  | 486 | } | 
|---|
|  | 487 |  | 
|---|
|  | 488 | } | 
|---|