[0b990d] | 1 |
|
---|
| 2 | #include <iostream>
|
---|
| 3 |
|
---|
| 4 | #include <math.h>
|
---|
| 5 |
|
---|
| 6 | #include <util/group/message.h>
|
---|
| 7 |
|
---|
| 8 | #include <math/scmat/disthql.h>
|
---|
| 9 |
|
---|
| 10 | #include <math/scmat/f77sym.h>
|
---|
| 11 |
|
---|
| 12 | using namespace std;
|
---|
| 13 | using namespace sc;
|
---|
| 14 |
|
---|
| 15 | extern "C" {
|
---|
| 16 | void F77_PDSTEQR(int *n, double *d, double *e,
|
---|
| 17 | double *z, int *ldz, int *nz, double *work,
|
---|
| 18 | int *info);
|
---|
| 19 | void F77_DCOPY(int *n, double *dx, int *incx, double *dy, int *incy);
|
---|
| 20 | double F77_DNRM2(int *n, double *dx, int *incx);
|
---|
| 21 | double F77_DDOT(int *n, double *dx, int *incx, double *dy, int *incy);
|
---|
| 22 | void F77_DSCAL(int *n, double *da, double *dx, int *incx);
|
---|
| 23 | void F77_DAXPY(int *n, double *da, double *dx, int *incx, double *dy, int *incy);
|
---|
| 24 | }
|
---|
| 25 |
|
---|
| 26 | namespace sc {
|
---|
| 27 |
|
---|
| 28 | static void dist_diagonalize_(int n, int m, double *a, double *d, double *e,
|
---|
| 29 | double *sigma, double *z, double *v, double *w,
|
---|
| 30 | int *ind, const Ref<MessageGrp>&);
|
---|
| 31 |
|
---|
| 32 | static void pflip(int id,int n,int m,int p,double *ar,double *ac,double *w,
|
---|
| 33 | const Ref<MessageGrp>&);
|
---|
| 34 |
|
---|
| 35 | static void
|
---|
| 36 | ptred2_(double *a, int *lda, int *n, int *m, int *p, int *id,
|
---|
| 37 | double *d, double *e, double *z, double *work,
|
---|
| 38 | const Ref<MessageGrp>& grp);
|
---|
| 39 |
|
---|
| 40 | static void
|
---|
| 41 | ptred_single(double *a,int *lda,int *n,int *m,int *p,int *id,
|
---|
| 42 | double *d,double *e,double *z,double *work);
|
---|
| 43 | static void
|
---|
| 44 | ptred_parallel(double *a, int *lda, int *n, int *m, int *p, int *id,
|
---|
| 45 | double *d, double *e, double *z, double *work,
|
---|
| 46 | const Ref<MessageGrp>&);
|
---|
| 47 |
|
---|
| 48 | /* ******************************************************** */
|
---|
| 49 | /* Function of this subroutine : */
|
---|
| 50 | /* Diagonalize a real, symmetric matrix */
|
---|
| 51 | /* */
|
---|
| 52 | /* Parameters : */
|
---|
| 53 | /* n - size of the matrix */
|
---|
| 54 | /* m - number of locally held columns */
|
---|
| 55 | /* a[n][m] - locally held submatrix */
|
---|
| 56 | /* d[n] - returned with eigenvalues */
|
---|
| 57 | /* v[n][m] - returned with eigenvectors */
|
---|
| 58 | /* -------------------------------------------------------- */
|
---|
| 59 | void
|
---|
| 60 | dist_diagonalize(int n, int m, double *a, double *d, double *v,
|
---|
| 61 | const Ref<MessageGrp> &grp)
|
---|
| 62 | {
|
---|
| 63 | double *e = new double[n];
|
---|
| 64 | double *sigma = new double[n];
|
---|
| 65 | double *z = new double[n*m];
|
---|
| 66 | double *w = new double[3*n];
|
---|
| 67 | int *ind = new int[n];
|
---|
| 68 | dist_diagonalize_(n, m, a, d, e, sigma, z, v, w, ind, grp);
|
---|
| 69 | delete[] e;
|
---|
| 70 | delete[] sigma;
|
---|
| 71 | delete[] z;
|
---|
| 72 | delete[] w;
|
---|
| 73 | delete[] ind;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | /* ******************************************************** */
|
---|
| 77 | /* Function of this subroutine : */
|
---|
| 78 | /* Diagonalize a real, symmetric matrix */
|
---|
| 79 | /* */
|
---|
| 80 | /* Parameters : */
|
---|
| 81 | /* n - size of the matrix */
|
---|
| 82 | /* m - number of locally held columns */
|
---|
| 83 | /* a[n][m] - locally held submatrix */
|
---|
| 84 | /* d[n] - returned with eigenvalues */
|
---|
| 85 | /* e[n] - scratch space */
|
---|
| 86 | /* sigma[n]- scratch space */
|
---|
| 87 | /* z[m][n] - scratch space */
|
---|
| 88 | /* v[n][m] - returned with eigenvectors */
|
---|
| 89 | /* w[3*n] - scratch space */
|
---|
| 90 | /* ind[n] - scratch space (integer) */
|
---|
| 91 | /* -------------------------------------------------------- */
|
---|
| 92 | static void
|
---|
| 93 | dist_diagonalize_(int n, int m, double *a, double *d, double *e,
|
---|
| 94 | double *sigma, double *z, double *v, double *w, int *ind,
|
---|
| 95 | const Ref<MessageGrp>& grp)
|
---|
| 96 | {
|
---|
| 97 | int i,info,one=1;
|
---|
| 98 | int nproc = grp->n();
|
---|
| 99 | int id = grp->me();
|
---|
| 100 |
|
---|
| 101 | /* reduce A to tridiagonal matrix using Householder transformation */
|
---|
| 102 |
|
---|
| 103 | ptred2_(&a[0],&n,&n,&m,&nproc,&id,&d[0],&e[0],&z[0],&w[0],grp);
|
---|
| 104 |
|
---|
| 105 | /* diagonalize tridiagonal matrix using implicit QL method */
|
---|
| 106 |
|
---|
| 107 | for (i=1; i<n; i++) e[i-1] = e[i];
|
---|
| 108 | F77_PDSTEQR(&n, d, e, z, &m, &m, w, &info);
|
---|
| 109 |
|
---|
| 110 | /* rearrange the eigenvectors by transposition */
|
---|
| 111 |
|
---|
| 112 | i = m * n;
|
---|
| 113 | F77_DCOPY(&i,&z[0],&one,&a[0],&one);
|
---|
| 114 | pflip(id,n,m,nproc,&a[0],&v[0],&w[0],grp);
|
---|
| 115 | }
|
---|
| 116 |
|
---|
| 117 | /* ******************************************************** */
|
---|
| 118 | /* Function : transpose matrix */
|
---|
| 119 | /* -------------------------------------------------------- */
|
---|
| 120 |
|
---|
| 121 | static void
|
---|
| 122 | pflip(int id,int n,int m,int p,double *ar,double *ac,double *w,
|
---|
| 123 | const Ref<MessageGrp>& grp)
|
---|
| 124 | {
|
---|
| 125 | int i,k,r,dpsize=sizeof(double),one=1;
|
---|
| 126 |
|
---|
| 127 | i = 0;
|
---|
| 128 | for (k=0; k<n; k++) {
|
---|
| 129 | r = k % p;
|
---|
| 130 | if (id == r) {
|
---|
| 131 | F77_DCOPY(&n,&ar[i],&m,&w[0],&one);
|
---|
| 132 | i++;
|
---|
| 133 | }
|
---|
| 134 | grp->raw_bcast(&w[0], n*dpsize, r);
|
---|
| 135 | F77_DCOPY(&m,&w[id],&p,&ac[k],&n);
|
---|
| 136 | }
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | /*******************************************************************/
|
---|
| 140 |
|
---|
| 141 | static void
|
---|
| 142 | ptred2_(double *a, int *lda, int *n, int *m, int *p, int *id,
|
---|
| 143 | double *d, double *e, double *z, double *work,
|
---|
| 144 | const Ref<MessageGrp>& grp)
|
---|
| 145 | {
|
---|
| 146 | if (*p==1)
|
---|
| 147 | ptred_single(a, lda, n, m, p, id, d, e, z, work);
|
---|
| 148 | else
|
---|
| 149 | ptred_parallel(a, lda, n, m, p, id, d, e, z, work, grp);
|
---|
| 150 | }
|
---|
| 151 |
|
---|
| 152 | /* ******************************************************** */
|
---|
| 153 | /* Function of this subroutine : */
|
---|
| 154 | /* tridiagonalize a real, symmetric matrix using */
|
---|
| 155 | /* Householder transformation */
|
---|
| 156 | /* Parameters : */
|
---|
| 157 | /* a[lda][m] - locally held submatrix */
|
---|
| 158 | /* lda - leading dimension of array a */
|
---|
| 159 | /* n - size of the matrix a */
|
---|
| 160 | /* m - number of locally held columns */
|
---|
| 161 | /* p - number of nodes used */
|
---|
| 162 | /* id - my node id */
|
---|
| 163 | /* on return : */
|
---|
| 164 | /* d[n] - the diagonal of the tridiagonal result */
|
---|
| 165 | /* e[n] - the offdiagonal of the result(e[1]-e[n-1]) */
|
---|
| 166 | /* z[m][n] - m rows of transformation matrix */
|
---|
| 167 | /* matrix a will be destroyed */
|
---|
| 168 | /* -------------------------------------------------------- */
|
---|
| 169 |
|
---|
| 170 | static void
|
---|
| 171 | ptred_single(double *a,int *lda,int *n,int *m,int *p,int *id,
|
---|
| 172 | double *d,double *e,double *z,double *work)
|
---|
| 173 | {
|
---|
| 174 | double alpha=0.0, beta, gamma, alpha2;
|
---|
| 175 | double oobeta;
|
---|
| 176 | int i,j,k,l,ld,r;
|
---|
| 177 | int slda, sn, sm, sp, sid, q, inc=1;
|
---|
| 178 |
|
---|
| 179 | /* extract parameters and get cube information */
|
---|
| 180 |
|
---|
| 181 | slda = *lda;
|
---|
| 182 | sn = *n;
|
---|
| 183 | sm = *m;
|
---|
| 184 | sp = *p;
|
---|
| 185 | sid = *id;
|
---|
| 186 |
|
---|
| 187 | /* initialize eigenvector matrix to be identity */
|
---|
| 188 |
|
---|
| 189 | i = sn * sm;
|
---|
| 190 | alpha2 = 0.0;
|
---|
| 191 | j = 0;
|
---|
| 192 | F77_DCOPY(&i,&alpha2,&j,&z[0],&inc);
|
---|
| 193 | ld = sid;
|
---|
| 194 | for (i=0; i<sm; i++) {
|
---|
| 195 | z[ld*sm+i] = 1.0;
|
---|
| 196 | ld += sp;
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 | /* start reduction - one column at a time */
|
---|
| 200 |
|
---|
| 201 | l = 0;
|
---|
| 202 | ld = sid;
|
---|
| 203 | d[0] = 0.0;
|
---|
| 204 | e[0] = 0.0;
|
---|
| 205 | if (sid == 0) d[0] = a[0];
|
---|
| 206 | for (k=1; k<=sn-1; k++) {
|
---|
| 207 | r = (k-1) % sp;
|
---|
| 208 |
|
---|
| 209 | /* Use a Householder reflection to zero a(i,k), i = k+2,..., n .*/
|
---|
| 210 | /* Let a = (0, ..., 0, a(k+1,k) ... a(n,k))', */
|
---|
| 211 | /* u = a/norm(a) + (k+1-st unit vector), */
|
---|
| 212 | /* beta = -u(k+1) = -norm(u)**2/2 , */
|
---|
| 213 | /* H = I + u*u'/beta . */
|
---|
| 214 | /* Replace A by H*A*H . */
|
---|
| 215 | /* Store u in D(K+1) through D(N) . */
|
---|
| 216 | /* The root node, r, is the owner of column k. */
|
---|
| 217 |
|
---|
| 218 | if (sid == r) {
|
---|
| 219 | q = sn - k;
|
---|
| 220 | alpha = F77_DNRM2(&q,&a[l*slda+k],&inc);
|
---|
| 221 | if (a[l*slda+k] < 0.0) alpha = -alpha;
|
---|
| 222 | if (alpha != 0.0) {
|
---|
| 223 | alpha2 = 1.0 / alpha;
|
---|
| 224 | F77_DSCAL(&q,&alpha2,&a[l*slda+k],&inc);
|
---|
| 225 | a[l*slda+k] += 1.0;
|
---|
| 226 | }
|
---|
| 227 | F77_DCOPY(&q,&a[l*slda+k],&inc,&d[k],&inc);
|
---|
| 228 | l++;
|
---|
| 229 | ld += sp;
|
---|
| 230 | }
|
---|
| 231 |
|
---|
| 232 | beta = -d[k];
|
---|
| 233 | if (beta != 0.0) {
|
---|
| 234 |
|
---|
| 235 | /* Symmetric matrix times vector, v = A*u.*/
|
---|
| 236 | /* Store v in E(K+1) through E(N) . */
|
---|
| 237 |
|
---|
| 238 | alpha2 = 0.0;
|
---|
| 239 | j = 0;
|
---|
| 240 | q = sn - k;
|
---|
| 241 | F77_DCOPY(&q,&alpha2,&j,&e[k],&inc);
|
---|
| 242 | i = ld;
|
---|
| 243 | for (j=l; j<sm; j++) {
|
---|
| 244 | q = sn - i;
|
---|
| 245 | e[i] = e[i] + F77_DDOT(&q,&a[j*slda+i],&inc,&d[i],&inc);
|
---|
| 246 | q = sn - i - 1;
|
---|
| 247 | F77_DAXPY(&q,&d[i],&a[slda*j+i+1],&inc,&e[i+1],&inc);
|
---|
| 248 | i += sp;
|
---|
| 249 | }
|
---|
| 250 |
|
---|
| 251 | /* v = v/beta */
|
---|
| 252 | /* gamma = v'*u/(2*beta) */
|
---|
| 253 | /* v = v + gamma*u */
|
---|
| 254 |
|
---|
| 255 | if (sid == r) {
|
---|
| 256 | q = sn - k;
|
---|
| 257 | alpha2 = 1.0 / beta;
|
---|
| 258 | F77_DSCAL(&q,&alpha2,&e[k],&inc);
|
---|
| 259 | gamma = 0.5*F77_DDOT(&q,&d[k],&inc,&e[k],&inc)/beta;
|
---|
| 260 | F77_DAXPY(&q,&gamma,&d[k],&inc,&e[k],&inc);
|
---|
| 261 | }
|
---|
| 262 |
|
---|
| 263 | /* Rank two update of A, compute only lower half. */
|
---|
| 264 | /* A = A + u'*v + v'*u = H*A*H */
|
---|
| 265 |
|
---|
| 266 | i = ld;
|
---|
| 267 | for (j=l; j<sm; j++) {
|
---|
| 268 | q = sn - i;
|
---|
| 269 | F77_DAXPY(&q,&d[i],&e[i],&inc,&a[j*slda+i],&inc);
|
---|
| 270 | F77_DAXPY(&q,&e[i],&d[i],&inc,&a[j*slda+i],&inc);
|
---|
| 271 | i += sp;
|
---|
| 272 | }
|
---|
| 273 | q = sn - k;
|
---|
| 274 | oobeta=1.0/beta;
|
---|
| 275 | for (i=0; i<sm; i++) {
|
---|
| 276 | gamma = F77_DDOT(&q,&d[k],&inc,&z[k*sm+i],&sm)*oobeta;
|
---|
| 277 | F77_DAXPY(&q,&gamma,&d[k],&inc,&z[k*sm+i],&sm);
|
---|
| 278 | }
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | d[k] = 0.0;
|
---|
| 282 | e[k] = 0.0;
|
---|
| 283 | if (sid == (k % sp)) d[k] = a[l*slda+ld];
|
---|
| 284 | if (sid == r) e[k] = -alpha;
|
---|
| 285 | }
|
---|
| 286 | r = 0;
|
---|
| 287 |
|
---|
| 288 | }
|
---|
| 289 |
|
---|
| 290 | /*
|
---|
| 291 | * Function of this subroutine :
|
---|
| 292 | * tridiagonalize a real, symmetric matrix using
|
---|
| 293 | * Householder transformation
|
---|
| 294 | *
|
---|
| 295 | * Parameters :
|
---|
| 296 | * a[lda][m] - locally held submatrix
|
---|
| 297 | * lda - leading dimension of array a
|
---|
| 298 | * n - size of the matrix a
|
---|
| 299 | * m - number of locally held columns
|
---|
| 300 | * p - number of nodes used
|
---|
| 301 | * id - my node id
|
---|
| 302 | *
|
---|
| 303 | * on return :
|
---|
| 304 | * d[n] - the diagonal of the tridiagonal result
|
---|
| 305 | * e[n] - the offdiagonal of the result(e[1]-e[n-1])
|
---|
| 306 | * z[m][n] - m rows of transformation matrix
|
---|
| 307 | * matrix a will be destroyed
|
---|
| 308 | *
|
---|
| 309 | * merge C code from libdmt with FORTRAN code modified by R. Chamberlain
|
---|
| 310 | * FORTRAN COMMENTS:
|
---|
| 311 | * This version dated 5/4/92
|
---|
| 312 | * Richard Chamberlain, Intel Supercomputer Systems Division
|
---|
| 313 | * Improvements:
|
---|
| 314 | * 1. gdcomb of Robert van de Geijn used.
|
---|
| 315 | * 2. look-ahead distribution of Householder vector. Here the node
|
---|
| 316 | * containing the next Householder vector defers updating the
|
---|
| 317 | * eigenvector matrix until the next Householder vector is sent.
|
---|
| 318 | */
|
---|
| 319 |
|
---|
| 320 | static void
|
---|
| 321 | ptred_parallel(double *a, int *lda, int *n, int *m, int *p, int *id,
|
---|
| 322 | double *d, double *e, double *z, double *work,
|
---|
| 323 | const Ref<MessageGrp>& grp)
|
---|
| 324 | {
|
---|
| 325 | int i, j, k, l, ld, r, dpsize = sizeof(double);
|
---|
| 326 | int kp1l;
|
---|
| 327 | int slda, sn, sm, sp, sid, q, inc = 1;
|
---|
| 328 | double alpha=0.0, beta=0.0, gamma, alpha2;
|
---|
| 329 | double oobeta, atemp;
|
---|
| 330 |
|
---|
| 331 | /* extract parameters and get cube information */
|
---|
| 332 |
|
---|
| 333 | slda = *lda;
|
---|
| 334 | sn = *n;
|
---|
| 335 | sm = *m;
|
---|
| 336 | sp = *p;
|
---|
| 337 | sid = *id;
|
---|
| 338 |
|
---|
| 339 | /* initialize eigenvector matrix to be identity */
|
---|
| 340 |
|
---|
| 341 | i = sn * sm;
|
---|
| 342 | alpha2 = 0.0;
|
---|
| 343 | j = 0;
|
---|
| 344 | F77_DCOPY(&i, &alpha2, &j, &z[0], &inc);
|
---|
| 345 | ld = sid;
|
---|
| 346 | for (i = 0; i < sm; i++) {
|
---|
| 347 | z[ld * sm + i] = 1.0;
|
---|
| 348 | ld += sp;
|
---|
| 349 | }
|
---|
| 350 |
|
---|
| 351 | /* start reduction - one column at a time */
|
---|
| 352 |
|
---|
| 353 | l = 0;
|
---|
| 354 | ld = sid;
|
---|
| 355 | d[0] = 0.0;
|
---|
| 356 | e[0] = 0.0;
|
---|
| 357 | if (sid == 0) d[0] = a[0];
|
---|
| 358 |
|
---|
| 359 | for (k = 1; k <= sn - 1; k++) {
|
---|
| 360 |
|
---|
| 361 | /* Use a Householder reflection to zero a(i,k), i = k+2,..., n .
|
---|
| 362 | * Let a = (0, ..., 0, a(k+1,k) ... a(n,k))',
|
---|
| 363 | * u = a/norm(a) + (k+1-st unit vector),
|
---|
| 364 | * beta = -u(k+1) = -norm(u)**2/2,
|
---|
| 365 | * H = I + u*u'/beta.
|
---|
| 366 | * Replace A by H*A*H.
|
---|
| 367 | * Store u in D(K+1) through D(N).
|
---|
| 368 | * The root node, r, is the owner of column k.
|
---|
| 369 | */
|
---|
| 370 |
|
---|
| 371 | r = (k - 1) % sp;
|
---|
| 372 | if (sid == r) {
|
---|
| 373 | kp1l=l*slda+k;
|
---|
| 374 | q = sn - k;
|
---|
| 375 | atemp = a[l * slda + ld];
|
---|
| 376 | alpha = F77_DNRM2(&q, &a[kp1l], &inc);
|
---|
| 377 | if (a[kp1l] < 0.0) alpha = -alpha;
|
---|
| 378 | if (alpha != 0.0) {
|
---|
| 379 | alpha2 = 1.0 / alpha;
|
---|
| 380 | F77_DSCAL(&q, &alpha2, &a[kp1l], &inc);
|
---|
| 381 | a[kp1l] += 1.0;
|
---|
| 382 | }
|
---|
| 383 |
|
---|
| 384 | grp->raw_bcast(&a[kp1l], (sn - k) * dpsize, r);
|
---|
| 385 |
|
---|
| 386 | /* this is the deferred update of the eigenvector matrix. It was
|
---|
| 387 | * deferred from the last step to accelerate the sending of the Householder
|
---|
| 388 | * vector. Don't do this on the first step.
|
---|
| 389 | */
|
---|
| 390 | if (k != 1) {
|
---|
| 391 | int ik = k - 1; /* ik is a temporary index to the previous step */
|
---|
| 392 | int nmik = sn - ik;
|
---|
| 393 |
|
---|
| 394 | if (beta != 0.0) {
|
---|
| 395 | for (i = 0; i < sm; i++) {
|
---|
| 396 | gamma = F77_DDOT(&nmik, &d[ik], &inc, &z[ik * sm + i], &sm) / beta;
|
---|
| 397 | F77_DAXPY(&nmik, &gamma, &d[ik], &inc, &z[ik * sm + i], &sm);
|
---|
| 398 | }
|
---|
| 399 | }
|
---|
| 400 | e[ik] = 0.0;
|
---|
| 401 | d[ik] = atemp;
|
---|
| 402 | }
|
---|
| 403 |
|
---|
| 404 | /* now resume normal service */
|
---|
| 405 | F77_DCOPY(&q, &a[kp1l], &inc, &d[k], &inc);
|
---|
| 406 | l++;
|
---|
| 407 | ld += sp;
|
---|
| 408 | }
|
---|
| 409 | else {
|
---|
| 410 | grp->raw_bcast(&d[k], (sn - k) * dpsize, r);
|
---|
| 411 | }
|
---|
| 412 |
|
---|
| 413 | beta = -d[k];
|
---|
| 414 | if (beta != 0.0) {
|
---|
| 415 |
|
---|
| 416 | /* Symmetric matrix times vector, v = A*u. */
|
---|
| 417 | /* Store v in E(K+1) through E(N) . */
|
---|
| 418 |
|
---|
| 419 | alpha2 = 0.0;
|
---|
| 420 | j = 0;
|
---|
| 421 | q = sn - k;
|
---|
| 422 | F77_DCOPY(&q, &alpha2, &j, &e[k], &inc);
|
---|
| 423 | i = ld;
|
---|
| 424 | for (j = l; j < sm; j++) {
|
---|
| 425 | int ij=j*slda+i;
|
---|
| 426 | q = sn - i;
|
---|
| 427 | e[i] += F77_DDOT(&q, &a[ij], &inc, &d[i], &inc);
|
---|
| 428 | q--;
|
---|
| 429 | F77_DAXPY(&q, &d[i], &a[ij+1], &inc, &e[i + 1], &inc);
|
---|
| 430 | i += sp;
|
---|
| 431 | }
|
---|
| 432 | grp->sum(&e[k], sn-k, work);
|
---|
| 433 |
|
---|
| 434 | /* v = v/beta
|
---|
| 435 | * gamma = v'*u/(2*beta)
|
---|
| 436 | * v = v + gamma*u
|
---|
| 437 | */
|
---|
| 438 |
|
---|
| 439 | q = sn - k;
|
---|
| 440 | alpha2 = 1.0 / beta;
|
---|
| 441 | F77_DSCAL(&q, &alpha2, &e[k], &inc);
|
---|
| 442 | gamma = 0.5 * F77_DDOT(&q, &d[k], &inc, &e[k], &inc) / beta;
|
---|
| 443 | F77_DAXPY(&q, &gamma, &d[k], &inc, &e[k], &inc);
|
---|
| 444 |
|
---|
| 445 | /* Rank two update of A, compute only lower half. */
|
---|
| 446 | /* A = A + u'*v + v'*u = H*A*H */
|
---|
| 447 |
|
---|
| 448 | i = ld;
|
---|
| 449 | for (j = l; j < sm; j++) {
|
---|
| 450 | double *atmp= &a[j*slda+i];
|
---|
| 451 | q = sn - i;
|
---|
| 452 | F77_DAXPY(&q, &d[i], &e[i], &inc, atmp, &inc);
|
---|
| 453 | F77_DAXPY(&q, &e[i], &d[i], &inc, atmp, &inc);
|
---|
| 454 | i += sp;
|
---|
| 455 | }
|
---|
| 456 |
|
---|
| 457 | /* Accumulate m rows of transformation matrix.
|
---|
| 458 | * Z = Z*H
|
---|
| 459 | *
|
---|
| 460 | * if I have next column, defer updating
|
---|
| 461 | */
|
---|
| 462 |
|
---|
| 463 | if (sid != k%sp || k == sn - 1) {
|
---|
| 464 | q = sn - k;
|
---|
| 465 | oobeta = 1.0 / beta;
|
---|
| 466 | for (i = 0; i < sm; i++) {
|
---|
| 467 | gamma = F77_DDOT(&q, &d[k], &inc, &z[k * sm + i], &sm) * oobeta;
|
---|
| 468 | F77_DAXPY(&q, &gamma, &d[k], &inc, &z[k * sm + i], &sm);
|
---|
| 469 | }
|
---|
| 470 | }
|
---|
| 471 | }
|
---|
| 472 |
|
---|
| 473 | /* another bit of calcs to be deferred */
|
---|
| 474 | if (sid != k%sp || k == sn - 1) {
|
---|
| 475 | d[k] = 0.0;
|
---|
| 476 | e[k] = 0.0;
|
---|
| 477 | if (sid == k%sp) d[k] = a[l * slda + ld];
|
---|
| 478 | if (sid == r) e[k] = -alpha;
|
---|
| 479 | }
|
---|
| 480 | }
|
---|
| 481 |
|
---|
| 482 | /* collect the whole tridiagonal matrix at every node */
|
---|
| 483 |
|
---|
| 484 | grp->sum(d, sn, work);
|
---|
| 485 | grp->sum(e, sn, work);
|
---|
| 486 | }
|
---|
| 487 |
|
---|
| 488 | }
|
---|