source: ThirdParty/mpqc_open/src/lib/math/scmat/cmatrix.c@ 1513599

Action_Thermostats Add_AtomRandomPerturbation Add_RotateAroundBondAction Add_SelectAtomByNameAction Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_StructOpt_integration_tests AutomationFragmentation_failures Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_ChronosMutex Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion GeometryObjects Gui_displays_atomic_force_velocity IndependentFragmentGrids_IntegrationTest JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks RotateToPrincipalAxisSystem_UndoRedo StoppableMakroAction Subpackage_levmar Subpackage_vmg ThirdParty_MPQC_rebuilt_buildsystem TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps Ubuntu_1604_changes stable
Last change on this file since 1513599 was 860145, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '0b990dfaa8c6007a996d030163a25f7f5fc8a7e7' as 'ThirdParty/mpqc_open'

  • Property mode set to 100644
File size: 21.9 KB
Line 
1
2/*
3 * These routines are based on the work of Edward T. Seidl at the
4 * National Institutes of Health.
5 */
6
7#include <stdio.h>
8#include <stdlib.h>
9#include <math.h>
10#include <string.h>
11#include <math/scmat/cmatrix.h>
12
13static void ludcmp(double**, int, int*, double*);
14static void lubksb(double**, int, int*, double*);
15static void symm_lu_decomp(double**, int, double*);
16static void symm_lu_back_sub(double**, int, double*);
17
18static void tred2(int dim,double**,double*,double*,int);
19static void tqli(int dim,double*,double**,double*,int,double);
20static void eigsort(int dim,double*,double**);
21
22double**
23cmat_new_square_matrix(int n)
24{
25 double *mat;
26 double **r;
27 if (n == 0) return 0;
28 mat = (double*) malloc(sizeof(double)*n*n);
29 if (!mat) return 0;
30 r = (double**) malloc(sizeof(double*)*n);
31 if (!r) {
32 free(mat);
33 return 0;
34 }
35 cmat_matrix_pointers(r,mat,n,n);
36 return r;
37}
38
39double**
40cmat_new_rect_matrix(int n,int m)
41{
42 double *mat;
43 double **r;
44 if (n == 0 || m == 0) return 0;
45 mat = (double*) malloc(sizeof(double)*n*m);
46 if (!mat) return 0;
47 r = (double**) malloc(sizeof(double*)*n);
48 if (!r) {
49 free(mat);
50 return 0;
51 }
52 cmat_matrix_pointers(r,mat,n,m);
53 return r;
54}
55
56/* this deletes both square and triangular matrices */
57void
58cmat_delete_matrix(double**m)
59{
60 if (m) {
61 free(m[0]);
62 free(m);
63 }
64}
65
66void
67cmat_transpose_square_matrix(double**matrix, int n)
68{
69 int i,j;
70 for (i=0; i<n; i++) {
71 for (j=0; j<i; j++) {
72 double tmp = matrix[i][j];
73 matrix[i][j] = matrix[j][i];
74 matrix[j][i] = tmp;
75 }
76 }
77}
78
79void
80cmat_matrix_pointers(double**ptrs,double*matrix,int nrow, int ncol)
81{
82 int i;
83 for (i=0; i<nrow; i++) ptrs[i] = &matrix[i*ncol];
84}
85
86/*
87 * a contains pointers to the an area of contiguous storage.
88 * Its dimensions are nr by nc. On exit it will be transposed,
89 * however the a vector of double* is itself unchanged. Another
90 * vector is needed to access the storage or a must be updated
91 * after this routine is called.
92 */
93void
94cmat_transpose_matrix(double**a, int nr, int nc)
95{
96 int i,j;
97 double* tmpp;
98 double* tmp;
99
100 if (nr == 0 || nc == 0) return;
101
102 if (nr == nc) {
103 cmat_transpose_square_matrix(a,nr);
104 return;
105 };
106
107 tmp = (double*) malloc(sizeof(double)*nr*nc);
108 if (!tmp && nr && nc) {
109 fprintf(stderr,"cmat_transpose_matrix: malloc failed\n");
110 abort();
111 }
112
113 tmpp = tmp;
114 for (i=0; i<nc; i++) {
115 for (j=0; j<nr; j++) {
116 *tmpp = a[j][i];
117 tmpp++;
118 }
119 }
120
121 memcpy(a[0],tmp,sizeof(double)*nr*nc);
122
123 if (tmp) free(tmp);
124}
125
126/* a is symmetric if sym is true */
127double
128cmat_determ(double** a, int sym, int dim)
129{
130 int i;
131 double det=0;
132
133 if (sym) {
134 symm_lu_decomp(a,dim,&det);
135 } else {
136 int *indx= (int*) malloc(sizeof(int)*dim);
137 ludcmp(a,dim,indx,&det);
138 free(indx);
139 }
140
141 if (fabs(det) < 1.0e-16) return 0;
142
143 for (i=0; i < dim; i++) det *= a[i][i];
144
145 return det;
146}
147
148/* a is symmetric if sym is true */
149double
150cmat_solve_lin(double** a, int sym, double* b, int dim)
151{
152 int i;
153 double det=0;
154
155 if (sym) {
156 symm_lu_decomp(a,dim,&det);
157 if (fabs(det) < 1.0e-16) return 0;
158 symm_lu_back_sub(a,dim,b);
159 } else {
160 int *indx= (int*) malloc(sizeof(int)*dim);
161 ludcmp(a,dim,indx,&det);
162 if (fabs(det) < 1.0e-16) return 0;
163 lubksb(a,dim,indx,b);
164 free(indx);
165 }
166
167 for(i=0; i < dim; i++) det *= a[i][i];
168 if (fabs(det) < 1.0e-16) return 0;
169
170 return det;
171}
172
173double
174cmat_invert(double**a, int sym, int dim)
175{
176 int i,j;
177 double det=0;
178 double **y;
179 double *b;
180
181 b = (double*) malloc(sizeof(double)*dim);
182 y = cmat_new_square_matrix(dim);
183
184 if (sym) {
185 symm_lu_decomp(a,dim,&det);
186 if (fabs(det) < 1.0e-16) return 0;
187
188 for (i=0; i < dim; i++) det *= a[i][i];
189 if (fabs(det) < 1.0e-16) return 0;
190
191 for (i=0; i < dim; i++) {
192 for (j=0; j < dim; j++) b[j]=0;
193 b[i]=1;
194 symm_lu_back_sub(a,dim,b);
195 for (j=0; j < dim; j++) y[j][i]=b[j];
196 }
197
198 for (i=0; i < dim; i++)
199 for (j=0; j <= i; j++)
200 a[i][j] = y[i][j];
201
202 } else {
203 int *indx= (int*) malloc(sizeof(int)*dim);
204
205 ludcmp(a,dim,indx,&det);
206 if (fabs(det) < 1.0e-16) return 0;
207
208 for (i=0; i < dim; i++) det *= a[i][i];
209 if (fabs(det) < 1.0e-16) return 0;
210
211 for (i=0; i < dim; i++) {
212 memset(b,0,sizeof(double)*dim);
213 b[i]=1;
214 lubksb(a,dim,indx,b);
215 for (j=0; j < dim; j++) y[j][i]=b[j];
216 }
217
218 for (i=0; i < dim; i++)
219 for (j=0; j < dim; j++)
220 a[i][j] = y[i][j];
221 free(indx);
222 }
223
224 free(b);
225 cmat_delete_matrix(y);
226
227 return det;
228}
229
230static void
231ludcmp(double** a, int n, int *indx, double *d)
232{
233 int i,imax=0,j,k;
234 double big,dum,sum,temp;
235
236 double* vv = (double*) malloc(sizeof(double)*n);
237
238 *d = 1.0;
239
240 for (i=0; i < n ; i++) {
241 big=0.0;
242 for (j=0; j < n; j++) if ((temp=fabs(a[i][j])) > big) big=temp;
243#if 1
244 if (big == 0.0) {
245 *d = 0.0;
246 free(vv);
247 return;
248 }
249#else
250 if(big==0.0) big=1.0e-16;
251#endif
252 vv[i] = 1.0/big;
253 }
254
255 for (j=0; j < n ; j++) {
256 for (i=0; i < j ; i++) {
257 sum = a[i][j];
258 for (k=0; k < i ; k++) sum -= a[i][k]*a[k][j];
259 a[i][j] = sum;
260 }
261
262 big = 0.0;
263 for (i=j ; i < n ; i++) {
264 sum=a[i][j];
265 for (k=0; k < j ; k++) sum -= a[i][k]*a[k][j];
266 a[i][j] = sum;
267 if ((dum=vv[i]*fabs(sum)) >= big) {
268 big = dum;
269 imax = i;
270 }
271 }
272
273 if (j != imax) {
274 for (k=0; k < n; k++) {
275 dum=a[imax][k];
276 a[imax][k]=a[j][k];
277 a[j][k]=dum;
278 }
279 *d = -(*d);
280 vv[imax]=vv[j];
281 }
282
283 indx[j]=imax;
284 if (a[j][j] == 0.0) a[j][j] = 1.0e-20;
285 if (j != n-1) {
286 dum = 1.0/a[j][j];
287 for (i=j+1; i < n ; i++) a[i][j] *= dum;
288 }
289 }
290 free(vv);
291 }
292
293static void
294lubksb(double** a, int n, int *indx, double* b)
295{
296 int i,ii=0,ip,j;
297 int t=0;
298 double sum;
299
300 for (i=0; i < n ; i++) {
301 ip = indx[i];
302 sum = b[ip];
303 b[ip]=b[i];
304
305 if(t) {
306 for (j=ii; j <= i-1 ; j++)
307 sum -= a[i][j]*b[j];
308 }
309 else if(sum) {
310 ii=i;
311 t++;
312 }
313
314 b[i]=sum;
315 }
316
317 for (i=n-1; i >= 0 ; i--) {
318 sum = b[i];
319 for (j=i+1; j < n ; j++) sum -= a[i][j]*b[j];
320 b[i] = sum/a[i][i];
321 }
322 }
323
324/*
325 * this is LU decomposition where A is a symmetric matrix
326 * when A is symmetric, then
327 * beta(i,j) = A(i,j) - sum_k(i-1) beta(k,i)*beta(k,j)/beta(k,k)
328 * alpha(i,j) = beta(j,i)/beta(j,j)
329 *
330 * since we're storing beta in a, the indices of beta will be switched
331 * since alpha is expressed in terms of beta, we don't store it
332 *
333 * so we have
334 * beta(i,j) = A(i,j) - sum_k(i-1) beta(i,k)*beta(j,k)/beta(k,k)
335 * alpha(i,j) = beta(i,j)/beta(j,j)
336 */
337
338static void
339symm_lu_decomp(double** a, int n, double *d)
340{
341 int i,j,k;
342 double tmp;
343
344 double* v = (double*) malloc(sizeof(double)*n);
345 memset(v,0,sizeof(double)*n);
346
347 /* check for singular matrix */
348 for (i=0; i < n; i++) {
349 for (j=0; j < i; j++) {
350 v[i] = ((tmp=fabs(a[i][j])) > v[i]) ? tmp : v[i];
351 v[j] = (tmp > v[j]) ? tmp : v[j];
352 }
353 v[i] = ((tmp=fabs(a[i][i])) > v[i]) ? tmp : v[i];
354 }
355
356 for (i=0; i < n; i++) {
357 if (fabs(v[i]) < 1.0e-16) {
358 fprintf(stderr,"\n warning: singular matrix in symm_lu_decomp\n");
359 *d = 0.0;
360 return;
361 }
362 }
363
364 free(v);
365
366 *d = 1.0;
367
368 for (i=0; i < n ; i++) {
369 /* check to make sure we're not going to blow up */
370 if (i < n-1) {
371 tmp = 0;
372 for (k=0; k < i-1; k++)
373 tmp += a[i][k]*a[i][k]/a[k][k];
374 if (fabs(a[i][i]-tmp) < 1.0e-16) {
375 fprintf(stderr,"\n warning: singular matrix in symm_lu_decomp 2\n");
376 *d = 0;
377 return;
378 }
379 }
380 for (j=i; j < n; j++) {
381 tmp = 0;
382 for (k=0; k <= i-1; k++)
383 tmp -= a[i][k]*a[j][k]/a[k][k];
384 a[j][i] += tmp;
385 }
386 }
387}
388
389static void
390symm_lu_back_sub(double** a, int n, double* b)
391{
392 int i,j;
393 double sum;
394
395 /* form y(i) = bi - sum_j(i-1) alpha(i,j)*y(j)
396 * alpha(i,j) = beta(j,i)/beta(j,j), but beta is stored lower instead of
397 * upper triangle, so alpha(i,j) = beta(i,j)/beta(j,j)
398 */
399 for (i=0; i < n ; i++) {
400 sum = 0;
401 for (j=0; j < i; j++)
402 sum += (a[i][j]/a[j][j]) * b[j];
403 b[i] -= sum;
404 }
405
406 /* now form x(i) = 1/beta(i,i)*[y(i) - sum_j=i+1(N) beta(i,j)*x(j)]
407 * is really ...[...beta(j,i)*x(j)]
408 */
409 for (i=n-1; i >= 0 ; i--) {
410 sum = b[i];
411 for (j=i+1; j < n ; j++) sum -= a[j][i]*b[j];
412 b[i] = sum/a[i][i];
413 }
414}
415
416/*
417 * This does c(t) (+)= a(t) * b(t), where the (t) means the transpose
418 * of the matrix can be optionally used and the (+) means that accumulation
419 * is optional. The dimensions of the matrices is as follows:
420 * a(nr,nl) (if ta then a(nl,nr))
421 * b(nl,nc) (if tb then b(nc,nl))
422 * c(nr,nc) (if tc then c(nc,nr))
423 */
424void
425cmat_mxm(double** a, int ta, double** b, int tb, double** c, int tc,
426 int nr, int nl, int nc, int add)
427{
428 int odd_nr,odd_nc;
429 int i,j,k;
430 double t00,t01,t10,t11;
431 double *att,*bt;
432 double *at1,*bt1;
433 double** old_a = 0;
434 double** old_b = 0;
435
436 odd_nr = (nr)%2;
437 odd_nc = (nc)%2;
438
439 if(ta) {
440 cmat_transpose_matrix(a,nl,nr);
441 if (nr > nl) {
442 old_a = a;
443 a = (double**) malloc(nr*sizeof(double*));
444 if (!a) {
445 fprintf(stderr,"cmat_mxm: malloc a failed\n");
446 abort();
447 }
448 a[0] = old_a[0];
449 }
450 cmat_matrix_pointers(a,a[0],nr,nl);
451 }
452 if(!tb) {
453 cmat_transpose_matrix(b,nl,nc);
454 if (nc > nl) {
455 old_b = b;
456 b = (double**) malloc(nc*sizeof(double*));
457 if (!b) {
458 fprintf(stderr,"cmat_mxm: malloc b failed\n");
459 abort();
460 }
461 b[0] = old_b[0];
462 }
463 cmat_matrix_pointers(b,b[0],nc,nl);
464 }
465
466 for(j=0; j < nc-1 ; j+=2) {
467 for(i=0; i < nr-1 ; i+=2) {
468 att=a[i]; bt=b[j];
469 at1=a[i+1]; bt1=b[j+1];
470 if(add) {
471 if(tc) {
472 t00 = c[j][i];
473 t01 = c[j+1][i];
474 t10 = c[j][i+1];
475 t11 = c[j+1][i+1];
476 }
477 else {
478 t00 = c[i][j];
479 t01 = c[i][j+1];
480 t10 = c[i+1][j];
481 t11 = c[i+1][j+1];
482 }
483 }
484 else
485 t00=t01=t10=t11=0.0;
486 for(k=nl; k ; k--,att++,bt++,at1++,bt1++) {
487 t00 += *att * *bt;
488 t01 += *att * *bt1;
489 t10 += *at1 * *bt;
490 t11 += *at1 * *bt1;
491 }
492 if(tc) {
493 c[j][i]=t00;
494 c[j+1][i]=t01;
495 c[j][i+1]=t10;
496 c[j+1][i+1]=t11;
497 }
498 else {
499 c[i][j]=t00;
500 c[i][j+1]=t01;
501 c[i+1][j]=t10;
502 c[i+1][j+1]=t11;
503 }
504 }
505 if(odd_nr) {
506 att=a[i]; bt=b[j];
507 bt1=b[j+1];
508 if(add) {
509 if(tc) {
510 t00 = c[j][i];
511 t01 = c[j+1][i];
512 }
513 else {
514 t00 = c[i][j];
515 t01 = c[i][j+1];
516 }
517 }
518 else t00=t01=0.0;
519 for(k= nl; k ; k--,att++,bt++,bt1++) {
520 t00 += *att * *bt;
521 t01 += *att * *bt1;
522 }
523 if(tc) {
524 c[j][i]=t00;
525 c[j+1][i]=t01;
526 }
527 else {
528 c[i][j]=t00;
529 c[i][j+1]=t01;
530 }
531 }
532 }
533 if(odd_nc) {
534 for(i=0; i < nr-1 ; i+=2) {
535 att=a[i]; bt=b[j];
536 at1=a[i+1];
537 if(add) {
538 if(tc) {
539 t00 = c[j][i];
540 t10 = c[j][i+1];
541 }
542 else {
543 t00 = c[i][j];
544 t10 = c[i+1][j];
545 }
546 }
547 else t00=t10=0.0;
548 for(k= nl; k ; k--,att++,bt++,at1++) {
549 t00 += *att * *bt;
550 t10 += *at1 * *bt;
551 }
552 if(tc) {
553 c[j][i]=t00;
554 c[j][i+1]=t10;
555 }
556 else {
557 c[i][j]=t00;
558 c[i+1][j]=t10;
559 }
560 }
561 if(odd_nr) {
562 att=a[i]; bt=b[j];
563 if(add) t00 = (tc) ? c[j][i] : c[i][j];
564 else t00=0.0;
565 for(k=nl; k ; k--,att++,bt++) t00 += *att * *bt;
566 if(tc) c[j][i]=t00;
567 else c[i][j]=t00;
568 }
569 }
570
571 if(ta) {
572 cmat_transpose_matrix(a,nr,nl);
573 if (old_a) {
574 free(a);
575 a = old_a;
576 }
577 cmat_matrix_pointers(a,a[0],nr,nl);
578 }
579 if(!tb) {
580 cmat_transpose_matrix(b,nc,nl);
581 if (old_b) {
582 free(b);
583 b = old_b;
584 }
585 cmat_matrix_pointers(b,b[0],nl,nc);
586 }
587 }
588
589/*
590 * a is symmetric (na,na) in a triangular storage format
591 * b is rectangular (na,nb)
592 * a (+)= b * transpose(b) (+= if add)
593 */
594void
595cmat_symmetric_mxm(double**a,int na, /* a is (na,na) */
596 double**b,int nb, /* b is (na,nb) */
597 int add)
598{
599 int i,j,k;
600 for (i=0; i<na; i++) {
601 double*ai=a[i];
602 for (j=0; j<=i; j++) {
603 double*bi=b[i];
604 double*bj=b[j];
605 double tmp;
606 if (add) tmp = 0.0;
607 else tmp = ai[j];
608 for (k=nb; k; k--,bi++,bj++) {
609 tmp += *bi * *bj;
610 }
611 ai[j] = tmp;
612 }
613 }
614}
615
616/*
617 * a is symmetric (na,na) in a triangular storage format
618 * b is symmetric (nb,nb) in a triangular storage format
619 * a (+)= c * b * transpose(c) (+= if add)
620 */
621void
622cmat_transform_symmetric_matrix(double**a,int na, /* a is (na,na) */
623 double**b,int nb, /* b is (nb,nb) */
624 double**c, /* c is (na,nb) */
625 int add)
626{
627 int i,j,k;
628 double**t;
629 double* brow;
630
631 /* create a temporary matrix, t */
632 t = cmat_new_rect_matrix(na,nb);
633
634 /* t = transpose(b * transpose(c)) */
635 brow = (double*) malloc(sizeof(double)*nb);
636 if (!brow) {
637 fprintf(stderr,"cmat_transform_symmetric_matrix: malloc brow failed\n");
638 abort();
639 }
640 for (i=0; i<nb; i++) {
641 for (k=0; k<=i; k++) brow[k] = b[i][k];
642 for ( ; k<nb; k++) brow[k] = b[k][i];
643 for (j=0; j<na; j++) {
644 double*bi = brow;
645 double*cj = c[j];
646 double tmp = 0.0;
647 for (k=nb; k; k--,bi++,cj++) tmp += *bi * *cj;
648 t[j][i] = tmp;
649 }
650 }
651 free(brow);
652
653 /* a = c * transpose(t) */
654 for (i=0; i<na; i++) {
655 for (j=0; j<=i; j++) {
656 double*ci = c[i];
657 double*tj = t[j];
658 double tmp;
659 if (add) tmp = a[i][j];
660 else tmp = 0.0;
661 for (k=nb; k; k--,ci++,tj++) tmp += *ci * *tj;
662 a[i][j] = tmp;
663 }
664 }
665
666 /* delete the temporary */
667 cmat_delete_matrix(t);
668}
669
670/*
671 * a is symmetric (na,na) in a triangular storage format
672 * b is diagonal (nb,nb) in a vector storage format
673 * a (+)= c * b * transpose(c) (+= if add)
674 */
675void
676cmat_transform_diagonal_matrix(double**a,int na, /* a is (na,na) */
677 double*b,int nb, /* b is (nb,nb) */
678 double**c, /* c is (na,nb) */
679 int add)
680{
681 int i,j,k;
682 double t;
683
684 for (i=0; i < na; i++) {
685 for (j=0; j <= i; j++) {
686 t=0;
687 for (k=0; k < nb; k++)
688 t += c[i][k] * c[j][k] * b[k];
689 if (add)
690 a[i][j] += t;
691 else
692 a[i][j] = t;
693 }
694 }
695}
696
697/*
698 * Argument a contains pointers to the rows of a symmetrix matrix. The
699 * in each row is the row number + 1. These rows are stored in
700 * contiguous memory starting with 0. Evecs also contains pointers to
701 * contiguous memory. N is the dimension.
702 */
703void
704cmat_diag(double**a, double*evals, double**evecs, int n,
705 int matz, double tol)
706{
707 int i,j;
708 int diagonal=1;
709 double*fv1;
710
711 /* I'm having problems with diagonalizing matrices which are already
712 * diagonal. So let's first check to see if _a_ is diagonal, and if it
713 * is, then just return the diagonal elements in evals and a unit matrix
714 * in evecs
715 */
716
717 for (i=1; i < n; i++) {
718 for (j=0; j < i; j++) {
719 if (fabs(a[i][j]) > tol) diagonal=0;
720 }
721 }
722
723 if (diagonal) {
724 for(i=0; i < n; i++) {
725 evals[i] = a[i][i];
726 evecs[i][i] = 1.0;
727
728 for(j=0; j < i; j++) {
729 evecs[i][j] = evecs[j][i] = 0.0;
730 }
731 }
732 eigsort(n,evals,evecs);
733 return;
734 }
735
736 fv1 = (double*) malloc(sizeof(double)*n);
737 if (!fv1) {
738 fprintf(stderr,"cmat_diag: malloc fv1 failed\n");
739 abort();
740 }
741
742 for(i=0; i < n; i++) {
743 for(j=0; j <= i; j++) {
744 evecs[i][j] = evecs[j][i] = a[i][j];
745 }
746 }
747
748 tred2(n,evecs,evals,fv1,1);
749
750 cmat_transpose_square_matrix(evecs,n);
751 tqli(n,evals,evecs,fv1,1,tol);
752 cmat_transpose_square_matrix(evecs,n);
753
754 eigsort(n,evals,evecs);
755
756 free(fv1);
757 }
758
759#define dsign(a,b) (((b) >= 0.0) ? fabs(a) : -fabs(a))
760
761static void
762tred2(int n,double** a,double* d,double* e,int matz)
763{
764 int i,j,k,l;
765 double f,g,h,hh,scale,scale_inv,h_inv;
766 if (n == 1) return;
767
768 for(i=n-1; i > 0; i--) {
769 l = i-1;
770 h = 0.0;
771 scale = 0.0;
772 if(l) {
773 for(k=0; k <= l; k++) scale += fabs(a[i][k]);
774 if (scale == 0.0) e[i] = a[i][l];
775 else {
776 scale_inv=1.0/scale;
777 for (k=0; k <= l; k++) {
778 a[i][k] *= scale_inv;
779 h += a[i][k]*a[i][k];
780 }
781 f=a[i][l];
782 g= -(dsign(sqrt(h),f));
783 e[i] = scale*g;
784 h -= f*g;
785 a[i][l] = f-g;
786 f = 0.0;
787 h_inv=1.0/h;
788 for (j=0; j <= l; j++) {
789 if (matz) a[j][i] = a[i][j]*h_inv;
790 g = 0.0;
791 for (k=0; k <= j; k++) g += a[j][k]*a[i][k];
792 if (l > j) for (k=j+1; k <= l; k++) g += a[k][j]*a[i][k];
793 e[j] = g*h_inv;
794 f += e[j]*a[i][j];
795 }
796 hh = f/(h+h);
797 for (j=0; j <= l; j++) {
798 f = a[i][j];
799 g = e[j] - hh*f;
800 e[j] = g;
801 for (k=0; k <= j; k++) a[j][k] -= (f*e[k] + g*a[i][k]);
802 }
803 }
804 }
805 else {
806 e[i] = a[i][l];
807 }
808 d[i] = h;
809 }
810 if(matz) d[0] = 0.0;
811 e[0] = 0.0;
812
813 for(i=0; i < n; i++) {
814 l = i-1;
815 if (matz) {
816 if(d[i]) {
817 for(j=0; j <= l; j++) {
818 g = 0.0;
819 for(k=0; k <= l; k++) g += a[i][k]*a[k][j];
820 for(k=0; k <= l; k++) a[k][j] -= g*a[k][i];
821 }
822 }
823 }
824 d[i] = a[i][i];
825 if(matz) {
826 a[i][i] = 1.0;
827 if(l >= 0) for (j=0; j<= l; j++) a[i][j] = a[j][i] = 0.0;
828 }
829 }
830 }
831
832static void
833tqli(int n, double* d, double** z, double* e, int matz, double toler)
834{
835 register int k;
836 int i,l,m,iter;
837 double g,r,s,c,p,f,b;
838 double azi;
839
840 f=0.0;
841 if (n == 1) {
842 d[0]=z[0][0];
843 z[0][0] = 1.0;
844 return;
845 }
846
847 for (i=1; i < n ; i++) e[i-1] = e[i];
848 e[n-1] = 0.0;
849 for (l=0; l < n; l++) {
850 iter = 0;
851L1:
852 for (m=l; m < n-1;m++) if (fabs(e[m]) < toler) goto L2;
853 m=n-1;
854L2:
855 if (m != l) {
856 if (iter++ == 30) {
857 fprintf (stderr,"tqli not converging %d %g\n",l,e[l]);
858 continue;
859 }
860
861 g = (d[l+1]-d[l])/(2.0*e[l]);
862 r = sqrt(g*g + 1.0);
863 g = d[m] - d[l] + e[l]/((g + dsign(r,g)));
864 s=1.0;
865 c=1.0;
866 p=0.0;
867 for (i=m-1; i >= l; i--) {
868 f = s*e[i];
869 b = c*e[i];
870 if (fabs(f) >= fabs(g)) {
871 c = g/f;
872 r = sqrt(c*c + 1.0);
873 e[i+1] = f*r;
874 s=1.0/r;
875 c *= s;
876 }
877 else {
878 s = f/g;
879 r = sqrt(s*s + 1.0);
880 e[i+1] = g*r;
881 c = 1.0/r;
882 s *= c;
883 }
884 g = d[i+1] - p;
885 r = (d[i]-g)*s + 2.0*c*b;
886 p = s*r;
887 d[i+1] = g+p;
888 g = c*r-b;
889
890 if (matz) {
891 double *zi = z[i];
892 double *zi1 = z[i+1];
893 for (k=n; k ; k--,zi++,zi1++) {
894 azi = *zi;
895 f = *zi1;
896 *zi1 = azi*s + c*f;
897 *zi = azi*c - s*f;
898 }
899 }
900 }
901
902 d[l] -= p;
903 e[l] = g;
904 e[m] = 0.0;
905 goto L1;
906 }
907 }
908 }
909
910static void
911eigsort(int n, double* d, double** v)
912{
913 int i,j,k;
914 double p;
915
916 for(i=0; i < n-1 ; i++) {
917 k=i;
918 p=d[i];
919 for(j=i+1; j < n; j++) {
920 if(d[j] < p) {
921 k=j;
922 p=d[j];
923 }
924 }
925 if(k != i) {
926 d[k]=d[i];
927 d[i]=p;
928 for(j=0; j < n; j++) {
929 p=v[j][i];
930 v[j][i]=v[j][k];
931 v[j][k]=p;
932 }
933 }
934 }
935 }
936
937void
938cmat_schmidt(double **C, double *S, int nrow, int nc)
939{
940 int i,j,ij;
941 int m;
942 double vtmp;
943 double *v = (double*) malloc(sizeof(double)*nrow);
944
945 if (!v) {
946 fprintf(stderr,"cmat_schmidt: could not malloc v(%d)\n",nrow);
947 abort();
948 }
949
950 for (m=0; m < nc; m++) {
951 v[0] = C[0][m] * S[0];
952
953 for (i=ij=1; i < nrow; i++) {
954 for (j=0,vtmp=0.0; j < i; j++,ij++) {
955 vtmp += C[j][m]*S[ij];
956 v[j] += C[i][m]*S[ij];
957 }
958 v[i] = vtmp + C[i][m]*S[ij];
959 ij++;
960 }
961
962 for (i=0,vtmp=0.0; i < nrow; i++)
963 vtmp += v[i]*C[i][m];
964
965 if (!vtmp) {
966 fprintf(stderr,"cmat_schmidt: bogus\n");
967 abort();
968 }
969
970 if (vtmp < 1.0e-15)
971 vtmp = 1.0e-15;
972
973 vtmp = 1.0/sqrt(vtmp);
974
975 for (i=0; i < nrow; i++) {
976 v[i] *= vtmp;
977 C[i][m] *= vtmp;
978 }
979
980 if (m < nc-1) {
981 for (i=m+1,vtmp=0.0; i < nc; i++) {
982 for (j=0,vtmp=0.0; j < nrow; j++)
983 vtmp += v[j] * C[j][i];
984 for (j=0; j < nrow; j++)
985 C[j][i] -= vtmp * C[j][m];
986 }
987 }
988 }
989}
990
991/* Returns the number of linearly independent vectors
992 orthogonal wrt S. */
993int
994cmat_schmidt_tol(double **C, double *S, int nrow, int ncol,
995 double tolerance, double *res)
996{
997 int i,j,ij;
998 int m;
999 double vtmp;
1000 int northog = 0;
1001 double *v = (double*) malloc(sizeof(double)*nrow);
1002
1003 if (res) *res = 1.0;
1004
1005 if (!v) {
1006 fprintf(stderr,"cmat_schmidt_tol: could not malloc v(%d)\n",nrow);
1007 abort();
1008 }
1009
1010 /* Orthonormalize the columns of C wrt S. */
1011 for (m=0; m < ncol; m++) {
1012 v[0] = C[0][m] * S[0];
1013
1014 for (i=ij=1; i < nrow; i++) {
1015 for (j=0,vtmp=0.0; j < i; j++,ij++) {
1016 vtmp += C[j][m]*S[ij];
1017 v[j] += C[i][m]*S[ij];
1018 }
1019 v[i] = vtmp + C[i][m]*S[ij];
1020 ij++;
1021 }
1022
1023 for (i=0,vtmp=0.0; i < nrow; i++)
1024 vtmp += v[i]*C[i][m];
1025
1026 if (vtmp < tolerance) continue;
1027
1028 if (res && (m == 0 || vtmp < *res)) *res = vtmp;
1029
1030 vtmp = 1.0/sqrt(vtmp);
1031
1032 for (i=0; i < nrow; i++) {
1033 v[i] *= vtmp;
1034 C[i][northog] = C[i][m] * vtmp;
1035 }
1036
1037 for (i=m+1,vtmp=0.0; i < ncol; i++) {
1038 for (j=0,vtmp=0.0; j < nrow; j++)
1039 vtmp += v[j] * C[j][i];
1040 for (j=0; j < nrow; j++)
1041 C[j][i] -= vtmp * C[j][northog];
1042 }
1043 northog++;
1044 }
1045 return northog;
1046}
Note: See TracBrowser for help on using the repository browser.