1 | //
|
---|
2 | // qnewton.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <math.h>
|
---|
33 | #include <float.h>
|
---|
34 |
|
---|
35 | #include <util/state/stateio.h>
|
---|
36 | #include <math/optimize/qnewton.h>
|
---|
37 | #include <util/keyval/keyval.h>
|
---|
38 | #include <util/misc/formio.h>
|
---|
39 |
|
---|
40 | using namespace std;
|
---|
41 | using namespace sc;
|
---|
42 |
|
---|
43 | /////////////////////////////////////////////////////////////////////////
|
---|
44 | // QNewtonOpt
|
---|
45 |
|
---|
46 | static ClassDesc QNewtonOpt_cd(
|
---|
47 | typeid(QNewtonOpt),"QNewtonOpt",2,"public Optimize",
|
---|
48 | 0, create<QNewtonOpt>, create<QNewtonOpt>);
|
---|
49 |
|
---|
50 | QNewtonOpt::QNewtonOpt(const Ref<KeyVal>&keyval):
|
---|
51 | Optimize(keyval)
|
---|
52 | {
|
---|
53 |
|
---|
54 | if (function_.null()) {
|
---|
55 | ExEnv::err0() << "QNewtonOpt requires a function keyword" << endl;
|
---|
56 | abort();
|
---|
57 | }
|
---|
58 |
|
---|
59 | init();
|
---|
60 |
|
---|
61 | update_ << keyval->describedclassvalue("update");
|
---|
62 | if (update_.nonnull()) update_->set_inverse();
|
---|
63 | lineopt_ << keyval->describedclassvalue("lineopt");
|
---|
64 | accuracy_ = keyval->doublevalue("accuracy");
|
---|
65 | if (keyval->error() != KeyVal::OK) accuracy_ = 0.0001;
|
---|
66 | print_x_ = keyval->booleanvalue("print_x");
|
---|
67 | print_hessian_ = keyval->booleanvalue("print_hessian");
|
---|
68 | print_gradient_ = keyval->booleanvalue("print_gradient");
|
---|
69 | linear_ = keyval->booleanvalue("linear");
|
---|
70 | if (keyval->error() != KeyVal::OK) linear_ = 0;
|
---|
71 | restrict_ = keyval->booleanvalue("restrict");
|
---|
72 | if (keyval->error() != KeyVal::OK) restrict_ = 1;
|
---|
73 | dynamic_grad_acc_ = keyval->booleanvalue("dynamic_grad_acc");
|
---|
74 | if (keyval->error() != KeyVal::OK) dynamic_grad_acc_ = 1;
|
---|
75 | force_search_ = keyval->booleanvalue("force_search");
|
---|
76 | if (keyval->error() != KeyVal::OK) force_search_ = 0;
|
---|
77 | restart_ = keyval->booleanvalue("restart");
|
---|
78 | if (keyval->error() != KeyVal::OK) restart_ = 1;
|
---|
79 |
|
---|
80 | RefSymmSCMatrix hessian(dimension(),matrixkit());
|
---|
81 | // get a guess hessian from the function
|
---|
82 | function()->guess_hessian(hessian);
|
---|
83 |
|
---|
84 | // see if any hessian matrix elements have been given in the input
|
---|
85 | if (keyval->exists("hessian")) {
|
---|
86 | int n = hessian.n();
|
---|
87 | for (int i=0; i<n; i++) {
|
---|
88 | if (keyval->exists("hessian",i)) {
|
---|
89 | for (int j=0; j<=i; j++) {
|
---|
90 | double tmp = keyval->doublevalue("hessian",i,j);
|
---|
91 | if (keyval->error() == KeyVal::OK) hessian(i,j) = tmp;
|
---|
92 | }
|
---|
93 | }
|
---|
94 | }
|
---|
95 | }
|
---|
96 | ihessian_ = function()->inverse_hessian(hessian);
|
---|
97 | }
|
---|
98 |
|
---|
99 | QNewtonOpt::QNewtonOpt(StateIn&s):
|
---|
100 | SavableState(s),
|
---|
101 | Optimize(s)
|
---|
102 | {
|
---|
103 | ihessian_ = matrixkit()->symmmatrix(dimension());
|
---|
104 | ihessian_.restore(s);
|
---|
105 | update_ << SavableState::restore_state(s);
|
---|
106 | s.get(accuracy_);
|
---|
107 | s.get(take_newton_step_);
|
---|
108 | s.get(maxabs_gradient);
|
---|
109 | if (s.version(::class_desc<QNewtonOpt>()) > 1) {
|
---|
110 | s.get(print_hessian_);
|
---|
111 | s.get(print_x_);
|
---|
112 | s.get(print_gradient_);
|
---|
113 | }
|
---|
114 | else {
|
---|
115 | print_hessian_ = 0;
|
---|
116 | print_x_ = 0;
|
---|
117 | print_gradient_ = 0;
|
---|
118 | }
|
---|
119 | lineopt_ << SavableState::restore_state(s);
|
---|
120 | }
|
---|
121 |
|
---|
122 | QNewtonOpt::~QNewtonOpt()
|
---|
123 | {
|
---|
124 | }
|
---|
125 |
|
---|
126 | void
|
---|
127 | QNewtonOpt::save_data_state(StateOut&s)
|
---|
128 | {
|
---|
129 | Optimize::save_data_state(s);
|
---|
130 | ihessian_.save(s);
|
---|
131 | SavableState::save_state(update_.pointer(),s);
|
---|
132 | s.put(accuracy_);
|
---|
133 | s.put(take_newton_step_);
|
---|
134 | s.put(maxabs_gradient);
|
---|
135 | s.put(print_hessian_);
|
---|
136 | s.put(print_x_);
|
---|
137 | s.put(print_gradient_);
|
---|
138 | SavableState::save_state(lineopt_.pointer(),s);
|
---|
139 | }
|
---|
140 |
|
---|
141 | void
|
---|
142 | QNewtonOpt::init()
|
---|
143 | {
|
---|
144 | Optimize::init();
|
---|
145 | take_newton_step_ = 1;
|
---|
146 | maxabs_gradient = -1.0;
|
---|
147 | }
|
---|
148 |
|
---|
149 | int
|
---|
150 | QNewtonOpt::update()
|
---|
151 | {
|
---|
152 | // these are good candidates to be input options
|
---|
153 | const double maxabs_gradient_to_desired_accuracy = 0.05;
|
---|
154 | const double maxabs_gradient_to_next_desired_accuracy = 0.005;
|
---|
155 | const double roundoff_error_factor = 1.1;
|
---|
156 |
|
---|
157 | // the gradient convergence criterion.
|
---|
158 | double old_maxabs_gradient = maxabs_gradient;
|
---|
159 | RefSCVector xcurrent;
|
---|
160 | RefSCVector gcurrent;
|
---|
161 |
|
---|
162 | if( dynamic_grad_acc_ ) {
|
---|
163 | // get the next gradient at the required level of accuracy.
|
---|
164 | // usually only one pass is needed, unless we happen to find
|
---|
165 | // that the accuracy was set too low.
|
---|
166 | int accurate_enough;
|
---|
167 | do {
|
---|
168 | // compute the current point
|
---|
169 | function()->set_desired_gradient_accuracy(accuracy_);
|
---|
170 | xcurrent = function()->get_x();
|
---|
171 | gcurrent = function()->gradient().copy();
|
---|
172 |
|
---|
173 | // compute the gradient convergence criterion now so i can see if
|
---|
174 | // the accuracy needs to be tighter
|
---|
175 | maxabs_gradient = gcurrent.maxabs();
|
---|
176 | // compute the required accuracy
|
---|
177 | accuracy_ = maxabs_gradient * maxabs_gradient_to_desired_accuracy;
|
---|
178 |
|
---|
179 | if (accuracy_ < DBL_EPSILON) accuracy_ = DBL_EPSILON;
|
---|
180 |
|
---|
181 | // The roundoff_error_factor is thrown in to allow for round off making
|
---|
182 | // the current gcurrent.maxabs() a bit smaller than the previous,
|
---|
183 | // which would make the current required accuracy less than the
|
---|
184 | // gradient's actual accuracy and cause everything to be recomputed.
|
---|
185 | accurate_enough = (
|
---|
186 | function()->actual_gradient_accuracy()
|
---|
187 | <= accuracy_*roundoff_error_factor);
|
---|
188 |
|
---|
189 | if (!accurate_enough) {
|
---|
190 | ExEnv::out0().unsetf(ios::fixed);
|
---|
191 | ExEnv::out0() << indent <<
|
---|
192 | "NOTICE: function()->actual_gradient_accuracy() > accuracy_:\n"
|
---|
193 | << indent
|
---|
194 | << scprintf(
|
---|
195 | " function()->actual_gradient_accuracy() = %15.8e",
|
---|
196 | function()->actual_gradient_accuracy()) << endl << indent
|
---|
197 | << scprintf(
|
---|
198 | " accuracy_ = %15.8e",
|
---|
199 | accuracy_) << endl;
|
---|
200 | }
|
---|
201 | } while(!accurate_enough);
|
---|
202 | // increase accuracy, since the next gradient will be smaller
|
---|
203 | accuracy_ = maxabs_gradient * maxabs_gradient_to_next_desired_accuracy;
|
---|
204 | }
|
---|
205 | else {
|
---|
206 | xcurrent = function()->get_x();
|
---|
207 | gcurrent = function()->gradient().copy();
|
---|
208 | }
|
---|
209 |
|
---|
210 | if (old_maxabs_gradient >= 0.0 && old_maxabs_gradient < maxabs_gradient) {
|
---|
211 | ExEnv::out0() << indent
|
---|
212 | << scprintf("NOTICE: maxabs_gradient increased from %8.4e to %8.4e",
|
---|
213 | old_maxabs_gradient, maxabs_gradient) << endl;
|
---|
214 | }
|
---|
215 |
|
---|
216 | // update the hessian
|
---|
217 | if(update_.nonnull())
|
---|
218 | update_->update(ihessian_,function(),xcurrent,gcurrent);
|
---|
219 |
|
---|
220 | conv_->reset();
|
---|
221 | conv_->get_grad(function());
|
---|
222 | conv_->get_x(function());
|
---|
223 |
|
---|
224 | // compute the quadratic step
|
---|
225 | RefSCVector xdisp = -1.0*(ihessian_ * gcurrent);
|
---|
226 | RefSCVector xnext = xcurrent + xdisp;
|
---|
227 |
|
---|
228 | // either do a lineopt or check stepsize
|
---|
229 | double tot;
|
---|
230 | if(lineopt_.nonnull()) {
|
---|
231 | if (dynamic_cast<Backtrack*>(lineopt_.pointer()) != 0) {
|
---|
232 | // The Backtrack line search is a special case.
|
---|
233 |
|
---|
234 | // perform a search
|
---|
235 | double factor;
|
---|
236 | if( n_iterations_ == 0 && force_search_ )
|
---|
237 | factor = lineopt_->set_decrease_factor(1.0);
|
---|
238 | lineopt_->init(xdisp,function());
|
---|
239 | // reset value acc here so line search "precomputes" are
|
---|
240 | // accurate enough for subsequent gradient evals
|
---|
241 | function()->set_desired_value_accuracy(accuracy_/100);
|
---|
242 | int acceptable = lineopt_->update();
|
---|
243 | if( n_iterations_ == 0 && force_search_ )
|
---|
244 | lineopt_->set_decrease_factor( factor );
|
---|
245 |
|
---|
246 | if( !acceptable ) {
|
---|
247 | if( force_search_ ) factor = lineopt_->set_decrease_factor(1.0);
|
---|
248 |
|
---|
249 | // try a new guess hessian
|
---|
250 | if( restart_ ) {
|
---|
251 | ExEnv::out0() << endl << indent <<
|
---|
252 | "Restarting Hessian approximation" << endl;
|
---|
253 | RefSymmSCMatrix hessian(dimension(),matrixkit());
|
---|
254 | function()->guess_hessian(hessian);
|
---|
255 | ihessian_ = function()->inverse_hessian(hessian);
|
---|
256 | xdisp = -1.0 * (ihessian_ * gcurrent);
|
---|
257 | lineopt_->init(xdisp,function());
|
---|
258 | acceptable = lineopt_->update();
|
---|
259 | }
|
---|
260 |
|
---|
261 | // try steepest descent direction
|
---|
262 | if( !acceptable ) {
|
---|
263 | ExEnv::out0() << endl << indent <<
|
---|
264 | "Trying steepest descent direction." << endl;
|
---|
265 | xdisp = -1.0 * gcurrent;
|
---|
266 | lineopt_->init(xdisp,function());
|
---|
267 | acceptable = lineopt_->update();
|
---|
268 | }
|
---|
269 |
|
---|
270 | // give up and use steepest descent step
|
---|
271 | if( !acceptable ) {
|
---|
272 | ExEnv::out0() << endl << indent <<
|
---|
273 | "Resorting to unscaled steepest descent step." << endl;
|
---|
274 | function()->set_x(xcurrent + xdisp);
|
---|
275 | Ref<NonlinearTransform> t = function()->change_coordinates();
|
---|
276 | apply_transform(t);
|
---|
277 | }
|
---|
278 |
|
---|
279 | if( force_search_ ) lineopt_->set_decrease_factor( factor );
|
---|
280 | }
|
---|
281 | }
|
---|
282 | else {
|
---|
283 | // All line searches other than Backtrack use this
|
---|
284 | ExEnv::out0() << indent
|
---|
285 | << "......................................."
|
---|
286 | << endl
|
---|
287 | << indent
|
---|
288 | << "Starting line optimization."
|
---|
289 | << endl;
|
---|
290 | lineopt_->init(xdisp,function());
|
---|
291 | int nlineopt = 0;
|
---|
292 | int maxlineopt = 3;
|
---|
293 | for (int ilineopt=0; ilineopt<maxlineopt; ilineopt++) {
|
---|
294 | double maxabs_gradient = function()->gradient()->maxabs();
|
---|
295 |
|
---|
296 | int converged = lineopt_->update();
|
---|
297 |
|
---|
298 | ExEnv::out0() << indent
|
---|
299 | << "Completed line optimization step " << ilineopt+1
|
---|
300 | << (converged?" (converged)":" (not converged)")
|
---|
301 | << endl
|
---|
302 | << indent
|
---|
303 | << "......................................."
|
---|
304 | << endl;
|
---|
305 |
|
---|
306 | if (converged) break;
|
---|
307 |
|
---|
308 | // Improve accuracy, since we might be able to reuse the next
|
---|
309 | // gradient for the next quasi-Newton step.
|
---|
310 | if (dynamic_grad_acc_) {
|
---|
311 | accuracy_ = maxabs_gradient*maxabs_gradient_to_next_desired_accuracy;
|
---|
312 | function()->set_desired_gradient_accuracy(accuracy_);
|
---|
313 | }
|
---|
314 | }
|
---|
315 | }
|
---|
316 | xnext = function()->get_x();
|
---|
317 | xdisp = xnext - xcurrent;
|
---|
318 | tot = sqrt(xdisp.scalar_product(xdisp));
|
---|
319 | }
|
---|
320 | else {
|
---|
321 |
|
---|
322 | tot = sqrt(xdisp.scalar_product(xdisp));
|
---|
323 |
|
---|
324 | if ( tot > max_stepsize_ ) {
|
---|
325 | if( restrict_ ) {
|
---|
326 | double scal = max_stepsize_/tot;
|
---|
327 | ExEnv::out0() << endl << indent <<
|
---|
328 | scprintf("stepsize of %f is too big, scaling by %f",tot,scal)
|
---|
329 | << endl;
|
---|
330 | xdisp.scale(scal);
|
---|
331 | tot *= scal;
|
---|
332 | }
|
---|
333 | else {
|
---|
334 | ExEnv::out0() << endl << indent <<
|
---|
335 | scprintf("stepsize of %f is too big, but scaling is disabled",tot)
|
---|
336 | << endl;
|
---|
337 | }
|
---|
338 | }
|
---|
339 | xnext = xcurrent + xdisp;
|
---|
340 | }
|
---|
341 |
|
---|
342 | if (print_hessian_) {
|
---|
343 | RefSymmSCMatrix hessian = ihessian_.gi();
|
---|
344 | ExEnv::out0() << indent << "hessian = [" << endl;
|
---|
345 | ExEnv::out0() << incindent;
|
---|
346 | int n = hessian.n();
|
---|
347 | for (int i=0; i<n; i++) {
|
---|
348 | ExEnv::out0() << indent << "[";
|
---|
349 | for (int j=0; j<=i; j++) {
|
---|
350 | ExEnv::out0() << scprintf(" % 10.6f",double(hessian(i,j)));
|
---|
351 | }
|
---|
352 | ExEnv::out0() << " ]" << endl;
|
---|
353 | }
|
---|
354 | ExEnv::out0() << decindent;
|
---|
355 | ExEnv::out0() << indent << "]" << endl;
|
---|
356 | }
|
---|
357 | if (print_x_) {
|
---|
358 | int n = xcurrent.n();
|
---|
359 | ExEnv::out0() << indent << "x = [";
|
---|
360 | for (int i=0; i<n; i++) {
|
---|
361 | ExEnv::out0() << scprintf(" % 16.12f",double(xcurrent(i)));
|
---|
362 | }
|
---|
363 | ExEnv::out0() << " ]" << endl;
|
---|
364 | }
|
---|
365 | if (print_gradient_) {
|
---|
366 | int n = gcurrent.n();
|
---|
367 | ExEnv::out0() << indent << "gradient = [";
|
---|
368 | for (int i=0; i<n; i++) {
|
---|
369 | ExEnv::out0() << scprintf(" % 16.12f",double(gcurrent(i)));
|
---|
370 | }
|
---|
371 | ExEnv::out0() << " ]" << endl;
|
---|
372 | }
|
---|
373 |
|
---|
374 | // check for convergence
|
---|
375 | conv_->set_nextx(xnext);
|
---|
376 | int converged = conv_->converged();
|
---|
377 | if (converged) return converged;
|
---|
378 |
|
---|
379 | ExEnv::out0() << indent
|
---|
380 | << scprintf("taking step of size %f", tot) << endl;
|
---|
381 | ExEnv::out0() << indent << "Optimization iteration "
|
---|
382 | << n_iterations_ + 1 << " complete" << endl;
|
---|
383 | ExEnv::out0() << indent
|
---|
384 | << "//////////////////////////////////////////////////////////////////////"
|
---|
385 | << endl;
|
---|
386 |
|
---|
387 | if( lineopt_.null() ) {
|
---|
388 | function()->set_x(xnext);
|
---|
389 | Ref<NonlinearTransform> t = function()->change_coordinates();
|
---|
390 | apply_transform(t);
|
---|
391 | }
|
---|
392 |
|
---|
393 | if( dynamic_grad_acc_ )
|
---|
394 | function()->set_desired_gradient_accuracy(accuracy_);
|
---|
395 |
|
---|
396 | return converged;
|
---|
397 | }
|
---|
398 |
|
---|
399 | void
|
---|
400 | QNewtonOpt::apply_transform(const Ref<NonlinearTransform> &t)
|
---|
401 | {
|
---|
402 | if (t.null()) return;
|
---|
403 | Optimize::apply_transform(t);
|
---|
404 | if (lineopt_.nonnull()) lineopt_->apply_transform(t);
|
---|
405 | if (ihessian_.nonnull()) t->transform_ihessian(ihessian_);
|
---|
406 | if (update_.nonnull()) update_->apply_transform(t);
|
---|
407 | }
|
---|
408 |
|
---|
409 | /////////////////////////////////////////////////////////////////////////////
|
---|
410 |
|
---|
411 | // Local Variables:
|
---|
412 | // mode: c++
|
---|
413 | // c-file-style: "ETS"
|
---|
414 | // End:
|
---|