| [0b990d] | 1 | //
 | 
|---|
 | 2 | // qnewton.cc
 | 
|---|
 | 3 | //
 | 
|---|
 | 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
 | 
|---|
 | 5 | //
 | 
|---|
 | 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
 | 
|---|
 | 7 | // Maintainer: LPS
 | 
|---|
 | 8 | //
 | 
|---|
 | 9 | // This file is part of the SC Toolkit.
 | 
|---|
 | 10 | //
 | 
|---|
 | 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
 | 
|---|
 | 12 | // it under the terms of the GNU Library General Public License as published by
 | 
|---|
 | 13 | // the Free Software Foundation; either version 2, or (at your option)
 | 
|---|
 | 14 | // any later version.
 | 
|---|
 | 15 | //
 | 
|---|
 | 16 | // The SC Toolkit is distributed in the hope that it will be useful,
 | 
|---|
 | 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
 | 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
 | 19 | // GNU Library General Public License for more details.
 | 
|---|
 | 20 | //
 | 
|---|
 | 21 | // You should have received a copy of the GNU Library General Public License
 | 
|---|
 | 22 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
 | 
|---|
 | 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
|---|
 | 24 | //
 | 
|---|
 | 25 | // The U.S. Government is granted a limited license as per AL 91-7.
 | 
|---|
 | 26 | //
 | 
|---|
 | 27 | 
 | 
|---|
 | 28 | #ifdef __GNUC__
 | 
|---|
 | 29 | #pragma implementation
 | 
|---|
 | 30 | #endif
 | 
|---|
 | 31 | 
 | 
|---|
 | 32 | #include <math.h>
 | 
|---|
 | 33 | #include <float.h>
 | 
|---|
 | 34 | 
 | 
|---|
 | 35 | #include <util/state/stateio.h>
 | 
|---|
 | 36 | #include <math/optimize/qnewton.h>
 | 
|---|
 | 37 | #include <util/keyval/keyval.h>
 | 
|---|
 | 38 | #include <util/misc/formio.h>
 | 
|---|
 | 39 | 
 | 
|---|
 | 40 | using namespace std;
 | 
|---|
 | 41 | using namespace sc;
 | 
|---|
 | 42 | 
 | 
|---|
 | 43 | /////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 44 | // QNewtonOpt
 | 
|---|
 | 45 | 
 | 
|---|
 | 46 | static ClassDesc QNewtonOpt_cd(
 | 
|---|
 | 47 |   typeid(QNewtonOpt),"QNewtonOpt",2,"public Optimize",
 | 
|---|
 | 48 |   0, create<QNewtonOpt>, create<QNewtonOpt>);
 | 
|---|
 | 49 | 
 | 
|---|
 | 50 | QNewtonOpt::QNewtonOpt(const Ref<KeyVal>&keyval):
 | 
|---|
 | 51 |   Optimize(keyval)
 | 
|---|
 | 52 | {
 | 
|---|
 | 53 | 
 | 
|---|
 | 54 |   if (function_.null()) {
 | 
|---|
 | 55 |       ExEnv::err0() << "QNewtonOpt requires a function keyword" << endl;
 | 
|---|
 | 56 |       abort();
 | 
|---|
 | 57 |   }
 | 
|---|
 | 58 | 
 | 
|---|
 | 59 |   init();
 | 
|---|
 | 60 | 
 | 
|---|
 | 61 |   update_ << keyval->describedclassvalue("update");
 | 
|---|
 | 62 |   if (update_.nonnull()) update_->set_inverse();
 | 
|---|
 | 63 |   lineopt_ << keyval->describedclassvalue("lineopt");
 | 
|---|
 | 64 |   accuracy_ = keyval->doublevalue("accuracy");
 | 
|---|
 | 65 |   if (keyval->error() != KeyVal::OK) accuracy_ = 0.0001;
 | 
|---|
 | 66 |   print_x_ = keyval->booleanvalue("print_x");
 | 
|---|
 | 67 |   print_hessian_ = keyval->booleanvalue("print_hessian");
 | 
|---|
 | 68 |   print_gradient_ = keyval->booleanvalue("print_gradient");
 | 
|---|
 | 69 |   linear_ = keyval->booleanvalue("linear");
 | 
|---|
 | 70 |   if (keyval->error() != KeyVal::OK) linear_ = 0;
 | 
|---|
 | 71 |   restrict_ = keyval->booleanvalue("restrict");
 | 
|---|
 | 72 |   if (keyval->error() != KeyVal::OK) restrict_ = 1;
 | 
|---|
 | 73 |   dynamic_grad_acc_ = keyval->booleanvalue("dynamic_grad_acc");
 | 
|---|
 | 74 |   if (keyval->error() != KeyVal::OK) dynamic_grad_acc_ = 1;
 | 
|---|
 | 75 |   force_search_ = keyval->booleanvalue("force_search");
 | 
|---|
 | 76 |   if (keyval->error() != KeyVal::OK) force_search_ = 0;
 | 
|---|
 | 77 |   restart_ = keyval->booleanvalue("restart");
 | 
|---|
 | 78 |   if (keyval->error() != KeyVal::OK) restart_ = 1;
 | 
|---|
 | 79 | 
 | 
|---|
 | 80 |   RefSymmSCMatrix hessian(dimension(),matrixkit());
 | 
|---|
 | 81 |   // get a guess hessian from the function
 | 
|---|
 | 82 |   function()->guess_hessian(hessian);
 | 
|---|
 | 83 |   
 | 
|---|
 | 84 |   // see if any hessian matrix elements have been given in the input
 | 
|---|
 | 85 |   if (keyval->exists("hessian")) {
 | 
|---|
 | 86 |       int n = hessian.n();
 | 
|---|
 | 87 |       for (int i=0; i<n; i++) {
 | 
|---|
 | 88 |           if (keyval->exists("hessian",i)) {
 | 
|---|
 | 89 |               for (int j=0; j<=i; j++) {
 | 
|---|
 | 90 |                   double tmp = keyval->doublevalue("hessian",i,j);
 | 
|---|
 | 91 |                   if (keyval->error() == KeyVal::OK) hessian(i,j) = tmp;
 | 
|---|
 | 92 |                 }
 | 
|---|
 | 93 |             }
 | 
|---|
 | 94 |         }
 | 
|---|
 | 95 |     }
 | 
|---|
 | 96 |   ihessian_ = function()->inverse_hessian(hessian);
 | 
|---|
 | 97 | }
 | 
|---|
 | 98 | 
 | 
|---|
 | 99 | QNewtonOpt::QNewtonOpt(StateIn&s):
 | 
|---|
 | 100 |   SavableState(s),
 | 
|---|
 | 101 |   Optimize(s)
 | 
|---|
 | 102 | {
 | 
|---|
 | 103 |   ihessian_ = matrixkit()->symmmatrix(dimension());
 | 
|---|
 | 104 |   ihessian_.restore(s);
 | 
|---|
 | 105 |   update_ << SavableState::restore_state(s);
 | 
|---|
 | 106 |   s.get(accuracy_);
 | 
|---|
 | 107 |   s.get(take_newton_step_);
 | 
|---|
 | 108 |   s.get(maxabs_gradient);
 | 
|---|
 | 109 |   if (s.version(::class_desc<QNewtonOpt>()) > 1) {
 | 
|---|
 | 110 |     s.get(print_hessian_);
 | 
|---|
 | 111 |     s.get(print_x_);
 | 
|---|
 | 112 |     s.get(print_gradient_);
 | 
|---|
 | 113 |   }
 | 
|---|
 | 114 |   else {
 | 
|---|
 | 115 |     print_hessian_ = 0;
 | 
|---|
 | 116 |     print_x_ = 0;
 | 
|---|
 | 117 |     print_gradient_ = 0;
 | 
|---|
 | 118 |   }
 | 
|---|
 | 119 |   lineopt_ << SavableState::restore_state(s);
 | 
|---|
 | 120 | }
 | 
|---|
 | 121 | 
 | 
|---|
 | 122 | QNewtonOpt::~QNewtonOpt()
 | 
|---|
 | 123 | {
 | 
|---|
 | 124 | }
 | 
|---|
 | 125 | 
 | 
|---|
 | 126 | void
 | 
|---|
 | 127 | QNewtonOpt::save_data_state(StateOut&s)
 | 
|---|
 | 128 | {
 | 
|---|
 | 129 |   Optimize::save_data_state(s);
 | 
|---|
 | 130 |   ihessian_.save(s);
 | 
|---|
 | 131 |   SavableState::save_state(update_.pointer(),s);
 | 
|---|
 | 132 |   s.put(accuracy_);
 | 
|---|
 | 133 |   s.put(take_newton_step_);
 | 
|---|
 | 134 |   s.put(maxabs_gradient);
 | 
|---|
 | 135 |   s.put(print_hessian_);
 | 
|---|
 | 136 |   s.put(print_x_);
 | 
|---|
 | 137 |   s.put(print_gradient_);
 | 
|---|
 | 138 |   SavableState::save_state(lineopt_.pointer(),s);
 | 
|---|
 | 139 | }
 | 
|---|
 | 140 | 
 | 
|---|
 | 141 | void
 | 
|---|
 | 142 | QNewtonOpt::init()
 | 
|---|
 | 143 | {
 | 
|---|
 | 144 |   Optimize::init();
 | 
|---|
 | 145 |   take_newton_step_ = 1;
 | 
|---|
 | 146 |   maxabs_gradient = -1.0;
 | 
|---|
 | 147 | }
 | 
|---|
 | 148 | 
 | 
|---|
 | 149 | int
 | 
|---|
 | 150 | QNewtonOpt::update()
 | 
|---|
 | 151 | {
 | 
|---|
 | 152 |   // these are good candidates to be input options
 | 
|---|
 | 153 |   const double maxabs_gradient_to_desired_accuracy = 0.05;
 | 
|---|
 | 154 |   const double maxabs_gradient_to_next_desired_accuracy = 0.005;
 | 
|---|
 | 155 |   const double roundoff_error_factor = 1.1;
 | 
|---|
 | 156 |   
 | 
|---|
 | 157 |   // the gradient convergence criterion.
 | 
|---|
 | 158 |   double old_maxabs_gradient = maxabs_gradient;
 | 
|---|
 | 159 |   RefSCVector xcurrent;
 | 
|---|
 | 160 |   RefSCVector gcurrent;
 | 
|---|
 | 161 | 
 | 
|---|
 | 162 |   if( dynamic_grad_acc_ ) {
 | 
|---|
 | 163 |     // get the next gradient at the required level of accuracy.
 | 
|---|
 | 164 |     // usually only one pass is needed, unless we happen to find
 | 
|---|
 | 165 |     // that the accuracy was set too low.
 | 
|---|
 | 166 |     int accurate_enough;
 | 
|---|
 | 167 |     do {
 | 
|---|
 | 168 |         // compute the current point
 | 
|---|
 | 169 |         function()->set_desired_gradient_accuracy(accuracy_);
 | 
|---|
 | 170 |         xcurrent = function()->get_x();
 | 
|---|
 | 171 |         gcurrent = function()->gradient().copy();
 | 
|---|
 | 172 |       
 | 
|---|
 | 173 |         // compute the gradient convergence criterion now so i can see if
 | 
|---|
 | 174 |         // the accuracy needs to be tighter
 | 
|---|
 | 175 |         maxabs_gradient = gcurrent.maxabs();
 | 
|---|
 | 176 |         // compute the required accuracy
 | 
|---|
 | 177 |         accuracy_ = maxabs_gradient * maxabs_gradient_to_desired_accuracy;
 | 
|---|
 | 178 |       
 | 
|---|
 | 179 |         if (accuracy_ < DBL_EPSILON) accuracy_ = DBL_EPSILON;
 | 
|---|
 | 180 | 
 | 
|---|
 | 181 |         // The roundoff_error_factor is thrown in to allow for round off making
 | 
|---|
 | 182 |         // the current gcurrent.maxabs() a bit smaller than the previous,
 | 
|---|
 | 183 |         // which would make the current required accuracy less than the
 | 
|---|
 | 184 |         // gradient's actual accuracy and cause everything to be recomputed.
 | 
|---|
 | 185 |         accurate_enough = (
 | 
|---|
 | 186 |             function()->actual_gradient_accuracy()
 | 
|---|
 | 187 |             <= accuracy_*roundoff_error_factor);
 | 
|---|
 | 188 | 
 | 
|---|
 | 189 |         if (!accurate_enough) {
 | 
|---|
 | 190 |           ExEnv::out0().unsetf(ios::fixed);
 | 
|---|
 | 191 |           ExEnv::out0() << indent << 
 | 
|---|
 | 192 |                "NOTICE: function()->actual_gradient_accuracy() > accuracy_:\n"
 | 
|---|
 | 193 |                << indent
 | 
|---|
 | 194 |                << scprintf(
 | 
|---|
 | 195 |                  "        function()->actual_gradient_accuracy() = %15.8e",
 | 
|---|
 | 196 |                  function()->actual_gradient_accuracy()) << endl << indent
 | 
|---|
 | 197 |                << scprintf(
 | 
|---|
 | 198 |                  "                                     accuracy_ = %15.8e",
 | 
|---|
 | 199 |                  accuracy_) << endl;
 | 
|---|
 | 200 |         }
 | 
|---|
 | 201 |      } while(!accurate_enough);
 | 
|---|
 | 202 |     // increase accuracy, since the next gradient will be smaller
 | 
|---|
 | 203 |     accuracy_ = maxabs_gradient * maxabs_gradient_to_next_desired_accuracy;
 | 
|---|
 | 204 |   }
 | 
|---|
 | 205 |   else {
 | 
|---|
 | 206 |     xcurrent = function()->get_x();
 | 
|---|
 | 207 |     gcurrent = function()->gradient().copy();
 | 
|---|
 | 208 |   }
 | 
|---|
 | 209 | 
 | 
|---|
 | 210 |   if (old_maxabs_gradient >= 0.0 && old_maxabs_gradient < maxabs_gradient) {
 | 
|---|
 | 211 |     ExEnv::out0() << indent
 | 
|---|
 | 212 |          << scprintf("NOTICE: maxabs_gradient increased from %8.4e to %8.4e",
 | 
|---|
 | 213 |                      old_maxabs_gradient, maxabs_gradient) << endl;
 | 
|---|
 | 214 |   }
 | 
|---|
 | 215 | 
 | 
|---|
 | 216 |   // update the hessian
 | 
|---|
 | 217 |   if(update_.nonnull())
 | 
|---|
 | 218 |     update_->update(ihessian_,function(),xcurrent,gcurrent);
 | 
|---|
 | 219 | 
 | 
|---|
 | 220 |   conv_->reset();
 | 
|---|
 | 221 |   conv_->get_grad(function());
 | 
|---|
 | 222 |   conv_->get_x(function());
 | 
|---|
 | 223 | 
 | 
|---|
 | 224 |   // compute the quadratic step
 | 
|---|
 | 225 |   RefSCVector xdisp = -1.0*(ihessian_ * gcurrent);
 | 
|---|
 | 226 |   RefSCVector xnext = xcurrent + xdisp;
 | 
|---|
 | 227 | 
 | 
|---|
 | 228 |   // either do a lineopt or check stepsize
 | 
|---|
 | 229 |   double tot;
 | 
|---|
 | 230 |   if(lineopt_.nonnull()) {
 | 
|---|
 | 231 |     if (dynamic_cast<Backtrack*>(lineopt_.pointer()) != 0) {
 | 
|---|
 | 232 |       // The Backtrack line search is a special case.
 | 
|---|
 | 233 | 
 | 
|---|
 | 234 |       // perform a search
 | 
|---|
 | 235 |       double factor;
 | 
|---|
 | 236 |       if( n_iterations_ == 0 && force_search_ ) 
 | 
|---|
 | 237 |         factor = lineopt_->set_decrease_factor(1.0);
 | 
|---|
 | 238 |       lineopt_->init(xdisp,function());
 | 
|---|
 | 239 |       // reset value acc here so line search "precomputes" are 
 | 
|---|
 | 240 |       // accurate enough for subsequent gradient evals
 | 
|---|
 | 241 |       function()->set_desired_value_accuracy(accuracy_/100);
 | 
|---|
 | 242 |       int acceptable = lineopt_->update();
 | 
|---|
 | 243 |       if( n_iterations_ == 0 && force_search_ )
 | 
|---|
 | 244 |         lineopt_->set_decrease_factor( factor );
 | 
|---|
 | 245 | 
 | 
|---|
 | 246 |       if( !acceptable ) {
 | 
|---|
 | 247 |         if( force_search_ ) factor = lineopt_->set_decrease_factor(1.0);
 | 
|---|
 | 248 | 
 | 
|---|
 | 249 |         // try a new guess hessian
 | 
|---|
 | 250 |         if( restart_ ) {
 | 
|---|
 | 251 |           ExEnv::out0() << endl << indent << 
 | 
|---|
 | 252 |             "Restarting Hessian approximation" << endl;
 | 
|---|
 | 253 |           RefSymmSCMatrix hessian(dimension(),matrixkit());
 | 
|---|
 | 254 |           function()->guess_hessian(hessian);
 | 
|---|
 | 255 |           ihessian_ = function()->inverse_hessian(hessian);
 | 
|---|
 | 256 |           xdisp = -1.0 * (ihessian_ * gcurrent);
 | 
|---|
 | 257 |           lineopt_->init(xdisp,function());
 | 
|---|
 | 258 |           acceptable = lineopt_->update();
 | 
|---|
 | 259 |         }
 | 
|---|
 | 260 |       
 | 
|---|
 | 261 |         // try steepest descent direction
 | 
|---|
 | 262 |         if( !acceptable ) {
 | 
|---|
 | 263 |           ExEnv::out0() << endl << indent << 
 | 
|---|
 | 264 |             "Trying steepest descent direction." << endl;
 | 
|---|
 | 265 |           xdisp = -1.0 * gcurrent;
 | 
|---|
 | 266 |           lineopt_->init(xdisp,function());
 | 
|---|
 | 267 |           acceptable = lineopt_->update();
 | 
|---|
 | 268 |         }
 | 
|---|
 | 269 | 
 | 
|---|
 | 270 |         // give up and use steepest descent step
 | 
|---|
 | 271 |         if( !acceptable ) {
 | 
|---|
 | 272 |           ExEnv::out0() << endl << indent << 
 | 
|---|
 | 273 |             "Resorting to unscaled steepest descent step." << endl;
 | 
|---|
 | 274 |           function()->set_x(xcurrent + xdisp);
 | 
|---|
 | 275 |           Ref<NonlinearTransform> t = function()->change_coordinates();
 | 
|---|
 | 276 |           apply_transform(t);
 | 
|---|
 | 277 |         }
 | 
|---|
 | 278 | 
 | 
|---|
 | 279 |         if( force_search_ ) lineopt_->set_decrease_factor( factor );
 | 
|---|
 | 280 |       }
 | 
|---|
 | 281 |     }
 | 
|---|
 | 282 |     else {
 | 
|---|
 | 283 |       // All line searches other than Backtrack use this
 | 
|---|
 | 284 |       ExEnv::out0() << indent
 | 
|---|
 | 285 |                     << "......................................."
 | 
|---|
 | 286 |                     << endl
 | 
|---|
 | 287 |                     << indent
 | 
|---|
 | 288 |                     << "Starting line optimization."
 | 
|---|
 | 289 |                     << endl;
 | 
|---|
 | 290 |       lineopt_->init(xdisp,function());
 | 
|---|
 | 291 |       int nlineopt = 0;
 | 
|---|
 | 292 |       int maxlineopt = 3;
 | 
|---|
 | 293 |       for (int ilineopt=0; ilineopt<maxlineopt; ilineopt++) {
 | 
|---|
 | 294 |         double maxabs_gradient = function()->gradient()->maxabs();
 | 
|---|
 | 295 | 
 | 
|---|
 | 296 |         int converged = lineopt_->update();
 | 
|---|
 | 297 | 
 | 
|---|
 | 298 |         ExEnv::out0() << indent
 | 
|---|
 | 299 |                       << "Completed line optimization step " << ilineopt+1
 | 
|---|
 | 300 |                       << (converged?" (converged)":" (not converged)")
 | 
|---|
 | 301 |                       << endl
 | 
|---|
 | 302 |                       << indent
 | 
|---|
 | 303 |                       << "......................................."
 | 
|---|
 | 304 |                       << endl;
 | 
|---|
 | 305 | 
 | 
|---|
 | 306 |         if (converged) break;
 | 
|---|
 | 307 | 
 | 
|---|
 | 308 |         // Improve accuracy, since we might be able to reuse the next
 | 
|---|
 | 309 |         // gradient for the next quasi-Newton step.
 | 
|---|
 | 310 |         if (dynamic_grad_acc_)  {
 | 
|---|
 | 311 |           accuracy_ = maxabs_gradient*maxabs_gradient_to_next_desired_accuracy;
 | 
|---|
 | 312 |           function()->set_desired_gradient_accuracy(accuracy_);
 | 
|---|
 | 313 |         }
 | 
|---|
 | 314 |       }
 | 
|---|
 | 315 |     }
 | 
|---|
 | 316 |     xnext = function()->get_x();
 | 
|---|
 | 317 |     xdisp = xnext - xcurrent;
 | 
|---|
 | 318 |     tot = sqrt(xdisp.scalar_product(xdisp));
 | 
|---|
 | 319 |   }
 | 
|---|
 | 320 |   else {
 | 
|---|
 | 321 | 
 | 
|---|
 | 322 |     tot = sqrt(xdisp.scalar_product(xdisp));
 | 
|---|
 | 323 | 
 | 
|---|
 | 324 |     if ( tot > max_stepsize_ ) {
 | 
|---|
 | 325 |       if( restrict_ ) {
 | 
|---|
 | 326 |         double scal = max_stepsize_/tot;
 | 
|---|
 | 327 |         ExEnv::out0() << endl << indent <<
 | 
|---|
 | 328 |           scprintf("stepsize of %f is too big, scaling by %f",tot,scal)
 | 
|---|
 | 329 |           << endl;
 | 
|---|
 | 330 |         xdisp.scale(scal);
 | 
|---|
 | 331 |         tot *= scal;
 | 
|---|
 | 332 |       }
 | 
|---|
 | 333 |       else {
 | 
|---|
 | 334 |         ExEnv::out0() << endl << indent <<
 | 
|---|
 | 335 |           scprintf("stepsize of %f is too big, but scaling is disabled",tot)
 | 
|---|
 | 336 |           << endl;
 | 
|---|
 | 337 |       }
 | 
|---|
 | 338 |     }
 | 
|---|
 | 339 |     xnext = xcurrent + xdisp;
 | 
|---|
 | 340 |   }
 | 
|---|
 | 341 | 
 | 
|---|
 | 342 |   if (print_hessian_) {
 | 
|---|
 | 343 |     RefSymmSCMatrix hessian = ihessian_.gi();
 | 
|---|
 | 344 |     ExEnv::out0() << indent << "hessian = [" << endl;
 | 
|---|
 | 345 |     ExEnv::out0() << incindent;
 | 
|---|
 | 346 |     int n = hessian.n();
 | 
|---|
 | 347 |     for (int i=0; i<n; i++) {
 | 
|---|
 | 348 |       ExEnv::out0() << indent << "[";
 | 
|---|
 | 349 |       for (int j=0; j<=i; j++) {
 | 
|---|
 | 350 |         ExEnv::out0() << scprintf(" % 10.6f",double(hessian(i,j)));
 | 
|---|
 | 351 |       }
 | 
|---|
 | 352 |       ExEnv::out0() << " ]" << endl;
 | 
|---|
 | 353 |     }
 | 
|---|
 | 354 |     ExEnv::out0() << decindent;
 | 
|---|
 | 355 |     ExEnv::out0() << indent << "]" << endl;
 | 
|---|
 | 356 |   }
 | 
|---|
 | 357 |   if (print_x_) {
 | 
|---|
 | 358 |     int n = xcurrent.n();
 | 
|---|
 | 359 |     ExEnv::out0() << indent << "x = [";
 | 
|---|
 | 360 |     for (int i=0; i<n; i++) {
 | 
|---|
 | 361 |       ExEnv::out0() << scprintf(" % 16.12f",double(xcurrent(i)));
 | 
|---|
 | 362 |     }
 | 
|---|
 | 363 |     ExEnv::out0() << " ]" << endl;
 | 
|---|
 | 364 |   }
 | 
|---|
 | 365 |   if (print_gradient_) {
 | 
|---|
 | 366 |     int n = gcurrent.n();
 | 
|---|
 | 367 |     ExEnv::out0() << indent << "gradient = [";
 | 
|---|
 | 368 |     for (int i=0; i<n; i++) {
 | 
|---|
 | 369 |       ExEnv::out0() << scprintf(" % 16.12f",double(gcurrent(i)));
 | 
|---|
 | 370 |     }
 | 
|---|
 | 371 |     ExEnv::out0() << " ]" << endl;
 | 
|---|
 | 372 |   }
 | 
|---|
 | 373 | 
 | 
|---|
 | 374 |   // check for convergence
 | 
|---|
 | 375 |   conv_->set_nextx(xnext);
 | 
|---|
 | 376 |   int converged = conv_->converged();
 | 
|---|
 | 377 |   if (converged) return converged;
 | 
|---|
 | 378 | 
 | 
|---|
 | 379 |   ExEnv::out0() << indent
 | 
|---|
 | 380 |                 << scprintf("taking step of size %f", tot) << endl;
 | 
|---|
 | 381 |   ExEnv::out0() << indent << "Optimization iteration " 
 | 
|---|
 | 382 |                 << n_iterations_ + 1 << " complete" << endl;
 | 
|---|
 | 383 |   ExEnv::out0() << indent
 | 
|---|
 | 384 |     << "//////////////////////////////////////////////////////////////////////"
 | 
|---|
 | 385 |     << endl;
 | 
|---|
 | 386 | 
 | 
|---|
 | 387 |   if( lineopt_.null() ) {
 | 
|---|
 | 388 |     function()->set_x(xnext);
 | 
|---|
 | 389 |     Ref<NonlinearTransform> t = function()->change_coordinates();
 | 
|---|
 | 390 |     apply_transform(t);
 | 
|---|
 | 391 |   }
 | 
|---|
 | 392 | 
 | 
|---|
 | 393 |   if( dynamic_grad_acc_ ) 
 | 
|---|
 | 394 |     function()->set_desired_gradient_accuracy(accuracy_);
 | 
|---|
 | 395 | 
 | 
|---|
 | 396 |   return converged;
 | 
|---|
 | 397 | }
 | 
|---|
 | 398 | 
 | 
|---|
 | 399 | void
 | 
|---|
 | 400 | QNewtonOpt::apply_transform(const Ref<NonlinearTransform> &t)
 | 
|---|
 | 401 | {
 | 
|---|
 | 402 |   if (t.null()) return;
 | 
|---|
 | 403 |   Optimize::apply_transform(t);
 | 
|---|
 | 404 |   if (lineopt_.nonnull()) lineopt_->apply_transform(t);
 | 
|---|
 | 405 |   if (ihessian_.nonnull()) t->transform_ihessian(ihessian_);
 | 
|---|
 | 406 |   if (update_.nonnull()) update_->apply_transform(t);
 | 
|---|
 | 407 | }
 | 
|---|
 | 408 | 
 | 
|---|
 | 409 | /////////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 410 | 
 | 
|---|
 | 411 | // Local Variables:
 | 
|---|
 | 412 | // mode: c++
 | 
|---|
 | 413 | // c-file-style: "ETS"
 | 
|---|
 | 414 | // End:
 | 
|---|