[0b990d] | 1 | //
|
---|
| 2 | // qnewton.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #ifdef __GNUC__
|
---|
| 29 | #pragma implementation
|
---|
| 30 | #endif
|
---|
| 31 |
|
---|
| 32 | #include <math.h>
|
---|
| 33 | #include <float.h>
|
---|
| 34 |
|
---|
| 35 | #include <util/state/stateio.h>
|
---|
| 36 | #include <math/optimize/qnewton.h>
|
---|
| 37 | #include <util/keyval/keyval.h>
|
---|
| 38 | #include <util/misc/formio.h>
|
---|
| 39 |
|
---|
| 40 | using namespace std;
|
---|
| 41 | using namespace sc;
|
---|
| 42 |
|
---|
| 43 | /////////////////////////////////////////////////////////////////////////
|
---|
| 44 | // QNewtonOpt
|
---|
| 45 |
|
---|
| 46 | static ClassDesc QNewtonOpt_cd(
|
---|
| 47 | typeid(QNewtonOpt),"QNewtonOpt",2,"public Optimize",
|
---|
| 48 | 0, create<QNewtonOpt>, create<QNewtonOpt>);
|
---|
| 49 |
|
---|
| 50 | QNewtonOpt::QNewtonOpt(const Ref<KeyVal>&keyval):
|
---|
| 51 | Optimize(keyval)
|
---|
| 52 | {
|
---|
| 53 |
|
---|
| 54 | if (function_.null()) {
|
---|
| 55 | ExEnv::err0() << "QNewtonOpt requires a function keyword" << endl;
|
---|
| 56 | abort();
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | init();
|
---|
| 60 |
|
---|
| 61 | update_ << keyval->describedclassvalue("update");
|
---|
| 62 | if (update_.nonnull()) update_->set_inverse();
|
---|
| 63 | lineopt_ << keyval->describedclassvalue("lineopt");
|
---|
| 64 | accuracy_ = keyval->doublevalue("accuracy");
|
---|
| 65 | if (keyval->error() != KeyVal::OK) accuracy_ = 0.0001;
|
---|
| 66 | print_x_ = keyval->booleanvalue("print_x");
|
---|
| 67 | print_hessian_ = keyval->booleanvalue("print_hessian");
|
---|
| 68 | print_gradient_ = keyval->booleanvalue("print_gradient");
|
---|
| 69 | linear_ = keyval->booleanvalue("linear");
|
---|
| 70 | if (keyval->error() != KeyVal::OK) linear_ = 0;
|
---|
| 71 | restrict_ = keyval->booleanvalue("restrict");
|
---|
| 72 | if (keyval->error() != KeyVal::OK) restrict_ = 1;
|
---|
| 73 | dynamic_grad_acc_ = keyval->booleanvalue("dynamic_grad_acc");
|
---|
| 74 | if (keyval->error() != KeyVal::OK) dynamic_grad_acc_ = 1;
|
---|
| 75 | force_search_ = keyval->booleanvalue("force_search");
|
---|
| 76 | if (keyval->error() != KeyVal::OK) force_search_ = 0;
|
---|
| 77 | restart_ = keyval->booleanvalue("restart");
|
---|
| 78 | if (keyval->error() != KeyVal::OK) restart_ = 1;
|
---|
| 79 |
|
---|
| 80 | RefSymmSCMatrix hessian(dimension(),matrixkit());
|
---|
| 81 | // get a guess hessian from the function
|
---|
| 82 | function()->guess_hessian(hessian);
|
---|
| 83 |
|
---|
| 84 | // see if any hessian matrix elements have been given in the input
|
---|
| 85 | if (keyval->exists("hessian")) {
|
---|
| 86 | int n = hessian.n();
|
---|
| 87 | for (int i=0; i<n; i++) {
|
---|
| 88 | if (keyval->exists("hessian",i)) {
|
---|
| 89 | for (int j=0; j<=i; j++) {
|
---|
| 90 | double tmp = keyval->doublevalue("hessian",i,j);
|
---|
| 91 | if (keyval->error() == KeyVal::OK) hessian(i,j) = tmp;
|
---|
| 92 | }
|
---|
| 93 | }
|
---|
| 94 | }
|
---|
| 95 | }
|
---|
| 96 | ihessian_ = function()->inverse_hessian(hessian);
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | QNewtonOpt::QNewtonOpt(StateIn&s):
|
---|
| 100 | SavableState(s),
|
---|
| 101 | Optimize(s)
|
---|
| 102 | {
|
---|
| 103 | ihessian_ = matrixkit()->symmmatrix(dimension());
|
---|
| 104 | ihessian_.restore(s);
|
---|
| 105 | update_ << SavableState::restore_state(s);
|
---|
| 106 | s.get(accuracy_);
|
---|
| 107 | s.get(take_newton_step_);
|
---|
| 108 | s.get(maxabs_gradient);
|
---|
| 109 | if (s.version(::class_desc<QNewtonOpt>()) > 1) {
|
---|
| 110 | s.get(print_hessian_);
|
---|
| 111 | s.get(print_x_);
|
---|
| 112 | s.get(print_gradient_);
|
---|
| 113 | }
|
---|
| 114 | else {
|
---|
| 115 | print_hessian_ = 0;
|
---|
| 116 | print_x_ = 0;
|
---|
| 117 | print_gradient_ = 0;
|
---|
| 118 | }
|
---|
| 119 | lineopt_ << SavableState::restore_state(s);
|
---|
| 120 | }
|
---|
| 121 |
|
---|
| 122 | QNewtonOpt::~QNewtonOpt()
|
---|
| 123 | {
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | void
|
---|
| 127 | QNewtonOpt::save_data_state(StateOut&s)
|
---|
| 128 | {
|
---|
| 129 | Optimize::save_data_state(s);
|
---|
| 130 | ihessian_.save(s);
|
---|
| 131 | SavableState::save_state(update_.pointer(),s);
|
---|
| 132 | s.put(accuracy_);
|
---|
| 133 | s.put(take_newton_step_);
|
---|
| 134 | s.put(maxabs_gradient);
|
---|
| 135 | s.put(print_hessian_);
|
---|
| 136 | s.put(print_x_);
|
---|
| 137 | s.put(print_gradient_);
|
---|
| 138 | SavableState::save_state(lineopt_.pointer(),s);
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | void
|
---|
| 142 | QNewtonOpt::init()
|
---|
| 143 | {
|
---|
| 144 | Optimize::init();
|
---|
| 145 | take_newton_step_ = 1;
|
---|
| 146 | maxabs_gradient = -1.0;
|
---|
| 147 | }
|
---|
| 148 |
|
---|
| 149 | int
|
---|
| 150 | QNewtonOpt::update()
|
---|
| 151 | {
|
---|
| 152 | // these are good candidates to be input options
|
---|
| 153 | const double maxabs_gradient_to_desired_accuracy = 0.05;
|
---|
| 154 | const double maxabs_gradient_to_next_desired_accuracy = 0.005;
|
---|
| 155 | const double roundoff_error_factor = 1.1;
|
---|
| 156 |
|
---|
| 157 | // the gradient convergence criterion.
|
---|
| 158 | double old_maxabs_gradient = maxabs_gradient;
|
---|
| 159 | RefSCVector xcurrent;
|
---|
| 160 | RefSCVector gcurrent;
|
---|
| 161 |
|
---|
| 162 | if( dynamic_grad_acc_ ) {
|
---|
| 163 | // get the next gradient at the required level of accuracy.
|
---|
| 164 | // usually only one pass is needed, unless we happen to find
|
---|
| 165 | // that the accuracy was set too low.
|
---|
| 166 | int accurate_enough;
|
---|
| 167 | do {
|
---|
| 168 | // compute the current point
|
---|
| 169 | function()->set_desired_gradient_accuracy(accuracy_);
|
---|
| 170 | xcurrent = function()->get_x();
|
---|
| 171 | gcurrent = function()->gradient().copy();
|
---|
| 172 |
|
---|
| 173 | // compute the gradient convergence criterion now so i can see if
|
---|
| 174 | // the accuracy needs to be tighter
|
---|
| 175 | maxabs_gradient = gcurrent.maxabs();
|
---|
| 176 | // compute the required accuracy
|
---|
| 177 | accuracy_ = maxabs_gradient * maxabs_gradient_to_desired_accuracy;
|
---|
| 178 |
|
---|
| 179 | if (accuracy_ < DBL_EPSILON) accuracy_ = DBL_EPSILON;
|
---|
| 180 |
|
---|
| 181 | // The roundoff_error_factor is thrown in to allow for round off making
|
---|
| 182 | // the current gcurrent.maxabs() a bit smaller than the previous,
|
---|
| 183 | // which would make the current required accuracy less than the
|
---|
| 184 | // gradient's actual accuracy and cause everything to be recomputed.
|
---|
| 185 | accurate_enough = (
|
---|
| 186 | function()->actual_gradient_accuracy()
|
---|
| 187 | <= accuracy_*roundoff_error_factor);
|
---|
| 188 |
|
---|
| 189 | if (!accurate_enough) {
|
---|
| 190 | ExEnv::out0().unsetf(ios::fixed);
|
---|
| 191 | ExEnv::out0() << indent <<
|
---|
| 192 | "NOTICE: function()->actual_gradient_accuracy() > accuracy_:\n"
|
---|
| 193 | << indent
|
---|
| 194 | << scprintf(
|
---|
| 195 | " function()->actual_gradient_accuracy() = %15.8e",
|
---|
| 196 | function()->actual_gradient_accuracy()) << endl << indent
|
---|
| 197 | << scprintf(
|
---|
| 198 | " accuracy_ = %15.8e",
|
---|
| 199 | accuracy_) << endl;
|
---|
| 200 | }
|
---|
| 201 | } while(!accurate_enough);
|
---|
| 202 | // increase accuracy, since the next gradient will be smaller
|
---|
| 203 | accuracy_ = maxabs_gradient * maxabs_gradient_to_next_desired_accuracy;
|
---|
| 204 | }
|
---|
| 205 | else {
|
---|
| 206 | xcurrent = function()->get_x();
|
---|
| 207 | gcurrent = function()->gradient().copy();
|
---|
| 208 | }
|
---|
| 209 |
|
---|
| 210 | if (old_maxabs_gradient >= 0.0 && old_maxabs_gradient < maxabs_gradient) {
|
---|
| 211 | ExEnv::out0() << indent
|
---|
| 212 | << scprintf("NOTICE: maxabs_gradient increased from %8.4e to %8.4e",
|
---|
| 213 | old_maxabs_gradient, maxabs_gradient) << endl;
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 | // update the hessian
|
---|
| 217 | if(update_.nonnull())
|
---|
| 218 | update_->update(ihessian_,function(),xcurrent,gcurrent);
|
---|
| 219 |
|
---|
| 220 | conv_->reset();
|
---|
| 221 | conv_->get_grad(function());
|
---|
| 222 | conv_->get_x(function());
|
---|
| 223 |
|
---|
| 224 | // compute the quadratic step
|
---|
| 225 | RefSCVector xdisp = -1.0*(ihessian_ * gcurrent);
|
---|
| 226 | RefSCVector xnext = xcurrent + xdisp;
|
---|
| 227 |
|
---|
| 228 | // either do a lineopt or check stepsize
|
---|
| 229 | double tot;
|
---|
| 230 | if(lineopt_.nonnull()) {
|
---|
| 231 | if (dynamic_cast<Backtrack*>(lineopt_.pointer()) != 0) {
|
---|
| 232 | // The Backtrack line search is a special case.
|
---|
| 233 |
|
---|
| 234 | // perform a search
|
---|
| 235 | double factor;
|
---|
| 236 | if( n_iterations_ == 0 && force_search_ )
|
---|
| 237 | factor = lineopt_->set_decrease_factor(1.0);
|
---|
| 238 | lineopt_->init(xdisp,function());
|
---|
| 239 | // reset value acc here so line search "precomputes" are
|
---|
| 240 | // accurate enough for subsequent gradient evals
|
---|
| 241 | function()->set_desired_value_accuracy(accuracy_/100);
|
---|
| 242 | int acceptable = lineopt_->update();
|
---|
| 243 | if( n_iterations_ == 0 && force_search_ )
|
---|
| 244 | lineopt_->set_decrease_factor( factor );
|
---|
| 245 |
|
---|
| 246 | if( !acceptable ) {
|
---|
| 247 | if( force_search_ ) factor = lineopt_->set_decrease_factor(1.0);
|
---|
| 248 |
|
---|
| 249 | // try a new guess hessian
|
---|
| 250 | if( restart_ ) {
|
---|
| 251 | ExEnv::out0() << endl << indent <<
|
---|
| 252 | "Restarting Hessian approximation" << endl;
|
---|
| 253 | RefSymmSCMatrix hessian(dimension(),matrixkit());
|
---|
| 254 | function()->guess_hessian(hessian);
|
---|
| 255 | ihessian_ = function()->inverse_hessian(hessian);
|
---|
| 256 | xdisp = -1.0 * (ihessian_ * gcurrent);
|
---|
| 257 | lineopt_->init(xdisp,function());
|
---|
| 258 | acceptable = lineopt_->update();
|
---|
| 259 | }
|
---|
| 260 |
|
---|
| 261 | // try steepest descent direction
|
---|
| 262 | if( !acceptable ) {
|
---|
| 263 | ExEnv::out0() << endl << indent <<
|
---|
| 264 | "Trying steepest descent direction." << endl;
|
---|
| 265 | xdisp = -1.0 * gcurrent;
|
---|
| 266 | lineopt_->init(xdisp,function());
|
---|
| 267 | acceptable = lineopt_->update();
|
---|
| 268 | }
|
---|
| 269 |
|
---|
| 270 | // give up and use steepest descent step
|
---|
| 271 | if( !acceptable ) {
|
---|
| 272 | ExEnv::out0() << endl << indent <<
|
---|
| 273 | "Resorting to unscaled steepest descent step." << endl;
|
---|
| 274 | function()->set_x(xcurrent + xdisp);
|
---|
| 275 | Ref<NonlinearTransform> t = function()->change_coordinates();
|
---|
| 276 | apply_transform(t);
|
---|
| 277 | }
|
---|
| 278 |
|
---|
| 279 | if( force_search_ ) lineopt_->set_decrease_factor( factor );
|
---|
| 280 | }
|
---|
| 281 | }
|
---|
| 282 | else {
|
---|
| 283 | // All line searches other than Backtrack use this
|
---|
| 284 | ExEnv::out0() << indent
|
---|
| 285 | << "......................................."
|
---|
| 286 | << endl
|
---|
| 287 | << indent
|
---|
| 288 | << "Starting line optimization."
|
---|
| 289 | << endl;
|
---|
| 290 | lineopt_->init(xdisp,function());
|
---|
| 291 | int nlineopt = 0;
|
---|
| 292 | int maxlineopt = 3;
|
---|
| 293 | for (int ilineopt=0; ilineopt<maxlineopt; ilineopt++) {
|
---|
| 294 | double maxabs_gradient = function()->gradient()->maxabs();
|
---|
| 295 |
|
---|
| 296 | int converged = lineopt_->update();
|
---|
| 297 |
|
---|
| 298 | ExEnv::out0() << indent
|
---|
| 299 | << "Completed line optimization step " << ilineopt+1
|
---|
| 300 | << (converged?" (converged)":" (not converged)")
|
---|
| 301 | << endl
|
---|
| 302 | << indent
|
---|
| 303 | << "......................................."
|
---|
| 304 | << endl;
|
---|
| 305 |
|
---|
| 306 | if (converged) break;
|
---|
| 307 |
|
---|
| 308 | // Improve accuracy, since we might be able to reuse the next
|
---|
| 309 | // gradient for the next quasi-Newton step.
|
---|
| 310 | if (dynamic_grad_acc_) {
|
---|
| 311 | accuracy_ = maxabs_gradient*maxabs_gradient_to_next_desired_accuracy;
|
---|
| 312 | function()->set_desired_gradient_accuracy(accuracy_);
|
---|
| 313 | }
|
---|
| 314 | }
|
---|
| 315 | }
|
---|
| 316 | xnext = function()->get_x();
|
---|
| 317 | xdisp = xnext - xcurrent;
|
---|
| 318 | tot = sqrt(xdisp.scalar_product(xdisp));
|
---|
| 319 | }
|
---|
| 320 | else {
|
---|
| 321 |
|
---|
| 322 | tot = sqrt(xdisp.scalar_product(xdisp));
|
---|
| 323 |
|
---|
| 324 | if ( tot > max_stepsize_ ) {
|
---|
| 325 | if( restrict_ ) {
|
---|
| 326 | double scal = max_stepsize_/tot;
|
---|
| 327 | ExEnv::out0() << endl << indent <<
|
---|
| 328 | scprintf("stepsize of %f is too big, scaling by %f",tot,scal)
|
---|
| 329 | << endl;
|
---|
| 330 | xdisp.scale(scal);
|
---|
| 331 | tot *= scal;
|
---|
| 332 | }
|
---|
| 333 | else {
|
---|
| 334 | ExEnv::out0() << endl << indent <<
|
---|
| 335 | scprintf("stepsize of %f is too big, but scaling is disabled",tot)
|
---|
| 336 | << endl;
|
---|
| 337 | }
|
---|
| 338 | }
|
---|
| 339 | xnext = xcurrent + xdisp;
|
---|
| 340 | }
|
---|
| 341 |
|
---|
| 342 | if (print_hessian_) {
|
---|
| 343 | RefSymmSCMatrix hessian = ihessian_.gi();
|
---|
| 344 | ExEnv::out0() << indent << "hessian = [" << endl;
|
---|
| 345 | ExEnv::out0() << incindent;
|
---|
| 346 | int n = hessian.n();
|
---|
| 347 | for (int i=0; i<n; i++) {
|
---|
| 348 | ExEnv::out0() << indent << "[";
|
---|
| 349 | for (int j=0; j<=i; j++) {
|
---|
| 350 | ExEnv::out0() << scprintf(" % 10.6f",double(hessian(i,j)));
|
---|
| 351 | }
|
---|
| 352 | ExEnv::out0() << " ]" << endl;
|
---|
| 353 | }
|
---|
| 354 | ExEnv::out0() << decindent;
|
---|
| 355 | ExEnv::out0() << indent << "]" << endl;
|
---|
| 356 | }
|
---|
| 357 | if (print_x_) {
|
---|
| 358 | int n = xcurrent.n();
|
---|
| 359 | ExEnv::out0() << indent << "x = [";
|
---|
| 360 | for (int i=0; i<n; i++) {
|
---|
| 361 | ExEnv::out0() << scprintf(" % 16.12f",double(xcurrent(i)));
|
---|
| 362 | }
|
---|
| 363 | ExEnv::out0() << " ]" << endl;
|
---|
| 364 | }
|
---|
| 365 | if (print_gradient_) {
|
---|
| 366 | int n = gcurrent.n();
|
---|
| 367 | ExEnv::out0() << indent << "gradient = [";
|
---|
| 368 | for (int i=0; i<n; i++) {
|
---|
| 369 | ExEnv::out0() << scprintf(" % 16.12f",double(gcurrent(i)));
|
---|
| 370 | }
|
---|
| 371 | ExEnv::out0() << " ]" << endl;
|
---|
| 372 | }
|
---|
| 373 |
|
---|
| 374 | // check for convergence
|
---|
| 375 | conv_->set_nextx(xnext);
|
---|
| 376 | int converged = conv_->converged();
|
---|
| 377 | if (converged) return converged;
|
---|
| 378 |
|
---|
| 379 | ExEnv::out0() << indent
|
---|
| 380 | << scprintf("taking step of size %f", tot) << endl;
|
---|
| 381 | ExEnv::out0() << indent << "Optimization iteration "
|
---|
| 382 | << n_iterations_ + 1 << " complete" << endl;
|
---|
| 383 | ExEnv::out0() << indent
|
---|
| 384 | << "//////////////////////////////////////////////////////////////////////"
|
---|
| 385 | << endl;
|
---|
| 386 |
|
---|
| 387 | if( lineopt_.null() ) {
|
---|
| 388 | function()->set_x(xnext);
|
---|
| 389 | Ref<NonlinearTransform> t = function()->change_coordinates();
|
---|
| 390 | apply_transform(t);
|
---|
| 391 | }
|
---|
| 392 |
|
---|
| 393 | if( dynamic_grad_acc_ )
|
---|
| 394 | function()->set_desired_gradient_accuracy(accuracy_);
|
---|
| 395 |
|
---|
| 396 | return converged;
|
---|
| 397 | }
|
---|
| 398 |
|
---|
| 399 | void
|
---|
| 400 | QNewtonOpt::apply_transform(const Ref<NonlinearTransform> &t)
|
---|
| 401 | {
|
---|
| 402 | if (t.null()) return;
|
---|
| 403 | Optimize::apply_transform(t);
|
---|
| 404 | if (lineopt_.nonnull()) lineopt_->apply_transform(t);
|
---|
| 405 | if (ihessian_.nonnull()) t->transform_ihessian(ihessian_);
|
---|
| 406 | if (update_.nonnull()) update_->apply_transform(t);
|
---|
| 407 | }
|
---|
| 408 |
|
---|
| 409 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 410 |
|
---|
| 411 | // Local Variables:
|
---|
| 412 | // mode: c++
|
---|
| 413 | // c-file-style: "ETS"
|
---|
| 414 | // End:
|
---|