| [0b990d] | 1 | // | 
|---|
|  | 2 | // qnewton.cc | 
|---|
|  | 3 | // | 
|---|
|  | 4 | // Copyright (C) 1996 Limit Point Systems, Inc. | 
|---|
|  | 5 | // | 
|---|
|  | 6 | // Author: Curtis Janssen <cljanss@limitpt.com> | 
|---|
|  | 7 | // Maintainer: LPS | 
|---|
|  | 8 | // | 
|---|
|  | 9 | // This file is part of the SC Toolkit. | 
|---|
|  | 10 | // | 
|---|
|  | 11 | // The SC Toolkit is free software; you can redistribute it and/or modify | 
|---|
|  | 12 | // it under the terms of the GNU Library General Public License as published by | 
|---|
|  | 13 | // the Free Software Foundation; either version 2, or (at your option) | 
|---|
|  | 14 | // any later version. | 
|---|
|  | 15 | // | 
|---|
|  | 16 | // The SC Toolkit is distributed in the hope that it will be useful, | 
|---|
|  | 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 19 | // GNU Library General Public License for more details. | 
|---|
|  | 20 | // | 
|---|
|  | 21 | // You should have received a copy of the GNU Library General Public License | 
|---|
|  | 22 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to | 
|---|
|  | 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | 
|---|
|  | 24 | // | 
|---|
|  | 25 | // The U.S. Government is granted a limited license as per AL 91-7. | 
|---|
|  | 26 | // | 
|---|
|  | 27 |  | 
|---|
|  | 28 | #ifdef __GNUC__ | 
|---|
|  | 29 | #pragma implementation | 
|---|
|  | 30 | #endif | 
|---|
|  | 31 |  | 
|---|
|  | 32 | #include <math.h> | 
|---|
|  | 33 | #include <float.h> | 
|---|
|  | 34 |  | 
|---|
|  | 35 | #include <util/state/stateio.h> | 
|---|
|  | 36 | #include <math/optimize/qnewton.h> | 
|---|
|  | 37 | #include <util/keyval/keyval.h> | 
|---|
|  | 38 | #include <util/misc/formio.h> | 
|---|
|  | 39 |  | 
|---|
|  | 40 | using namespace std; | 
|---|
|  | 41 | using namespace sc; | 
|---|
|  | 42 |  | 
|---|
|  | 43 | ///////////////////////////////////////////////////////////////////////// | 
|---|
|  | 44 | // QNewtonOpt | 
|---|
|  | 45 |  | 
|---|
|  | 46 | static ClassDesc QNewtonOpt_cd( | 
|---|
|  | 47 | typeid(QNewtonOpt),"QNewtonOpt",2,"public Optimize", | 
|---|
|  | 48 | 0, create<QNewtonOpt>, create<QNewtonOpt>); | 
|---|
|  | 49 |  | 
|---|
|  | 50 | QNewtonOpt::QNewtonOpt(const Ref<KeyVal>&keyval): | 
|---|
|  | 51 | Optimize(keyval) | 
|---|
|  | 52 | { | 
|---|
|  | 53 |  | 
|---|
|  | 54 | if (function_.null()) { | 
|---|
|  | 55 | ExEnv::err0() << "QNewtonOpt requires a function keyword" << endl; | 
|---|
|  | 56 | abort(); | 
|---|
|  | 57 | } | 
|---|
|  | 58 |  | 
|---|
|  | 59 | init(); | 
|---|
|  | 60 |  | 
|---|
|  | 61 | update_ << keyval->describedclassvalue("update"); | 
|---|
|  | 62 | if (update_.nonnull()) update_->set_inverse(); | 
|---|
|  | 63 | lineopt_ << keyval->describedclassvalue("lineopt"); | 
|---|
|  | 64 | accuracy_ = keyval->doublevalue("accuracy"); | 
|---|
|  | 65 | if (keyval->error() != KeyVal::OK) accuracy_ = 0.0001; | 
|---|
|  | 66 | print_x_ = keyval->booleanvalue("print_x"); | 
|---|
|  | 67 | print_hessian_ = keyval->booleanvalue("print_hessian"); | 
|---|
|  | 68 | print_gradient_ = keyval->booleanvalue("print_gradient"); | 
|---|
|  | 69 | linear_ = keyval->booleanvalue("linear"); | 
|---|
|  | 70 | if (keyval->error() != KeyVal::OK) linear_ = 0; | 
|---|
|  | 71 | restrict_ = keyval->booleanvalue("restrict"); | 
|---|
|  | 72 | if (keyval->error() != KeyVal::OK) restrict_ = 1; | 
|---|
|  | 73 | dynamic_grad_acc_ = keyval->booleanvalue("dynamic_grad_acc"); | 
|---|
|  | 74 | if (keyval->error() != KeyVal::OK) dynamic_grad_acc_ = 1; | 
|---|
|  | 75 | force_search_ = keyval->booleanvalue("force_search"); | 
|---|
|  | 76 | if (keyval->error() != KeyVal::OK) force_search_ = 0; | 
|---|
|  | 77 | restart_ = keyval->booleanvalue("restart"); | 
|---|
|  | 78 | if (keyval->error() != KeyVal::OK) restart_ = 1; | 
|---|
|  | 79 |  | 
|---|
|  | 80 | RefSymmSCMatrix hessian(dimension(),matrixkit()); | 
|---|
|  | 81 | // get a guess hessian from the function | 
|---|
|  | 82 | function()->guess_hessian(hessian); | 
|---|
|  | 83 |  | 
|---|
|  | 84 | // see if any hessian matrix elements have been given in the input | 
|---|
|  | 85 | if (keyval->exists("hessian")) { | 
|---|
|  | 86 | int n = hessian.n(); | 
|---|
|  | 87 | for (int i=0; i<n; i++) { | 
|---|
|  | 88 | if (keyval->exists("hessian",i)) { | 
|---|
|  | 89 | for (int j=0; j<=i; j++) { | 
|---|
|  | 90 | double tmp = keyval->doublevalue("hessian",i,j); | 
|---|
|  | 91 | if (keyval->error() == KeyVal::OK) hessian(i,j) = tmp; | 
|---|
|  | 92 | } | 
|---|
|  | 93 | } | 
|---|
|  | 94 | } | 
|---|
|  | 95 | } | 
|---|
|  | 96 | ihessian_ = function()->inverse_hessian(hessian); | 
|---|
|  | 97 | } | 
|---|
|  | 98 |  | 
|---|
|  | 99 | QNewtonOpt::QNewtonOpt(StateIn&s): | 
|---|
|  | 100 | SavableState(s), | 
|---|
|  | 101 | Optimize(s) | 
|---|
|  | 102 | { | 
|---|
|  | 103 | ihessian_ = matrixkit()->symmmatrix(dimension()); | 
|---|
|  | 104 | ihessian_.restore(s); | 
|---|
|  | 105 | update_ << SavableState::restore_state(s); | 
|---|
|  | 106 | s.get(accuracy_); | 
|---|
|  | 107 | s.get(take_newton_step_); | 
|---|
|  | 108 | s.get(maxabs_gradient); | 
|---|
|  | 109 | if (s.version(::class_desc<QNewtonOpt>()) > 1) { | 
|---|
|  | 110 | s.get(print_hessian_); | 
|---|
|  | 111 | s.get(print_x_); | 
|---|
|  | 112 | s.get(print_gradient_); | 
|---|
|  | 113 | } | 
|---|
|  | 114 | else { | 
|---|
|  | 115 | print_hessian_ = 0; | 
|---|
|  | 116 | print_x_ = 0; | 
|---|
|  | 117 | print_gradient_ = 0; | 
|---|
|  | 118 | } | 
|---|
|  | 119 | lineopt_ << SavableState::restore_state(s); | 
|---|
|  | 120 | } | 
|---|
|  | 121 |  | 
|---|
|  | 122 | QNewtonOpt::~QNewtonOpt() | 
|---|
|  | 123 | { | 
|---|
|  | 124 | } | 
|---|
|  | 125 |  | 
|---|
|  | 126 | void | 
|---|
|  | 127 | QNewtonOpt::save_data_state(StateOut&s) | 
|---|
|  | 128 | { | 
|---|
|  | 129 | Optimize::save_data_state(s); | 
|---|
|  | 130 | ihessian_.save(s); | 
|---|
|  | 131 | SavableState::save_state(update_.pointer(),s); | 
|---|
|  | 132 | s.put(accuracy_); | 
|---|
|  | 133 | s.put(take_newton_step_); | 
|---|
|  | 134 | s.put(maxabs_gradient); | 
|---|
|  | 135 | s.put(print_hessian_); | 
|---|
|  | 136 | s.put(print_x_); | 
|---|
|  | 137 | s.put(print_gradient_); | 
|---|
|  | 138 | SavableState::save_state(lineopt_.pointer(),s); | 
|---|
|  | 139 | } | 
|---|
|  | 140 |  | 
|---|
|  | 141 | void | 
|---|
|  | 142 | QNewtonOpt::init() | 
|---|
|  | 143 | { | 
|---|
|  | 144 | Optimize::init(); | 
|---|
|  | 145 | take_newton_step_ = 1; | 
|---|
|  | 146 | maxabs_gradient = -1.0; | 
|---|
|  | 147 | } | 
|---|
|  | 148 |  | 
|---|
|  | 149 | int | 
|---|
|  | 150 | QNewtonOpt::update() | 
|---|
|  | 151 | { | 
|---|
|  | 152 | // these are good candidates to be input options | 
|---|
|  | 153 | const double maxabs_gradient_to_desired_accuracy = 0.05; | 
|---|
|  | 154 | const double maxabs_gradient_to_next_desired_accuracy = 0.005; | 
|---|
|  | 155 | const double roundoff_error_factor = 1.1; | 
|---|
|  | 156 |  | 
|---|
|  | 157 | // the gradient convergence criterion. | 
|---|
|  | 158 | double old_maxabs_gradient = maxabs_gradient; | 
|---|
|  | 159 | RefSCVector xcurrent; | 
|---|
|  | 160 | RefSCVector gcurrent; | 
|---|
|  | 161 |  | 
|---|
|  | 162 | if( dynamic_grad_acc_ ) { | 
|---|
|  | 163 | // get the next gradient at the required level of accuracy. | 
|---|
|  | 164 | // usually only one pass is needed, unless we happen to find | 
|---|
|  | 165 | // that the accuracy was set too low. | 
|---|
|  | 166 | int accurate_enough; | 
|---|
|  | 167 | do { | 
|---|
|  | 168 | // compute the current point | 
|---|
|  | 169 | function()->set_desired_gradient_accuracy(accuracy_); | 
|---|
|  | 170 | xcurrent = function()->get_x(); | 
|---|
|  | 171 | gcurrent = function()->gradient().copy(); | 
|---|
|  | 172 |  | 
|---|
|  | 173 | // compute the gradient convergence criterion now so i can see if | 
|---|
|  | 174 | // the accuracy needs to be tighter | 
|---|
|  | 175 | maxabs_gradient = gcurrent.maxabs(); | 
|---|
|  | 176 | // compute the required accuracy | 
|---|
|  | 177 | accuracy_ = maxabs_gradient * maxabs_gradient_to_desired_accuracy; | 
|---|
|  | 178 |  | 
|---|
|  | 179 | if (accuracy_ < DBL_EPSILON) accuracy_ = DBL_EPSILON; | 
|---|
|  | 180 |  | 
|---|
|  | 181 | // The roundoff_error_factor is thrown in to allow for round off making | 
|---|
|  | 182 | // the current gcurrent.maxabs() a bit smaller than the previous, | 
|---|
|  | 183 | // which would make the current required accuracy less than the | 
|---|
|  | 184 | // gradient's actual accuracy and cause everything to be recomputed. | 
|---|
|  | 185 | accurate_enough = ( | 
|---|
|  | 186 | function()->actual_gradient_accuracy() | 
|---|
|  | 187 | <= accuracy_*roundoff_error_factor); | 
|---|
|  | 188 |  | 
|---|
|  | 189 | if (!accurate_enough) { | 
|---|
|  | 190 | ExEnv::out0().unsetf(ios::fixed); | 
|---|
|  | 191 | ExEnv::out0() << indent << | 
|---|
|  | 192 | "NOTICE: function()->actual_gradient_accuracy() > accuracy_:\n" | 
|---|
|  | 193 | << indent | 
|---|
|  | 194 | << scprintf( | 
|---|
|  | 195 | "        function()->actual_gradient_accuracy() = %15.8e", | 
|---|
|  | 196 | function()->actual_gradient_accuracy()) << endl << indent | 
|---|
|  | 197 | << scprintf( | 
|---|
|  | 198 | "                                     accuracy_ = %15.8e", | 
|---|
|  | 199 | accuracy_) << endl; | 
|---|
|  | 200 | } | 
|---|
|  | 201 | } while(!accurate_enough); | 
|---|
|  | 202 | // increase accuracy, since the next gradient will be smaller | 
|---|
|  | 203 | accuracy_ = maxabs_gradient * maxabs_gradient_to_next_desired_accuracy; | 
|---|
|  | 204 | } | 
|---|
|  | 205 | else { | 
|---|
|  | 206 | xcurrent = function()->get_x(); | 
|---|
|  | 207 | gcurrent = function()->gradient().copy(); | 
|---|
|  | 208 | } | 
|---|
|  | 209 |  | 
|---|
|  | 210 | if (old_maxabs_gradient >= 0.0 && old_maxabs_gradient < maxabs_gradient) { | 
|---|
|  | 211 | ExEnv::out0() << indent | 
|---|
|  | 212 | << scprintf("NOTICE: maxabs_gradient increased from %8.4e to %8.4e", | 
|---|
|  | 213 | old_maxabs_gradient, maxabs_gradient) << endl; | 
|---|
|  | 214 | } | 
|---|
|  | 215 |  | 
|---|
|  | 216 | // update the hessian | 
|---|
|  | 217 | if(update_.nonnull()) | 
|---|
|  | 218 | update_->update(ihessian_,function(),xcurrent,gcurrent); | 
|---|
|  | 219 |  | 
|---|
|  | 220 | conv_->reset(); | 
|---|
|  | 221 | conv_->get_grad(function()); | 
|---|
|  | 222 | conv_->get_x(function()); | 
|---|
|  | 223 |  | 
|---|
|  | 224 | // compute the quadratic step | 
|---|
|  | 225 | RefSCVector xdisp = -1.0*(ihessian_ * gcurrent); | 
|---|
|  | 226 | RefSCVector xnext = xcurrent + xdisp; | 
|---|
|  | 227 |  | 
|---|
|  | 228 | // either do a lineopt or check stepsize | 
|---|
|  | 229 | double tot; | 
|---|
|  | 230 | if(lineopt_.nonnull()) { | 
|---|
|  | 231 | if (dynamic_cast<Backtrack*>(lineopt_.pointer()) != 0) { | 
|---|
|  | 232 | // The Backtrack line search is a special case. | 
|---|
|  | 233 |  | 
|---|
|  | 234 | // perform a search | 
|---|
|  | 235 | double factor; | 
|---|
|  | 236 | if( n_iterations_ == 0 && force_search_ ) | 
|---|
|  | 237 | factor = lineopt_->set_decrease_factor(1.0); | 
|---|
|  | 238 | lineopt_->init(xdisp,function()); | 
|---|
|  | 239 | // reset value acc here so line search "precomputes" are | 
|---|
|  | 240 | // accurate enough for subsequent gradient evals | 
|---|
|  | 241 | function()->set_desired_value_accuracy(accuracy_/100); | 
|---|
|  | 242 | int acceptable = lineopt_->update(); | 
|---|
|  | 243 | if( n_iterations_ == 0 && force_search_ ) | 
|---|
|  | 244 | lineopt_->set_decrease_factor( factor ); | 
|---|
|  | 245 |  | 
|---|
|  | 246 | if( !acceptable ) { | 
|---|
|  | 247 | if( force_search_ ) factor = lineopt_->set_decrease_factor(1.0); | 
|---|
|  | 248 |  | 
|---|
|  | 249 | // try a new guess hessian | 
|---|
|  | 250 | if( restart_ ) { | 
|---|
|  | 251 | ExEnv::out0() << endl << indent << | 
|---|
|  | 252 | "Restarting Hessian approximation" << endl; | 
|---|
|  | 253 | RefSymmSCMatrix hessian(dimension(),matrixkit()); | 
|---|
|  | 254 | function()->guess_hessian(hessian); | 
|---|
|  | 255 | ihessian_ = function()->inverse_hessian(hessian); | 
|---|
|  | 256 | xdisp = -1.0 * (ihessian_ * gcurrent); | 
|---|
|  | 257 | lineopt_->init(xdisp,function()); | 
|---|
|  | 258 | acceptable = lineopt_->update(); | 
|---|
|  | 259 | } | 
|---|
|  | 260 |  | 
|---|
|  | 261 | // try steepest descent direction | 
|---|
|  | 262 | if( !acceptable ) { | 
|---|
|  | 263 | ExEnv::out0() << endl << indent << | 
|---|
|  | 264 | "Trying steepest descent direction." << endl; | 
|---|
|  | 265 | xdisp = -1.0 * gcurrent; | 
|---|
|  | 266 | lineopt_->init(xdisp,function()); | 
|---|
|  | 267 | acceptable = lineopt_->update(); | 
|---|
|  | 268 | } | 
|---|
|  | 269 |  | 
|---|
|  | 270 | // give up and use steepest descent step | 
|---|
|  | 271 | if( !acceptable ) { | 
|---|
|  | 272 | ExEnv::out0() << endl << indent << | 
|---|
|  | 273 | "Resorting to unscaled steepest descent step." << endl; | 
|---|
|  | 274 | function()->set_x(xcurrent + xdisp); | 
|---|
|  | 275 | Ref<NonlinearTransform> t = function()->change_coordinates(); | 
|---|
|  | 276 | apply_transform(t); | 
|---|
|  | 277 | } | 
|---|
|  | 278 |  | 
|---|
|  | 279 | if( force_search_ ) lineopt_->set_decrease_factor( factor ); | 
|---|
|  | 280 | } | 
|---|
|  | 281 | } | 
|---|
|  | 282 | else { | 
|---|
|  | 283 | // All line searches other than Backtrack use this | 
|---|
|  | 284 | ExEnv::out0() << indent | 
|---|
|  | 285 | << "......................................." | 
|---|
|  | 286 | << endl | 
|---|
|  | 287 | << indent | 
|---|
|  | 288 | << "Starting line optimization." | 
|---|
|  | 289 | << endl; | 
|---|
|  | 290 | lineopt_->init(xdisp,function()); | 
|---|
|  | 291 | int nlineopt = 0; | 
|---|
|  | 292 | int maxlineopt = 3; | 
|---|
|  | 293 | for (int ilineopt=0; ilineopt<maxlineopt; ilineopt++) { | 
|---|
|  | 294 | double maxabs_gradient = function()->gradient()->maxabs(); | 
|---|
|  | 295 |  | 
|---|
|  | 296 | int converged = lineopt_->update(); | 
|---|
|  | 297 |  | 
|---|
|  | 298 | ExEnv::out0() << indent | 
|---|
|  | 299 | << "Completed line optimization step " << ilineopt+1 | 
|---|
|  | 300 | << (converged?" (converged)":" (not converged)") | 
|---|
|  | 301 | << endl | 
|---|
|  | 302 | << indent | 
|---|
|  | 303 | << "......................................." | 
|---|
|  | 304 | << endl; | 
|---|
|  | 305 |  | 
|---|
|  | 306 | if (converged) break; | 
|---|
|  | 307 |  | 
|---|
|  | 308 | // Improve accuracy, since we might be able to reuse the next | 
|---|
|  | 309 | // gradient for the next quasi-Newton step. | 
|---|
|  | 310 | if (dynamic_grad_acc_)  { | 
|---|
|  | 311 | accuracy_ = maxabs_gradient*maxabs_gradient_to_next_desired_accuracy; | 
|---|
|  | 312 | function()->set_desired_gradient_accuracy(accuracy_); | 
|---|
|  | 313 | } | 
|---|
|  | 314 | } | 
|---|
|  | 315 | } | 
|---|
|  | 316 | xnext = function()->get_x(); | 
|---|
|  | 317 | xdisp = xnext - xcurrent; | 
|---|
|  | 318 | tot = sqrt(xdisp.scalar_product(xdisp)); | 
|---|
|  | 319 | } | 
|---|
|  | 320 | else { | 
|---|
|  | 321 |  | 
|---|
|  | 322 | tot = sqrt(xdisp.scalar_product(xdisp)); | 
|---|
|  | 323 |  | 
|---|
|  | 324 | if ( tot > max_stepsize_ ) { | 
|---|
|  | 325 | if( restrict_ ) { | 
|---|
|  | 326 | double scal = max_stepsize_/tot; | 
|---|
|  | 327 | ExEnv::out0() << endl << indent << | 
|---|
|  | 328 | scprintf("stepsize of %f is too big, scaling by %f",tot,scal) | 
|---|
|  | 329 | << endl; | 
|---|
|  | 330 | xdisp.scale(scal); | 
|---|
|  | 331 | tot *= scal; | 
|---|
|  | 332 | } | 
|---|
|  | 333 | else { | 
|---|
|  | 334 | ExEnv::out0() << endl << indent << | 
|---|
|  | 335 | scprintf("stepsize of %f is too big, but scaling is disabled",tot) | 
|---|
|  | 336 | << endl; | 
|---|
|  | 337 | } | 
|---|
|  | 338 | } | 
|---|
|  | 339 | xnext = xcurrent + xdisp; | 
|---|
|  | 340 | } | 
|---|
|  | 341 |  | 
|---|
|  | 342 | if (print_hessian_) { | 
|---|
|  | 343 | RefSymmSCMatrix hessian = ihessian_.gi(); | 
|---|
|  | 344 | ExEnv::out0() << indent << "hessian = [" << endl; | 
|---|
|  | 345 | ExEnv::out0() << incindent; | 
|---|
|  | 346 | int n = hessian.n(); | 
|---|
|  | 347 | for (int i=0; i<n; i++) { | 
|---|
|  | 348 | ExEnv::out0() << indent << "["; | 
|---|
|  | 349 | for (int j=0; j<=i; j++) { | 
|---|
|  | 350 | ExEnv::out0() << scprintf(" % 10.6f",double(hessian(i,j))); | 
|---|
|  | 351 | } | 
|---|
|  | 352 | ExEnv::out0() << " ]" << endl; | 
|---|
|  | 353 | } | 
|---|
|  | 354 | ExEnv::out0() << decindent; | 
|---|
|  | 355 | ExEnv::out0() << indent << "]" << endl; | 
|---|
|  | 356 | } | 
|---|
|  | 357 | if (print_x_) { | 
|---|
|  | 358 | int n = xcurrent.n(); | 
|---|
|  | 359 | ExEnv::out0() << indent << "x = ["; | 
|---|
|  | 360 | for (int i=0; i<n; i++) { | 
|---|
|  | 361 | ExEnv::out0() << scprintf(" % 16.12f",double(xcurrent(i))); | 
|---|
|  | 362 | } | 
|---|
|  | 363 | ExEnv::out0() << " ]" << endl; | 
|---|
|  | 364 | } | 
|---|
|  | 365 | if (print_gradient_) { | 
|---|
|  | 366 | int n = gcurrent.n(); | 
|---|
|  | 367 | ExEnv::out0() << indent << "gradient = ["; | 
|---|
|  | 368 | for (int i=0; i<n; i++) { | 
|---|
|  | 369 | ExEnv::out0() << scprintf(" % 16.12f",double(gcurrent(i))); | 
|---|
|  | 370 | } | 
|---|
|  | 371 | ExEnv::out0() << " ]" << endl; | 
|---|
|  | 372 | } | 
|---|
|  | 373 |  | 
|---|
|  | 374 | // check for convergence | 
|---|
|  | 375 | conv_->set_nextx(xnext); | 
|---|
|  | 376 | int converged = conv_->converged(); | 
|---|
|  | 377 | if (converged) return converged; | 
|---|
|  | 378 |  | 
|---|
|  | 379 | ExEnv::out0() << indent | 
|---|
|  | 380 | << scprintf("taking step of size %f", tot) << endl; | 
|---|
|  | 381 | ExEnv::out0() << indent << "Optimization iteration " | 
|---|
|  | 382 | << n_iterations_ + 1 << " complete" << endl; | 
|---|
|  | 383 | ExEnv::out0() << indent | 
|---|
|  | 384 | << "//////////////////////////////////////////////////////////////////////" | 
|---|
|  | 385 | << endl; | 
|---|
|  | 386 |  | 
|---|
|  | 387 | if( lineopt_.null() ) { | 
|---|
|  | 388 | function()->set_x(xnext); | 
|---|
|  | 389 | Ref<NonlinearTransform> t = function()->change_coordinates(); | 
|---|
|  | 390 | apply_transform(t); | 
|---|
|  | 391 | } | 
|---|
|  | 392 |  | 
|---|
|  | 393 | if( dynamic_grad_acc_ ) | 
|---|
|  | 394 | function()->set_desired_gradient_accuracy(accuracy_); | 
|---|
|  | 395 |  | 
|---|
|  | 396 | return converged; | 
|---|
|  | 397 | } | 
|---|
|  | 398 |  | 
|---|
|  | 399 | void | 
|---|
|  | 400 | QNewtonOpt::apply_transform(const Ref<NonlinearTransform> &t) | 
|---|
|  | 401 | { | 
|---|
|  | 402 | if (t.null()) return; | 
|---|
|  | 403 | Optimize::apply_transform(t); | 
|---|
|  | 404 | if (lineopt_.nonnull()) lineopt_->apply_transform(t); | 
|---|
|  | 405 | if (ihessian_.nonnull()) t->transform_ihessian(ihessian_); | 
|---|
|  | 406 | if (update_.nonnull()) update_->apply_transform(t); | 
|---|
|  | 407 | } | 
|---|
|  | 408 |  | 
|---|
|  | 409 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
|  | 410 |  | 
|---|
|  | 411 | // Local Variables: | 
|---|
|  | 412 | // mode: c++ | 
|---|
|  | 413 | // c-file-style: "ETS" | 
|---|
|  | 414 | // End: | 
|---|