// // newton.cc // // Copyright (C) 1996 Limit Point Systems, Inc. // // Author: Curtis Janssen // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // #ifdef __GNUC__ #pragma implementation #endif #include #include #include #include #include #include using namespace std; using namespace sc; ///////////////////////////////////////////////////////////////////////// // NewtonOpt static ClassDesc NewtonOpt_cd( typeid(NewtonOpt),"NewtonOpt",1,"public Optimize", 0, create, create); NewtonOpt::NewtonOpt(const Ref&keyval): Optimize(keyval) { init(); accuracy_ = keyval->doublevalue("accuracy",KeyValValuedouble(0.0001)); print_x_ = keyval->booleanvalue("print_x"); print_hessian_ = keyval->booleanvalue("print_hessian"); print_gradient_ = keyval->booleanvalue("print_gradient"); } NewtonOpt::NewtonOpt(StateIn&s): SavableState(s), Optimize(s) { s.get(accuracy_); s.get(maxabs_gradient); s.get(print_hessian_); s.get(print_x_); s.get(print_gradient_); } NewtonOpt::~NewtonOpt() { } void NewtonOpt::save_data_state(StateOut&s) { Optimize::save_data_state(s); s.put(accuracy_); s.put(maxabs_gradient); s.put(print_hessian_); s.put(print_x_); s.put(print_gradient_); } void NewtonOpt::init() { Optimize::init(); maxabs_gradient = -1.0; } int NewtonOpt::update() { // these are good candidates to be input options const double maxabs_gradient_to_desired_accuracy = 0.05; const double maxabs_gradient_to_next_desired_accuracy = 0.005; const double roundoff_error_factor = 1.1; // the gradient convergence criterion. double old_maxabs_gradient = maxabs_gradient; RefSCVector xcurrent; RefSCVector gcurrent; // get the next gradient at the required level of accuracy. // usually only one pass is needed, unless we happen to find // that the accuracy was set too low. int accurate_enough; do { // compute the current point function()->set_desired_gradient_accuracy(accuracy_); xcurrent = function()->get_x(); gcurrent = function()->gradient().copy(); // compute the gradient convergence criterion now so i can see if // the accuracy needs to be tighter maxabs_gradient = gcurrent.maxabs(); // compute the required accuracy accuracy_ = maxabs_gradient * maxabs_gradient_to_desired_accuracy; if (accuracy_ < DBL_EPSILON) accuracy_ = DBL_EPSILON; // The roundoff_error_factor is thrown in to allow for round off making // the current gcurrent.maxabs() a bit smaller than the previous, // which would make the current required accuracy less than the // gradient's actual accuracy and cause everything to be recomputed. accurate_enough = ( function()->actual_gradient_accuracy() <= accuracy_*roundoff_error_factor); if (!accurate_enough) { ExEnv::out0().unsetf(ios::fixed); ExEnv::out0() << indent << "NOTICE: function()->actual_gradient_accuracy() > accuracy_:\n" << indent << scprintf( " function()->actual_gradient_accuracy() = %15.8e", function()->actual_gradient_accuracy()) << endl << indent << scprintf( " accuracy_ = %15.8e", accuracy_) << endl; } } while(!accurate_enough); if (old_maxabs_gradient >= 0.0 && old_maxabs_gradient < maxabs_gradient) { ExEnv::out0() << indent << scprintf("NOTICE: maxabs_gradient increased from %8.4e to %8.4e", old_maxabs_gradient, maxabs_gradient) << endl; } RefSymmSCMatrix hessian = function()->hessian(); RefSymmSCMatrix ihessian = function()->inverse_hessian(hessian); if (print_hessian_) { hessian.print("hessian"); } if (print_x_) { int n = xcurrent.n(); ExEnv::out0() << indent << "x = ["; for (int i=0; i max_stepsize_) { double scal = max_stepsize_/tot; ExEnv::out0() << endl << indent << scprintf("stepsize of %f is too big, scaling by %f",tot,scal) << endl; xdisp.scale(scal); tot *= scal; } RefSCVector xnext = xcurrent + xdisp; conv_->reset(); conv_->get_grad(function()); conv_->get_x(function()); conv_->set_nextx(xnext); // check for convergence before resetting the geometry int converged = conv_->converged(); if (converged) return converged; ExEnv::out0() << endl << indent << scprintf("taking step of size %f", tot) << endl; function()->set_x(xnext); // make the next gradient computed more accurate, since it will // be smaller accuracy_ = maxabs_gradient * maxabs_gradient_to_next_desired_accuracy; return converged; } ///////////////////////////////////////////////////////////////////////////// // Local Variables: // mode: c++ // c-file-style: "ETS" // End: