| 1 | // These routines were translated from lbfgs.f by f2c (version 20030320)
 | 
|---|
| 2 | // and modified by Curtis Janssen.
 | 
|---|
| 3 | 
 | 
|---|
| 4 | #ifdef __GNUC__
 | 
|---|
| 5 | #pragma implementation
 | 
|---|
| 6 | #endif
 | 
|---|
| 7 | 
 | 
|---|
| 8 | #include <math.h>
 | 
|---|
| 9 | #include <util/class/scexception.h>
 | 
|---|
| 10 | #include <math/optimize/mcsearch.h>
 | 
|---|
| 11 | 
 | 
|---|
| 12 | static inline double min(double a, double b)
 | 
|---|
| 13 | {
 | 
|---|
| 14 |   return (a<b)?a:b;
 | 
|---|
| 15 | }
 | 
|---|
| 16 | 
 | 
|---|
| 17 | static inline double max(double a, double b)
 | 
|---|
| 18 | {
 | 
|---|
| 19 |   return (a<b)?b:a;
 | 
|---|
| 20 | }
 | 
|---|
| 21 | 
 | 
|---|
| 22 | 
 | 
|---|
| 23 | using namespace sc;
 | 
|---|
| 24 | 
 | 
|---|
| 25 | namespace sc {
 | 
|---|
| 26 | 
 | 
|---|
| 27 | static ClassDesc MCSearch_cd(
 | 
|---|
| 28 |   typeid(MCSearch),"MCSearch",1,"public LineOpt",
 | 
|---|
| 29 |   0, create<MCSearch>, 0);
 | 
|---|
| 30 | 
 | 
|---|
| 31 | MCSearch::MCSearch(const Ref<KeyVal>& keyval) 
 | 
|---|
| 32 |   : LineOpt(keyval)
 | 
|---|
| 33 | { 
 | 
|---|
| 34 | }
 | 
|---|
| 35 | 
 | 
|---|
| 36 | MCSearch::~MCSearch()
 | 
|---|
| 37 | {
 | 
|---|
| 38 | }
 | 
|---|
| 39 | 
 | 
|---|
| 40 | void
 | 
|---|
| 41 | MCSearch::mcinit()
 | 
|---|
| 42 | {
 | 
|---|
| 43 |   info_ = 0;
 | 
|---|
| 44 | 
 | 
|---|
| 45 |   // work area
 | 
|---|
| 46 |   wa_.reset(new double[function()->dimension()->n()]);
 | 
|---|
| 47 | }
 | 
|---|
| 48 | 
 | 
|---|
| 49 | void
 | 
|---|
| 50 | MCSearch::init(RefSCVector& direction)
 | 
|---|
| 51 | {
 | 
|---|
| 52 |   LineOpt::init(direction);
 | 
|---|
| 53 |   mcinit();
 | 
|---|
| 54 | }
 | 
|---|
| 55 | 
 | 
|---|
| 56 | void
 | 
|---|
| 57 | MCSearch::init(RefSCVector& direction, Ref<Function> function)
 | 
|---|
| 58 | {
 | 
|---|
| 59 |   LineOpt::init(direction, function);
 | 
|---|
| 60 |   mcinit();
 | 
|---|
| 61 | }
 | 
|---|
| 62 | 
 | 
|---|
| 63 | int
 | 
|---|
| 64 | MCSearch::update()
 | 
|---|
| 65 | {
 | 
|---|
| 66 |   int n = function()->dimension()->n();
 | 
|---|
| 67 | 
 | 
|---|
| 68 |   // function coordinate
 | 
|---|
| 69 |   auto_vec<double> x(new double[n]);
 | 
|---|
| 70 |   function()->get_x()->convert(x.get());
 | 
|---|
| 71 | 
 | 
|---|
| 72 |   // gradient
 | 
|---|
| 73 |   auto_vec<double> g(new double[n]);
 | 
|---|
| 74 |   function()->gradient()->convert(g.get());
 | 
|---|
| 75 | 
 | 
|---|
| 76 |   // function value
 | 
|---|
| 77 |   double f = function()->value();
 | 
|---|
| 78 | 
 | 
|---|
| 79 |   // step direction
 | 
|---|
| 80 |   auto_vec<double> s(new double[n]);
 | 
|---|
| 81 |   search_direction_->convert(s.get());
 | 
|---|
| 82 | 
 | 
|---|
| 83 |   // step size;
 | 
|---|
| 84 |   double stp;
 | 
|---|
| 85 |   stp = 1.0;
 | 
|---|
| 86 | 
 | 
|---|
| 87 |   // value tolerance
 | 
|---|
| 88 |   double ftol;
 | 
|---|
| 89 |   ftol = 1.0e-4;
 | 
|---|
| 90 | 
 | 
|---|
| 91 |   // the machine precision
 | 
|---|
| 92 |   double xtol;
 | 
|---|
| 93 |   xtol = DBL_EPSILON;
 | 
|---|
| 94 | 
 | 
|---|
| 95 |   // maximum number of function evaluations
 | 
|---|
| 96 |   int maxfev = 20;
 | 
|---|
| 97 | 
 | 
|---|
| 98 |   // number of function evaluations
 | 
|---|
| 99 |   int nfev = 0;
 | 
|---|
| 100 | 
 | 
|---|
| 101 |   // controls accuracy of line search routine
 | 
|---|
| 102 |   gtol_ = 0.9;
 | 
|---|
| 103 | 
 | 
|---|
| 104 |   // minimum step size
 | 
|---|
| 105 |   stpmin_ = DBL_EPSILON;
 | 
|---|
| 106 | 
 | 
|---|
| 107 |   // maximum step size
 | 
|---|
| 108 |   stpmax_ = 1.0e20;
 | 
|---|
| 109 | 
 | 
|---|
| 110 |   mcsrch(&n, x.get(), &f,g.get(), s.get(), &stp, &ftol,
 | 
|---|
| 111 |          &xtol, &maxfev, &info_, &nfev, wa_.get());
 | 
|---|
| 112 | 
 | 
|---|
| 113 | //         INFO = 0  IMPROPER INPUT PARAMETERS. 
 | 
|---|
| 114 |   if (info_ == 0) {
 | 
|---|
| 115 |       throw ProgrammingError("error in MCSearch: info == 0",
 | 
|---|
| 116 |                              __FILE__,
 | 
|---|
| 117 |                              __LINE__,
 | 
|---|
| 118 |                              class_desc());
 | 
|---|
| 119 |     }
 | 
|---|
| 120 | 
 | 
|---|
| 121 | //         INFO =-1  A RETURN IS MADE TO COMPUTE THE FUNCTION AND GRADIENT. 
 | 
|---|
| 122 |   if (info_ == -1) {
 | 
|---|
| 123 |       RefSCVector new_x = function()->get_x()->copy();
 | 
|---|
| 124 |       new_x->assign(x.get());
 | 
|---|
| 125 |       function()->set_x(new_x);
 | 
|---|
| 126 |       return 0;
 | 
|---|
| 127 |     }
 | 
|---|
| 128 | 
 | 
|---|
| 129 | //         INFO = 1  THE SUFFICIENT DECREASE CONDITION AND THE 
 | 
|---|
| 130 | //                   DIRECTIONAL DERIVATIVE CONDITION HOLD. 
 | 
|---|
| 131 |   if (info_ == 1) {
 | 
|---|
| 132 |       return 1;
 | 
|---|
| 133 |     }
 | 
|---|
| 134 | 
 | 
|---|
| 135 | //         INFO = 2  RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY 
 | 
|---|
| 136 | //                   IS AT MOST XTOL. 
 | 
|---|
| 137 |   if (info_ == 2) {
 | 
|---|
| 138 |       throw AlgorithmException("error in MCSearch: info == 2",
 | 
|---|
| 139 |                              __FILE__,
 | 
|---|
| 140 |                              __LINE__,
 | 
|---|
| 141 |                              class_desc());
 | 
|---|
| 142 |       return 1;
 | 
|---|
| 143 |     }
 | 
|---|
| 144 | 
 | 
|---|
| 145 | //         INFO = 3  NUMBER OF CALLS TO FCN HAS REACHED MAXFEV. 
 | 
|---|
| 146 |   if (info_ == 3) {
 | 
|---|
| 147 |       throw ProgrammingError("error in MCSearch: info == 3",
 | 
|---|
| 148 |                              __FILE__,
 | 
|---|
| 149 |                              __LINE__,
 | 
|---|
| 150 |                              class_desc());
 | 
|---|
| 151 |       return 1;
 | 
|---|
| 152 |     }
 | 
|---|
| 153 | 
 | 
|---|
| 154 | //         INFO = 4  THE STEP IS AT THE LOWER BOUND STPMIN. 
 | 
|---|
| 155 |   if (info_ == 4) {
 | 
|---|
| 156 |       throw AlgorithmException("error in MCSearch: info == 4",
 | 
|---|
| 157 |                              __FILE__,
 | 
|---|
| 158 |                              __LINE__,
 | 
|---|
| 159 |                              class_desc());
 | 
|---|
| 160 |       return 1;
 | 
|---|
| 161 |     }
 | 
|---|
| 162 | 
 | 
|---|
| 163 | //         INFO = 5  THE STEP IS AT THE UPPER BOUND STPMAX. 
 | 
|---|
| 164 |   if (info_ == 5) {
 | 
|---|
| 165 |       throw AlgorithmException("error in MCSearch: info == 5",
 | 
|---|
| 166 |                              __FILE__,
 | 
|---|
| 167 |                              __LINE__,
 | 
|---|
| 168 |                              class_desc());
 | 
|---|
| 169 |       return 1;
 | 
|---|
| 170 |     }
 | 
|---|
| 171 | 
 | 
|---|
| 172 | //         INFO = 6  ROUNDING ERRORS PREVENT FURTHER PROGRESS. 
 | 
|---|
| 173 | //                   THERE MAY NOT BE A STEP WHICH SATISFIES THE 
 | 
|---|
| 174 | //                   SUFFICIENT DECREASE AND CURVATURE CONDITIONS. 
 | 
|---|
| 175 | //                   TOLERANCES MAY BE TOO SMALL. 
 | 
|---|
| 176 |   if (info_ == 6) {
 | 
|---|
| 177 |       throw AlgorithmException("error in MCSearch: info == 6",
 | 
|---|
| 178 |                              __FILE__,
 | 
|---|
| 179 |                              __LINE__,
 | 
|---|
| 180 |                              class_desc());
 | 
|---|
| 181 |       return 1;
 | 
|---|
| 182 |     }
 | 
|---|
| 183 | 
 | 
|---|
| 184 |   throw ProgrammingError("error in MCSearch: unknown info",
 | 
|---|
| 185 |                          __FILE__,
 | 
|---|
| 186 |                          __LINE__,
 | 
|---|
| 187 |                          class_desc());
 | 
|---|
| 188 | 
 | 
|---|
| 189 |   return 0;
 | 
|---|
| 190 | }
 | 
|---|
| 191 | 
 | 
|---|
| 192 | //     **************************
 | 
|---|
| 193 | //     LINE SEARCH ROUTINE MCSRCH
 | 
|---|
| 194 | //     **************************
 | 
|---|
| 195 | 
 | 
|---|
| 196 | void
 | 
|---|
| 197 | MCSearch::mcsrch(int *n, double *x, double *f, 
 | 
|---|
| 198 |         double *g, double *s, double *stp, double *ftol, 
 | 
|---|
| 199 |         double *xtol, int *maxfev, int *info, int *nfev, 
 | 
|---|
| 200 |         double *wa)
 | 
|---|
| 201 | {
 | 
|---|
| 202 |     // Initialized data 
 | 
|---|
| 203 | 
 | 
|---|
| 204 |     const double p5 = .5;
 | 
|---|
| 205 |     const double p66 = .66;
 | 
|---|
| 206 |     const double xtrapf = 4.;
 | 
|---|
| 207 |     const double zero = 0.;
 | 
|---|
| 208 | 
 | 
|---|
| 209 |     // System generated locals 
 | 
|---|
| 210 |     int i__1;
 | 
|---|
| 211 |     double d__1;
 | 
|---|
| 212 | 
 | 
|---|
| 213 | //                     SUBROUTINE MCSRCH 
 | 
|---|
| 214 | 
 | 
|---|
| 215 | //     A slight modification of the subroutine CSRCH of More' and Thuente. 
 | 
|---|
| 216 | //     The changes are to allow reverse communication, and do not affect 
 | 
|---|
| 217 | //     the performance of the routine. 
 | 
|---|
| 218 | 
 | 
|---|
| 219 | //     THE PURPOSE OF MCSRCH IS TO FIND A STEP WHICH SATISFIES 
 | 
|---|
| 220 | //     A SUFFICIENT DECREASE CONDITION AND A CURVATURE CONDITION. 
 | 
|---|
| 221 | 
 | 
|---|
| 222 | //     AT EACH STAGE THE SUBROUTINE UPDATES AN INTERVAL OF 
 | 
|---|
| 223 | //     UNCERTAINTY WITH ENDPOINTS STX AND STY. THE INTERVAL OF 
 | 
|---|
| 224 | //     UNCERTAINTY IS INITIALLY CHOSEN SO THAT IT CONTAINS A 
 | 
|---|
| 225 | //     MINIMIZER OF THE MODIFIED FUNCTION 
 | 
|---|
| 226 | 
 | 
|---|
| 227 | //          F(X+STP*S) - F(X) - FTOL*STP*(GRADF(X)'S). 
 | 
|---|
| 228 | 
 | 
|---|
| 229 | //     IF A STEP IS OBTAINED FOR WHICH THE MODIFIED FUNCTION 
 | 
|---|
| 230 | //     HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE DERIVATIVE, 
 | 
|---|
| 231 | //     THEN THE INTERVAL OF UNCERTAINTY IS CHOSEN SO THAT IT 
 | 
|---|
| 232 | //     CONTAINS A MINIMIZER OF F(X+STP*S). 
 | 
|---|
| 233 | 
 | 
|---|
| 234 | //     THE ALGORITHM IS DESIGNED TO FIND A STEP WHICH SATISFIES 
 | 
|---|
| 235 | //     THE SUFFICIENT DECREASE CONDITION 
 | 
|---|
| 236 | 
 | 
|---|
| 237 | //           F(X+STP*S) .LE. F(X) + FTOL*STP*(GRADF(X)'S), 
 | 
|---|
| 238 | 
 | 
|---|
| 239 | //     AND THE CURVATURE CONDITION 
 | 
|---|
| 240 | 
 | 
|---|
| 241 | //           ABS(GRADF(X+STP*S)'S)) .LE. GTOL*ABS(GRADF(X)'S). 
 | 
|---|
| 242 | 
 | 
|---|
| 243 | //     IF FTOL IS LESS THAN GTOL AND IF, FOR EXAMPLE, THE FUNCTION 
 | 
|---|
| 244 | //     IS BOUNDED BELOW, THEN THERE IS ALWAYS A STEP WHICH SATISFIES 
 | 
|---|
| 245 | //     BOTH CONDITIONS. IF NO STEP CAN BE FOUND WHICH SATISFIES BOTH 
 | 
|---|
| 246 | //     CONDITIONS, THEN THE ALGORITHM USUALLY STOPS WHEN ROUNDING 
 | 
|---|
| 247 | //     ERRORS PREVENT FURTHER PROGRESS. IN THIS CASE STP ONLY 
 | 
|---|
| 248 | //     SATISFIES THE SUFFICIENT DECREASE CONDITION. 
 | 
|---|
| 249 | 
 | 
|---|
| 250 | //     THE SUBROUTINE STATEMENT IS 
 | 
|---|
| 251 | 
 | 
|---|
| 252 | //        SUBROUTINE MCSRCH(N,X,F,G,S,STP,FTOL,XTOL, MAXFEV,INFO,NFEV,WA) 
 | 
|---|
| 253 | //     WHERE 
 | 
|---|
| 254 | 
 | 
|---|
| 255 | //       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER 
 | 
|---|
| 256 | //         OF VARIABLES. 
 | 
|---|
| 257 | 
 | 
|---|
| 258 | //       X IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE 
 | 
|---|
| 259 | //         BASE POINT FOR THE LINE SEARCH. ON OUTPUT IT CONTAINS 
 | 
|---|
| 260 | //         X + STP*S. 
 | 
|---|
| 261 | 
 | 
|---|
| 262 | //       F IS A VARIABLE. ON INPUT IT MUST CONTAIN THE VALUE OF F 
 | 
|---|
| 263 | //         AT X. ON OUTPUT IT CONTAINS THE VALUE OF F AT X + STP*S. 
 | 
|---|
| 264 | 
 | 
|---|
| 265 | //       G IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE 
 | 
|---|
| 266 | //         GRADIENT OF F AT X. ON OUTPUT IT CONTAINS THE GRADIENT 
 | 
|---|
| 267 | //         OF F AT X + STP*S. 
 | 
|---|
| 268 | 
 | 
|---|
| 269 | //       S IS AN INPUT ARRAY OF LENGTH N WHICH SPECIFIES THE 
 | 
|---|
| 270 | //         SEARCH DIRECTION. 
 | 
|---|
| 271 | 
 | 
|---|
| 272 | //       STP IS A NONNEGATIVE VARIABLE. ON INPUT STP CONTAINS AN 
 | 
|---|
| 273 | //         INITIAL ESTIMATE OF A SATISFACTORY STEP. ON OUTPUT 
 | 
|---|
| 274 | //         STP CONTAINS THE FINAL ESTIMATE. 
 | 
|---|
| 275 | 
 | 
|---|
| 276 | //       FTOL AND GTOL ARE NONNEGATIVE INPUT VARIABLES. (In this reverse 
 | 
|---|
| 277 | //         communication implementation GTOL is defined in a COMMON 
 | 
|---|
| 278 | //         statement.) TERMINATION OCCURS WHEN THE SUFFICIENT DECREASE 
 | 
|---|
| 279 | //         CONDITION AND THE DIRECTIONAL DERIVATIVE CONDITION ARE 
 | 
|---|
| 280 | //         SATISFIED. 
 | 
|---|
| 281 | 
 | 
|---|
| 282 | //       XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS 
 | 
|---|
| 283 | //         WHEN THE RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY 
 | 
|---|
| 284 | //         IS AT MOST XTOL. 
 | 
|---|
| 285 | 
 | 
|---|
| 286 | //       STPMIN AND STPMAX ARE NONNEGATIVE INPUT VARIABLES WHICH 
 | 
|---|
| 287 | //         SPECIFY LOWER AND UPPER BOUNDS FOR THE STEP. (In this reverse 
 | 
|---|
| 288 | //         communication implementatin they are defined in a COMMON 
 | 
|---|
| 289 | //         statement). 
 | 
|---|
| 290 | 
 | 
|---|
| 291 | //       MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION 
 | 
|---|
| 292 | //         OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST 
 | 
|---|
| 293 | //         MAXFEV BY THE END OF AN ITERATION. 
 | 
|---|
| 294 | 
 | 
|---|
| 295 | //       INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS: 
 | 
|---|
| 296 | 
 | 
|---|
| 297 | //         INFO = 0  IMPROPER INPUT PARAMETERS. 
 | 
|---|
| 298 | 
 | 
|---|
| 299 | //         INFO =-1  A RETURN IS MADE TO COMPUTE THE FUNCTION AND GRADIENT. 
 | 
|---|
| 300 | 
 | 
|---|
| 301 | //         INFO = 1  THE SUFFICIENT DECREASE CONDITION AND THE 
 | 
|---|
| 302 | //                   DIRECTIONAL DERIVATIVE CONDITION HOLD. 
 | 
|---|
| 303 | 
 | 
|---|
| 304 | //         INFO = 2  RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY 
 | 
|---|
| 305 | //                   IS AT MOST XTOL. 
 | 
|---|
| 306 | 
 | 
|---|
| 307 | //         INFO = 3  NUMBER OF CALLS TO FCN HAS REACHED MAXFEV. 
 | 
|---|
| 308 | 
 | 
|---|
| 309 | //         INFO = 4  THE STEP IS AT THE LOWER BOUND STPMIN. 
 | 
|---|
| 310 | 
 | 
|---|
| 311 | //         INFO = 5  THE STEP IS AT THE UPPER BOUND STPMAX. 
 | 
|---|
| 312 | 
 | 
|---|
| 313 | //         INFO = 6  ROUNDING ERRORS PREVENT FURTHER PROGRESS. 
 | 
|---|
| 314 | //                   THERE MAY NOT BE A STEP WHICH SATISFIES THE 
 | 
|---|
| 315 | //                   SUFFICIENT DECREASE AND CURVATURE CONDITIONS. 
 | 
|---|
| 316 | //                   TOLERANCES MAY BE TOO SMALL. 
 | 
|---|
| 317 | 
 | 
|---|
| 318 | //       NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF 
 | 
|---|
| 319 | //         CALLS TO FCN. 
 | 
|---|
| 320 | 
 | 
|---|
| 321 | //       WA IS A WORK ARRAY OF LENGTH N. 
 | 
|---|
| 322 | 
 | 
|---|
| 323 | //     SUBPROGRAMS CALLED 
 | 
|---|
| 324 | 
 | 
|---|
| 325 | //       MCSTEP 
 | 
|---|
| 326 | 
 | 
|---|
| 327 | //       FORTRAN-SUPPLIED...ABS,MAX,MIN 
 | 
|---|
| 328 | 
 | 
|---|
| 329 | //     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983 
 | 
|---|
| 330 | //     JORGE J. MORE', DAVID J. THUENTE 
 | 
|---|
| 331 | 
 | 
|---|
| 332 | //     ********** 
 | 
|---|
| 333 |     // Parameter adjustments 
 | 
|---|
| 334 |     --wa;
 | 
|---|
| 335 |     --s;
 | 
|---|
| 336 |     --g;
 | 
|---|
| 337 |     --x;
 | 
|---|
| 338 | 
 | 
|---|
| 339 |     // Function Body 
 | 
|---|
| 340 |     if (*info == -1) {
 | 
|---|
| 341 |         goto L45;
 | 
|---|
| 342 |     }
 | 
|---|
| 343 |     infoc = 1;
 | 
|---|
| 344 | 
 | 
|---|
| 345 | //     CHECK THE INPUT PARAMETERS FOR ERRORS. 
 | 
|---|
| 346 | 
 | 
|---|
| 347 |     if (*n <= 0 || *stp <= zero || *ftol < zero || gtol_ < zero || *xtol 
 | 
|---|
| 348 |             < zero || stpmin_ < zero || stpmax_ < stpmin_ || *
 | 
|---|
| 349 |             maxfev <= 0) {
 | 
|---|
| 350 |         return;
 | 
|---|
| 351 |     }
 | 
|---|
| 352 | 
 | 
|---|
| 353 | //     COMPUTE THE INITIAL GRADIENT IN THE SEARCH DIRECTION 
 | 
|---|
| 354 | //     AND CHECK THAT S IS A DESCENT DIRECTION. 
 | 
|---|
| 355 | 
 | 
|---|
| 356 |     dginit = zero;
 | 
|---|
| 357 |     i__1 = *n;
 | 
|---|
| 358 |     for (int j = 1; j <= i__1; ++j) {
 | 
|---|
| 359 |         dginit += g[j] * s[j];
 | 
|---|
| 360 | // L10: 
 | 
|---|
| 361 |     }
 | 
|---|
| 362 |     if (dginit >= zero) {
 | 
|---|
| 363 |         ExEnv::out0() << indent
 | 
|---|
| 364 |                       << "MCSearch: "
 | 
|---|
| 365 |                       << "The search direction is not a descent direction"
 | 
|---|
| 366 |                       << std::endl;
 | 
|---|
| 367 |         return;
 | 
|---|
| 368 |     }
 | 
|---|
| 369 | 
 | 
|---|
| 370 | //     INITIALIZE LOCAL VARIABLES. 
 | 
|---|
| 371 | 
 | 
|---|
| 372 |     brackt = false;
 | 
|---|
| 373 |     stage1 = true;
 | 
|---|
| 374 |     *nfev = 0;
 | 
|---|
| 375 |     finit = *f;
 | 
|---|
| 376 |     dgtest = *ftol * dginit;
 | 
|---|
| 377 |     width = stpmax_ - stpmin_;
 | 
|---|
| 378 |     width1 = width / p5;
 | 
|---|
| 379 |     i__1 = *n;
 | 
|---|
| 380 |     for (int j = 1; j <= i__1; ++j) {
 | 
|---|
| 381 |         wa[j] = x[j];
 | 
|---|
| 382 | // L20: 
 | 
|---|
| 383 |     }
 | 
|---|
| 384 | 
 | 
|---|
| 385 | //     THE VARIABLES STX, FX, DGX CONTAIN THE VALUES OF THE STEP, 
 | 
|---|
| 386 | //     FUNCTION, AND DIRECTIONAL DERIVATIVE AT THE BEST STEP. 
 | 
|---|
| 387 | //     THE VARIABLES STY, FY, DGY CONTAIN THE VALUE OF THE STEP, 
 | 
|---|
| 388 | //     FUNCTION, AND DERIVATIVE AT THE OTHER ENDPOINT OF 
 | 
|---|
| 389 | //     THE INTERVAL OF UNCERTAINTY. 
 | 
|---|
| 390 | //     THE VARIABLES STP, F, DG CONTAIN THE VALUES OF THE STEP, 
 | 
|---|
| 391 | //     FUNCTION, AND DERIVATIVE AT THE CURRENT STEP. 
 | 
|---|
| 392 | 
 | 
|---|
| 393 |     stx = zero;
 | 
|---|
| 394 |     fx = finit;
 | 
|---|
| 395 |     dgx = dginit;
 | 
|---|
| 396 |     sty = zero;
 | 
|---|
| 397 |     fy = finit;
 | 
|---|
| 398 |     dgy = dginit;
 | 
|---|
| 399 | 
 | 
|---|
| 400 | //     START OF ITERATION. 
 | 
|---|
| 401 | 
 | 
|---|
| 402 | L30:
 | 
|---|
| 403 | 
 | 
|---|
| 404 | //        SET THE MINIMUM AND MAXIMUM STEPS TO CORRESPOND 
 | 
|---|
| 405 | //        TO THE PRESENT INTERVAL OF UNCERTAINTY. 
 | 
|---|
| 406 | 
 | 
|---|
| 407 |     if (brackt) {
 | 
|---|
| 408 |         stmin = min(stx,sty);
 | 
|---|
| 409 |         stmax = max(stx,sty);
 | 
|---|
| 410 |     } else {
 | 
|---|
| 411 |         stmin = stx;
 | 
|---|
| 412 |         stmax = *stp + xtrapf * (*stp - stx);
 | 
|---|
| 413 |     }
 | 
|---|
| 414 | 
 | 
|---|
| 415 | //        FORCE THE STEP TO BE WITHIN THE BOUNDS STPMAX AND STPMIN. 
 | 
|---|
| 416 | 
 | 
|---|
| 417 |     *stp = max(*stp,stpmin_);
 | 
|---|
| 418 |     *stp = min(*stp,stpmax_);
 | 
|---|
| 419 | 
 | 
|---|
| 420 | //        IF AN UNUSUAL TERMINATION IS TO OCCUR THEN LET 
 | 
|---|
| 421 | //        STP BE THE LOWEST POINT OBTAINED SO FAR. 
 | 
|---|
| 422 | 
 | 
|---|
| 423 |     if (brackt && (*stp <= stmin || *stp >= stmax) || *nfev >= *maxfev - 1 || 
 | 
|---|
| 424 |             infoc == 0 || brackt && stmax - stmin <= *xtol * stmax) {
 | 
|---|
| 425 |         *stp = stx;
 | 
|---|
| 426 |     }
 | 
|---|
| 427 | 
 | 
|---|
| 428 | //        EVALUATE THE FUNCTION AND GRADIENT AT STP 
 | 
|---|
| 429 | //        AND COMPUTE THE DIRECTIONAL DERIVATIVE. 
 | 
|---|
| 430 | //        We return to main program to obtain F and G. 
 | 
|---|
| 431 | 
 | 
|---|
| 432 |     i__1 = *n;
 | 
|---|
| 433 |     for (int j = 1; j <= i__1; ++j) {
 | 
|---|
| 434 |         x[j] = wa[j] + *stp * s[j];
 | 
|---|
| 435 | // L40: 
 | 
|---|
| 436 |     }
 | 
|---|
| 437 |     *info = -1;
 | 
|---|
| 438 |     return;
 | 
|---|
| 439 | 
 | 
|---|
| 440 | L45:
 | 
|---|
| 441 |     *info = 0;
 | 
|---|
| 442 |     ++(*nfev);
 | 
|---|
| 443 |     dg = zero;
 | 
|---|
| 444 |     i__1 = *n;
 | 
|---|
| 445 |     for (int j = 1; j <= i__1; ++j) {
 | 
|---|
| 446 |         dg += g[j] * s[j];
 | 
|---|
| 447 | // L50: 
 | 
|---|
| 448 |     }
 | 
|---|
| 449 |     ftest1 = finit + *stp * dgtest;
 | 
|---|
| 450 | 
 | 
|---|
| 451 | //        TEST FOR CONVERGENCE. 
 | 
|---|
| 452 | 
 | 
|---|
| 453 |     if (brackt && (*stp <= stmin || *stp >= stmax) || infoc == 0) {
 | 
|---|
| 454 |         *info = 6;
 | 
|---|
| 455 |     }
 | 
|---|
| 456 |     if (*stp == stpmax_ && *f <= ftest1 && dg <= dgtest) {
 | 
|---|
| 457 |         *info = 5;
 | 
|---|
| 458 |     }
 | 
|---|
| 459 |     if (*stp == stpmin_ && (*f > ftest1 || dg >= dgtest)) {
 | 
|---|
| 460 |         *info = 4;
 | 
|---|
| 461 |     }
 | 
|---|
| 462 |     if (*nfev >= *maxfev) {
 | 
|---|
| 463 |         *info = 3;
 | 
|---|
| 464 |     }
 | 
|---|
| 465 |     if (brackt && stmax - stmin <= *xtol * stmax) {
 | 
|---|
| 466 |         *info = 2;
 | 
|---|
| 467 |     }
 | 
|---|
| 468 |     if (*f <= ftest1 && fabs(dg) <= gtol_ * (-dginit)) {
 | 
|---|
| 469 |         *info = 1;
 | 
|---|
| 470 |     }
 | 
|---|
| 471 | 
 | 
|---|
| 472 | //        CHECK FOR TERMINATION. 
 | 
|---|
| 473 | 
 | 
|---|
| 474 |     if (*info != 0) {
 | 
|---|
| 475 |         return;
 | 
|---|
| 476 |     }
 | 
|---|
| 477 | 
 | 
|---|
| 478 | //        IN THE FIRST STAGE WE SEEK A STEP FOR WHICH THE MODIFIED 
 | 
|---|
| 479 | //        FUNCTION HAS A NONPOSITIVE VALUE AND NONNEGATIVE DERIVATIVE. 
 | 
|---|
| 480 | 
 | 
|---|
| 481 |     if (stage1 && *f <= ftest1 && dg >= min(*ftol,gtol_) * dginit) {
 | 
|---|
| 482 |         stage1 = false;
 | 
|---|
| 483 |     }
 | 
|---|
| 484 | 
 | 
|---|
| 485 | //        A MODIFIED FUNCTION IS USED TO PREDICT THE STEP ONLY IF 
 | 
|---|
| 486 | //        WE HAVE NOT OBTAINED A STEP FOR WHICH THE MODIFIED 
 | 
|---|
| 487 | //        FUNCTION HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE 
 | 
|---|
| 488 | //        DERIVATIVE, AND IF A LOWER FUNCTION VALUE HAS BEEN 
 | 
|---|
| 489 | //        OBTAINED BUT THE DECREASE IS NOT SUFFICIENT. 
 | 
|---|
| 490 | 
 | 
|---|
| 491 |     if (stage1 && *f <= fx && *f > ftest1) {
 | 
|---|
| 492 | 
 | 
|---|
| 493 | //           DEFINE THE MODIFIED FUNCTION AND DERIVATIVE VALUES. 
 | 
|---|
| 494 | 
 | 
|---|
| 495 |         fm = *f - *stp * dgtest;
 | 
|---|
| 496 |         fxm = fx - stx * dgtest;
 | 
|---|
| 497 |         fym = fy - sty * dgtest;
 | 
|---|
| 498 |         dgm = dg - dgtest;
 | 
|---|
| 499 |         dgxm = dgx - dgtest;
 | 
|---|
| 500 |         dgym = dgy - dgtest;
 | 
|---|
| 501 | 
 | 
|---|
| 502 | //           CALL CSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY 
 | 
|---|
| 503 | //           AND TO COMPUTE THE NEW STEP. 
 | 
|---|
| 504 | 
 | 
|---|
| 505 |         mcstep(&stx, &fxm, &dgxm, &sty, &fym, &dgym, stp, &fm, &dgm, &brackt,
 | 
|---|
| 506 |                  &stmin, &stmax, &infoc);
 | 
|---|
| 507 | 
 | 
|---|
| 508 | //           RESET THE FUNCTION AND GRADIENT VALUES FOR F. 
 | 
|---|
| 509 | 
 | 
|---|
| 510 |         fx = fxm + stx * dgtest;
 | 
|---|
| 511 |         fy = fym + sty * dgtest;
 | 
|---|
| 512 |         dgx = dgxm + dgtest;
 | 
|---|
| 513 |         dgy = dgym + dgtest;
 | 
|---|
| 514 |     } else {
 | 
|---|
| 515 | 
 | 
|---|
| 516 | //           CALL MCSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY 
 | 
|---|
| 517 | //           AND TO COMPUTE THE NEW STEP. 
 | 
|---|
| 518 | 
 | 
|---|
| 519 |         mcstep(&stx, &fx, &dgx, &sty, &fy, &dgy, stp, f, &dg, &brackt, &
 | 
|---|
| 520 |                 stmin, &stmax, &infoc);
 | 
|---|
| 521 |     }
 | 
|---|
| 522 | 
 | 
|---|
| 523 | //        FORCE A SUFFICIENT DECREASE IN THE SIZE OF THE 
 | 
|---|
| 524 | //        INTERVAL OF UNCERTAINTY. 
 | 
|---|
| 525 | 
 | 
|---|
| 526 |     if (brackt) {
 | 
|---|
| 527 |         if ((d__1 = sty - stx, fabs(d__1)) >= p66 * width1) {
 | 
|---|
| 528 |             *stp = stx + p5 * (sty - stx);
 | 
|---|
| 529 |         }
 | 
|---|
| 530 |         width1 = width;
 | 
|---|
| 531 |         width = (d__1 = sty - stx, fabs(d__1));
 | 
|---|
| 532 |     }
 | 
|---|
| 533 | 
 | 
|---|
| 534 | //        END OF ITERATION. 
 | 
|---|
| 535 | 
 | 
|---|
| 536 |     goto L30;
 | 
|---|
| 537 | 
 | 
|---|
| 538 | //     LAST LINE OF SUBROUTINE MCSRCH. 
 | 
|---|
| 539 | 
 | 
|---|
| 540 | } // mcsrch_ 
 | 
|---|
| 541 | 
 | 
|---|
| 542 | void
 | 
|---|
| 543 | MCSearch::mcstep(double *stx, double *fx, double *dx, 
 | 
|---|
| 544 |                  double *sty, double *fy, double *dy, double *stp, 
 | 
|---|
| 545 |                  double *fp, double *dp, bool *brackt, double *stpmin, 
 | 
|---|
| 546 |                  double *stpmax, int *info)
 | 
|---|
| 547 | {
 | 
|---|
| 548 |     // System generated locals 
 | 
|---|
| 549 |     double d__1, d__2, d__3;
 | 
|---|
| 550 | 
 | 
|---|
| 551 | //     SUBROUTINE MCSTEP 
 | 
|---|
| 552 | 
 | 
|---|
| 553 | //     THE PURPOSE OF MCSTEP IS TO COMPUTE A SAFEGUARDED STEP FOR 
 | 
|---|
| 554 | //     A LINESEARCH AND TO UPDATE AN INTERVAL OF UNCERTAINTY FOR 
 | 
|---|
| 555 | //     A MINIMIZER OF THE FUNCTION. 
 | 
|---|
| 556 | 
 | 
|---|
| 557 | //     THE PARAMETER STX CONTAINS THE STEP WITH THE LEAST FUNCTION 
 | 
|---|
| 558 | //     VALUE. THE PARAMETER STP CONTAINS THE CURRENT STEP. IT IS 
 | 
|---|
| 559 | //     ASSUMED THAT THE DERIVATIVE AT STX IS NEGATIVE IN THE 
 | 
|---|
| 560 | //     DIRECTION OF THE STEP. IF BRACKT IS SET TRUE THEN A 
 | 
|---|
| 561 | //     MINIMIZER HAS BEEN BRACKETED IN AN INTERVAL OF UNCERTAINTY 
 | 
|---|
| 562 | //     WITH ENDPOINTS STX AND STY. 
 | 
|---|
| 563 | 
 | 
|---|
| 564 | //     THE SUBROUTINE STATEMENT IS 
 | 
|---|
| 565 | 
 | 
|---|
| 566 | //       SUBROUTINE MCSTEP(STX,FX,DX,STY,FY,DY,STP,FP,DP,BRACKT, 
 | 
|---|
| 567 | //                        STPMIN,STPMAX,INFO) 
 | 
|---|
| 568 | 
 | 
|---|
| 569 | //     WHERE 
 | 
|---|
| 570 | 
 | 
|---|
| 571 | //       STX, FX, AND DX ARE VARIABLES WHICH SPECIFY THE STEP, 
 | 
|---|
| 572 | //         THE FUNCTION, AND THE DERIVATIVE AT THE BEST STEP OBTAINED 
 | 
|---|
| 573 | //         SO FAR. THE DERIVATIVE MUST BE NEGATIVE IN THE DIRECTION 
 | 
|---|
| 574 | //         OF THE STEP, THAT IS, DX AND STP-STX MUST HAVE OPPOSITE 
 | 
|---|
| 575 | //         SIGNS. ON OUTPUT THESE PARAMETERS ARE UPDATED APPROPRIATELY. 
 | 
|---|
| 576 | 
 | 
|---|
| 577 | //       STY, FY, AND DY ARE VARIABLES WHICH SPECIFY THE STEP, 
 | 
|---|
| 578 | //         THE FUNCTION, AND THE DERIVATIVE AT THE OTHER ENDPOINT OF 
 | 
|---|
| 579 | //         THE INTERVAL OF UNCERTAINTY. ON OUTPUT THESE PARAMETERS ARE 
 | 
|---|
| 580 | //         UPDATED APPROPRIATELY. 
 | 
|---|
| 581 | 
 | 
|---|
| 582 | //       STP, FP, AND DP ARE VARIABLES WHICH SPECIFY THE STEP, 
 | 
|---|
| 583 | //         THE FUNCTION, AND THE DERIVATIVE AT THE CURRENT STEP. 
 | 
|---|
| 584 | //         IF BRACKT IS SET TRUE THEN ON INPUT STP MUST BE 
 | 
|---|
| 585 | //         BETWEEN STX AND STY. ON OUTPUT STP IS SET TO THE NEW STEP. 
 | 
|---|
| 586 | 
 | 
|---|
| 587 | //       BRACKT IS A LOGICAL VARIABLE WHICH SPECIFIES IF A MINIMIZER 
 | 
|---|
| 588 | //         HAS BEEN BRACKETED. IF THE MINIMIZER HAS NOT BEEN BRACKETED 
 | 
|---|
| 589 | //         THEN ON INPUT BRACKT MUST BE SET FALSE. IF THE MINIMIZER 
 | 
|---|
| 590 | //         IS BRACKETED THEN ON OUTPUT BRACKT IS SET TRUE. 
 | 
|---|
| 591 | 
 | 
|---|
| 592 | //       STPMIN AND STPMAX ARE INPUT VARIABLES WHICH SPECIFY LOWER 
 | 
|---|
| 593 | //         AND UPPER BOUNDS FOR THE STEP. 
 | 
|---|
| 594 | 
 | 
|---|
| 595 | //       INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS: 
 | 
|---|
| 596 | //         IF INFO = 1,2,3,4,5, THEN THE STEP HAS BEEN COMPUTED 
 | 
|---|
| 597 | //         ACCORDING TO ONE OF THE FIVE CASES BELOW. OTHERWISE 
 | 
|---|
| 598 | //         INFO = 0, AND THIS INDICATES IMPROPER INPUT PARAMETERS. 
 | 
|---|
| 599 | 
 | 
|---|
| 600 | //     SUBPROGRAMS CALLED 
 | 
|---|
| 601 | 
 | 
|---|
| 602 | //       FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT 
 | 
|---|
| 603 | 
 | 
|---|
| 604 | //     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983 
 | 
|---|
| 605 | //     JORGE J. MORE', DAVID J. THUENTE 
 | 
|---|
| 606 | 
 | 
|---|
| 607 |     *info = 0;
 | 
|---|
| 608 | 
 | 
|---|
| 609 | //     CHECK THE INPUT PARAMETERS FOR ERRORS. 
 | 
|---|
| 610 | 
 | 
|---|
| 611 |     if (*brackt && (*stp <= min(*stx,*sty) || *stp >= max(*stx,*sty)) || *dx *
 | 
|---|
| 612 |              (*stp - *stx) >= 0.f || *stpmax < *stpmin) {
 | 
|---|
| 613 |         return;
 | 
|---|
| 614 |     }
 | 
|---|
| 615 | 
 | 
|---|
| 616 | //     DETERMINE IF THE DERIVATIVES HAVE OPPOSITE SIGN. 
 | 
|---|
| 617 | 
 | 
|---|
| 618 |     sgnd = *dp * (*dx / fabs(*dx));
 | 
|---|
| 619 | 
 | 
|---|
| 620 | //     FIRST CASE. A HIGHER FUNCTION VALUE. 
 | 
|---|
| 621 | //     THE MINIMUM IS BRACKETED. IF THE CUBIC STEP IS CLOSER 
 | 
|---|
| 622 | //     TO STX THAN THE QUADRATIC STEP, THE CUBIC STEP IS TAKEN, 
 | 
|---|
| 623 | //     ELSE THE AVERAGE OF THE CUBIC AND QUADRATIC STEPS IS TAKEN. 
 | 
|---|
| 624 | 
 | 
|---|
| 625 |     if (*fp > *fx) {
 | 
|---|
| 626 |         *info = 1;
 | 
|---|
| 627 |         bound = true;
 | 
|---|
| 628 |         theta = (*fx - *fp) * 3 / (*stp - *stx) + *dx + *dp;
 | 
|---|
| 629 | // Computing MAX 
 | 
|---|
| 630 |         d__1 = fabs(theta), d__2 = fabs(*dx), d__1 = max(d__1,d__2), d__2 = fabs(
 | 
|---|
| 631 |                 *dp);
 | 
|---|
| 632 |         s = max(d__1,d__2);
 | 
|---|
| 633 | // Computing 2nd power 
 | 
|---|
| 634 |         d__1 = theta / s;
 | 
|---|
| 635 |         gamma = s * sqrt(d__1 * d__1 - *dx / s * (*dp / s));
 | 
|---|
| 636 |         if (*stp < *stx) {
 | 
|---|
| 637 |             gamma = -gamma;
 | 
|---|
| 638 |         }
 | 
|---|
| 639 |         p = gamma - *dx + theta;
 | 
|---|
| 640 |         q = gamma - *dx + gamma + *dp;
 | 
|---|
| 641 |         r__ = p / q;
 | 
|---|
| 642 |         stpc = *stx + r__ * (*stp - *stx);
 | 
|---|
| 643 |         stpq = *stx + *dx / ((*fx - *fp) / (*stp - *stx) + *dx) / 2 * (*stp - 
 | 
|---|
| 644 |                 *stx);
 | 
|---|
| 645 |         if ((d__1 = stpc - *stx, fabs(d__1)) < (d__2 = stpq - *stx, fabs(d__2)))
 | 
|---|
| 646 |                  {
 | 
|---|
| 647 |             stpf = stpc;
 | 
|---|
| 648 |         } else {
 | 
|---|
| 649 |             stpf = stpc + (stpq - stpc) / 2;
 | 
|---|
| 650 |         }
 | 
|---|
| 651 |         *brackt = true;
 | 
|---|
| 652 | 
 | 
|---|
| 653 | //     SECOND CASE. A LOWER FUNCTION VALUE AND DERIVATIVES OF 
 | 
|---|
| 654 | //     OPPOSITE SIGN. THE MINIMUM IS BRACKETED. IF THE CUBIC 
 | 
|---|
| 655 | //     STEP IS CLOSER TO STX THAN THE QUADRATIC (SECANT) STEP, 
 | 
|---|
| 656 | //     THE CUBIC STEP IS TAKEN, ELSE THE QUADRATIC STEP IS TAKEN. 
 | 
|---|
| 657 | 
 | 
|---|
| 658 |     } else if (sgnd < 0.f) {
 | 
|---|
| 659 |         *info = 2;
 | 
|---|
| 660 |         bound = false;
 | 
|---|
| 661 |         theta = (*fx - *fp) * 3 / (*stp - *stx) + *dx + *dp;
 | 
|---|
| 662 | // Computing MAX 
 | 
|---|
| 663 |         d__1 = fabs(theta), d__2 = fabs(*dx), d__1 = max(d__1,d__2), d__2 = fabs(
 | 
|---|
| 664 |                 *dp);
 | 
|---|
| 665 |         s = max(d__1,d__2);
 | 
|---|
| 666 | // Computing 2nd power 
 | 
|---|
| 667 |         d__1 = theta / s;
 | 
|---|
| 668 |         gamma = s * sqrt(d__1 * d__1 - *dx / s * (*dp / s));
 | 
|---|
| 669 |         if (*stp > *stx) {
 | 
|---|
| 670 |             gamma = -gamma;
 | 
|---|
| 671 |         }
 | 
|---|
| 672 |         p = gamma - *dp + theta;
 | 
|---|
| 673 |         q = gamma - *dp + gamma + *dx;
 | 
|---|
| 674 |         r__ = p / q;
 | 
|---|
| 675 |         stpc = *stp + r__ * (*stx - *stp);
 | 
|---|
| 676 |         stpq = *stp + *dp / (*dp - *dx) * (*stx - *stp);
 | 
|---|
| 677 |         if ((d__1 = stpc - *stp, fabs(d__1)) > (d__2 = stpq - *stp, fabs(d__2)))
 | 
|---|
| 678 |                  {
 | 
|---|
| 679 |             stpf = stpc;
 | 
|---|
| 680 |         } else {
 | 
|---|
| 681 |             stpf = stpq;
 | 
|---|
| 682 |         }
 | 
|---|
| 683 |         *brackt = true;
 | 
|---|
| 684 | 
 | 
|---|
| 685 | //     THIRD CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE 
 | 
|---|
| 686 | //     SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DECREASES. 
 | 
|---|
| 687 | //     THE CUBIC STEP IS ONLY USED IF THE CUBIC TENDS TO INFINITY 
 | 
|---|
| 688 | //     IN THE DIRECTION OF THE STEP OR IF THE MINIMUM OF THE CUBIC 
 | 
|---|
| 689 | //     IS BEYOND STP. OTHERWISE THE CUBIC STEP IS DEFINED TO BE 
 | 
|---|
| 690 | //     EITHER STPMIN OR STPMAX. THE QUADRATIC (SECANT) STEP IS ALSO 
 | 
|---|
| 691 | //     COMPUTED AND IF THE MINIMUM IS BRACKETED THEN THE THE STEP 
 | 
|---|
| 692 | //     CLOSEST TO STX IS TAKEN, ELSE THE STEP FARTHEST AWAY IS TAKEN. 
 | 
|---|
| 693 | 
 | 
|---|
| 694 |     } else if (fabs(*dp) < fabs(*dx)) {
 | 
|---|
| 695 |         *info = 3;
 | 
|---|
| 696 |         bound = true;
 | 
|---|
| 697 |         theta = (*fx - *fp) * 3 / (*stp - *stx) + *dx + *dp;
 | 
|---|
| 698 | // Computing MAX 
 | 
|---|
| 699 |         d__1 = fabs(theta), d__2 = fabs(*dx), d__1 = max(d__1,d__2), d__2 = fabs(
 | 
|---|
| 700 |                 *dp);
 | 
|---|
| 701 |         s = max(d__1,d__2);
 | 
|---|
| 702 | 
 | 
|---|
| 703 | //        THE CASE GAMMA = 0 ONLY ARISES IF THE CUBIC DOES NOT TEND 
 | 
|---|
| 704 | //        TO INFINITY IN THE DIRECTION OF THE STEP. 
 | 
|---|
| 705 | 
 | 
|---|
| 706 | // Computing MAX 
 | 
|---|
| 707 | // Computing 2nd power 
 | 
|---|
| 708 |         d__3 = theta / s;
 | 
|---|
| 709 |         d__1 = 0., d__2 = d__3 * d__3 - *dx / s * (*dp / s);
 | 
|---|
| 710 |         gamma = s * sqrt((max(d__1,d__2)));
 | 
|---|
| 711 |         if (*stp > *stx) {
 | 
|---|
| 712 |             gamma = -gamma;
 | 
|---|
| 713 |         }
 | 
|---|
| 714 |         p = gamma - *dp + theta;
 | 
|---|
| 715 |         q = gamma + (*dx - *dp) + gamma;
 | 
|---|
| 716 |         r__ = p / q;
 | 
|---|
| 717 |         if (r__ < 0.f && gamma != 0.f) {
 | 
|---|
| 718 |             stpc = *stp + r__ * (*stx - *stp);
 | 
|---|
| 719 |         } else if (*stp > *stx) {
 | 
|---|
| 720 |             stpc = *stpmax;
 | 
|---|
| 721 |         } else {
 | 
|---|
| 722 |             stpc = *stpmin;
 | 
|---|
| 723 |         }
 | 
|---|
| 724 |         stpq = *stp + *dp / (*dp - *dx) * (*stx - *stp);
 | 
|---|
| 725 |         if (*brackt) {
 | 
|---|
| 726 |             if ((d__1 = *stp - stpc, fabs(d__1)) < (d__2 = *stp - stpq, fabs(
 | 
|---|
| 727 |                     d__2))) {
 | 
|---|
| 728 |                 stpf = stpc;
 | 
|---|
| 729 |             } else {
 | 
|---|
| 730 |                 stpf = stpq;
 | 
|---|
| 731 |             }
 | 
|---|
| 732 |         } else {
 | 
|---|
| 733 |             if ((d__1 = *stp - stpc, fabs(d__1)) > (d__2 = *stp - stpq, fabs(
 | 
|---|
| 734 |                     d__2))) {
 | 
|---|
| 735 |                 stpf = stpc;
 | 
|---|
| 736 |             } else {
 | 
|---|
| 737 |                 stpf = stpq;
 | 
|---|
| 738 |             }
 | 
|---|
| 739 |         }
 | 
|---|
| 740 | 
 | 
|---|
| 741 | //     FOURTH CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE 
 | 
|---|
| 742 | //     SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DOES 
 | 
|---|
| 743 | //     NOT DECREASE. IF THE MINIMUM IS NOT BRACKETED, THE STEP 
 | 
|---|
| 744 | //     IS EITHER STPMIN OR STPMAX, ELSE THE CUBIC STEP IS TAKEN. 
 | 
|---|
| 745 | 
 | 
|---|
| 746 |     } else {
 | 
|---|
| 747 |         *info = 4;
 | 
|---|
| 748 |         bound = false;
 | 
|---|
| 749 |         if (*brackt) {
 | 
|---|
| 750 |             theta = (*fp - *fy) * 3 / (*sty - *stp) + *dy + *dp;
 | 
|---|
| 751 | // Computing MAX 
 | 
|---|
| 752 |             d__1 = fabs(theta), d__2 = fabs(*dy), d__1 = max(d__1,d__2), d__2 = 
 | 
|---|
| 753 |                     fabs(*dp);
 | 
|---|
| 754 |             s = max(d__1,d__2);
 | 
|---|
| 755 | // Computing 2nd power 
 | 
|---|
| 756 |             d__1 = theta / s;
 | 
|---|
| 757 |             gamma = s * sqrt(d__1 * d__1 - *dy / s * (*dp / s));
 | 
|---|
| 758 |             if (*stp > *sty) {
 | 
|---|
| 759 |                 gamma = -gamma;
 | 
|---|
| 760 |             }
 | 
|---|
| 761 |             p = gamma - *dp + theta;
 | 
|---|
| 762 |             q = gamma - *dp + gamma + *dy;
 | 
|---|
| 763 |             r__ = p / q;
 | 
|---|
| 764 |             stpc = *stp + r__ * (*sty - *stp);
 | 
|---|
| 765 |             stpf = stpc;
 | 
|---|
| 766 |         } else if (*stp > *stx) {
 | 
|---|
| 767 |             stpf = *stpmax;
 | 
|---|
| 768 |         } else {
 | 
|---|
| 769 |             stpf = *stpmin;
 | 
|---|
| 770 |         }
 | 
|---|
| 771 |     }
 | 
|---|
| 772 | 
 | 
|---|
| 773 | //     UPDATE THE INTERVAL OF UNCERTAINTY. THIS UPDATE DOES NOT 
 | 
|---|
| 774 | //     DEPEND ON THE NEW STEP OR THE CASE ANALYSIS ABOVE. 
 | 
|---|
| 775 | 
 | 
|---|
| 776 |     if (*fp > *fx) {
 | 
|---|
| 777 |         *sty = *stp;
 | 
|---|
| 778 |         *fy = *fp;
 | 
|---|
| 779 |         *dy = *dp;
 | 
|---|
| 780 |     } else {
 | 
|---|
| 781 |         if (sgnd < 0.) {
 | 
|---|
| 782 |             *sty = *stx;
 | 
|---|
| 783 |             *fy = *fx;
 | 
|---|
| 784 |             *dy = *dx;
 | 
|---|
| 785 |         }
 | 
|---|
| 786 |         *stx = *stp;
 | 
|---|
| 787 |         *fx = *fp;
 | 
|---|
| 788 |         *dx = *dp;
 | 
|---|
| 789 |     }
 | 
|---|
| 790 | 
 | 
|---|
| 791 | //     COMPUTE THE NEW STEP AND SAFEGUARD IT. 
 | 
|---|
| 792 | 
 | 
|---|
| 793 |     stpf = min(*stpmax,stpf);
 | 
|---|
| 794 |     stpf = max(*stpmin,stpf);
 | 
|---|
| 795 |     *stp = stpf;
 | 
|---|
| 796 |     if (*brackt && bound) {
 | 
|---|
| 797 |         if (*sty > *stx) {
 | 
|---|
| 798 | // Computing MIN 
 | 
|---|
| 799 |             d__1 = *stx + (*sty - *stx) * .66;
 | 
|---|
| 800 |             *stp = min(d__1,*stp);
 | 
|---|
| 801 |         } else {
 | 
|---|
| 802 | // Computing MAX 
 | 
|---|
| 803 |             d__1 = *stx + (*sty - *stx) * .66;
 | 
|---|
| 804 |             *stp = max(d__1,*stp);
 | 
|---|
| 805 |         }
 | 
|---|
| 806 |     }
 | 
|---|
| 807 |     return;
 | 
|---|
| 808 | 
 | 
|---|
| 809 | //     LAST LINE OF SUBROUTINE MCSTEP. 
 | 
|---|
| 810 | 
 | 
|---|
| 811 | } // mcstep_ 
 | 
|---|
| 812 | 
 | 
|---|
| 813 | }
 | 
|---|
| 814 | 
 | 
|---|