1 | // These routines were translated from lbfgs.f by f2c (version 20030320)
|
---|
2 | // and modified by Curtis Janssen.
|
---|
3 |
|
---|
4 | #ifdef __GNUC__
|
---|
5 | #pragma implementation
|
---|
6 | #endif
|
---|
7 |
|
---|
8 | #include <math.h>
|
---|
9 | #include <util/class/scexception.h>
|
---|
10 | #include <math/optimize/mcsearch.h>
|
---|
11 |
|
---|
12 | static inline double min(double a, double b)
|
---|
13 | {
|
---|
14 | return (a<b)?a:b;
|
---|
15 | }
|
---|
16 |
|
---|
17 | static inline double max(double a, double b)
|
---|
18 | {
|
---|
19 | return (a<b)?b:a;
|
---|
20 | }
|
---|
21 |
|
---|
22 |
|
---|
23 | using namespace sc;
|
---|
24 |
|
---|
25 | namespace sc {
|
---|
26 |
|
---|
27 | static ClassDesc MCSearch_cd(
|
---|
28 | typeid(MCSearch),"MCSearch",1,"public LineOpt",
|
---|
29 | 0, create<MCSearch>, 0);
|
---|
30 |
|
---|
31 | MCSearch::MCSearch(const Ref<KeyVal>& keyval)
|
---|
32 | : LineOpt(keyval)
|
---|
33 | {
|
---|
34 | }
|
---|
35 |
|
---|
36 | MCSearch::~MCSearch()
|
---|
37 | {
|
---|
38 | }
|
---|
39 |
|
---|
40 | void
|
---|
41 | MCSearch::mcinit()
|
---|
42 | {
|
---|
43 | info_ = 0;
|
---|
44 |
|
---|
45 | // work area
|
---|
46 | wa_.reset(new double[function()->dimension()->n()]);
|
---|
47 | }
|
---|
48 |
|
---|
49 | void
|
---|
50 | MCSearch::init(RefSCVector& direction)
|
---|
51 | {
|
---|
52 | LineOpt::init(direction);
|
---|
53 | mcinit();
|
---|
54 | }
|
---|
55 |
|
---|
56 | void
|
---|
57 | MCSearch::init(RefSCVector& direction, Ref<Function> function)
|
---|
58 | {
|
---|
59 | LineOpt::init(direction, function);
|
---|
60 | mcinit();
|
---|
61 | }
|
---|
62 |
|
---|
63 | int
|
---|
64 | MCSearch::update()
|
---|
65 | {
|
---|
66 | int n = function()->dimension()->n();
|
---|
67 |
|
---|
68 | // function coordinate
|
---|
69 | auto_vec<double> x(new double[n]);
|
---|
70 | function()->get_x()->convert(x.get());
|
---|
71 |
|
---|
72 | // gradient
|
---|
73 | auto_vec<double> g(new double[n]);
|
---|
74 | function()->gradient()->convert(g.get());
|
---|
75 |
|
---|
76 | // function value
|
---|
77 | double f = function()->value();
|
---|
78 |
|
---|
79 | // step direction
|
---|
80 | auto_vec<double> s(new double[n]);
|
---|
81 | search_direction_->convert(s.get());
|
---|
82 |
|
---|
83 | // step size;
|
---|
84 | double stp;
|
---|
85 | stp = 1.0;
|
---|
86 |
|
---|
87 | // value tolerance
|
---|
88 | double ftol;
|
---|
89 | ftol = 1.0e-4;
|
---|
90 |
|
---|
91 | // the machine precision
|
---|
92 | double xtol;
|
---|
93 | xtol = DBL_EPSILON;
|
---|
94 |
|
---|
95 | // maximum number of function evaluations
|
---|
96 | int maxfev = 20;
|
---|
97 |
|
---|
98 | // number of function evaluations
|
---|
99 | int nfev = 0;
|
---|
100 |
|
---|
101 | // controls accuracy of line search routine
|
---|
102 | gtol_ = 0.9;
|
---|
103 |
|
---|
104 | // minimum step size
|
---|
105 | stpmin_ = DBL_EPSILON;
|
---|
106 |
|
---|
107 | // maximum step size
|
---|
108 | stpmax_ = 1.0e20;
|
---|
109 |
|
---|
110 | mcsrch(&n, x.get(), &f,g.get(), s.get(), &stp, &ftol,
|
---|
111 | &xtol, &maxfev, &info_, &nfev, wa_.get());
|
---|
112 |
|
---|
113 | // INFO = 0 IMPROPER INPUT PARAMETERS.
|
---|
114 | if (info_ == 0) {
|
---|
115 | throw ProgrammingError("error in MCSearch: info == 0",
|
---|
116 | __FILE__,
|
---|
117 | __LINE__,
|
---|
118 | class_desc());
|
---|
119 | }
|
---|
120 |
|
---|
121 | // INFO =-1 A RETURN IS MADE TO COMPUTE THE FUNCTION AND GRADIENT.
|
---|
122 | if (info_ == -1) {
|
---|
123 | RefSCVector new_x = function()->get_x()->copy();
|
---|
124 | new_x->assign(x.get());
|
---|
125 | function()->set_x(new_x);
|
---|
126 | return 0;
|
---|
127 | }
|
---|
128 |
|
---|
129 | // INFO = 1 THE SUFFICIENT DECREASE CONDITION AND THE
|
---|
130 | // DIRECTIONAL DERIVATIVE CONDITION HOLD.
|
---|
131 | if (info_ == 1) {
|
---|
132 | return 1;
|
---|
133 | }
|
---|
134 |
|
---|
135 | // INFO = 2 RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY
|
---|
136 | // IS AT MOST XTOL.
|
---|
137 | if (info_ == 2) {
|
---|
138 | throw AlgorithmException("error in MCSearch: info == 2",
|
---|
139 | __FILE__,
|
---|
140 | __LINE__,
|
---|
141 | class_desc());
|
---|
142 | return 1;
|
---|
143 | }
|
---|
144 |
|
---|
145 | // INFO = 3 NUMBER OF CALLS TO FCN HAS REACHED MAXFEV.
|
---|
146 | if (info_ == 3) {
|
---|
147 | throw ProgrammingError("error in MCSearch: info == 3",
|
---|
148 | __FILE__,
|
---|
149 | __LINE__,
|
---|
150 | class_desc());
|
---|
151 | return 1;
|
---|
152 | }
|
---|
153 |
|
---|
154 | // INFO = 4 THE STEP IS AT THE LOWER BOUND STPMIN.
|
---|
155 | if (info_ == 4) {
|
---|
156 | throw AlgorithmException("error in MCSearch: info == 4",
|
---|
157 | __FILE__,
|
---|
158 | __LINE__,
|
---|
159 | class_desc());
|
---|
160 | return 1;
|
---|
161 | }
|
---|
162 |
|
---|
163 | // INFO = 5 THE STEP IS AT THE UPPER BOUND STPMAX.
|
---|
164 | if (info_ == 5) {
|
---|
165 | throw AlgorithmException("error in MCSearch: info == 5",
|
---|
166 | __FILE__,
|
---|
167 | __LINE__,
|
---|
168 | class_desc());
|
---|
169 | return 1;
|
---|
170 | }
|
---|
171 |
|
---|
172 | // INFO = 6 ROUNDING ERRORS PREVENT FURTHER PROGRESS.
|
---|
173 | // THERE MAY NOT BE A STEP WHICH SATISFIES THE
|
---|
174 | // SUFFICIENT DECREASE AND CURVATURE CONDITIONS.
|
---|
175 | // TOLERANCES MAY BE TOO SMALL.
|
---|
176 | if (info_ == 6) {
|
---|
177 | throw AlgorithmException("error in MCSearch: info == 6",
|
---|
178 | __FILE__,
|
---|
179 | __LINE__,
|
---|
180 | class_desc());
|
---|
181 | return 1;
|
---|
182 | }
|
---|
183 |
|
---|
184 | throw ProgrammingError("error in MCSearch: unknown info",
|
---|
185 | __FILE__,
|
---|
186 | __LINE__,
|
---|
187 | class_desc());
|
---|
188 |
|
---|
189 | return 0;
|
---|
190 | }
|
---|
191 |
|
---|
192 | // **************************
|
---|
193 | // LINE SEARCH ROUTINE MCSRCH
|
---|
194 | // **************************
|
---|
195 |
|
---|
196 | void
|
---|
197 | MCSearch::mcsrch(int *n, double *x, double *f,
|
---|
198 | double *g, double *s, double *stp, double *ftol,
|
---|
199 | double *xtol, int *maxfev, int *info, int *nfev,
|
---|
200 | double *wa)
|
---|
201 | {
|
---|
202 | // Initialized data
|
---|
203 |
|
---|
204 | const double p5 = .5;
|
---|
205 | const double p66 = .66;
|
---|
206 | const double xtrapf = 4.;
|
---|
207 | const double zero = 0.;
|
---|
208 |
|
---|
209 | // System generated locals
|
---|
210 | int i__1;
|
---|
211 | double d__1;
|
---|
212 |
|
---|
213 | // SUBROUTINE MCSRCH
|
---|
214 |
|
---|
215 | // A slight modification of the subroutine CSRCH of More' and Thuente.
|
---|
216 | // The changes are to allow reverse communication, and do not affect
|
---|
217 | // the performance of the routine.
|
---|
218 |
|
---|
219 | // THE PURPOSE OF MCSRCH IS TO FIND A STEP WHICH SATISFIES
|
---|
220 | // A SUFFICIENT DECREASE CONDITION AND A CURVATURE CONDITION.
|
---|
221 |
|
---|
222 | // AT EACH STAGE THE SUBROUTINE UPDATES AN INTERVAL OF
|
---|
223 | // UNCERTAINTY WITH ENDPOINTS STX AND STY. THE INTERVAL OF
|
---|
224 | // UNCERTAINTY IS INITIALLY CHOSEN SO THAT IT CONTAINS A
|
---|
225 | // MINIMIZER OF THE MODIFIED FUNCTION
|
---|
226 |
|
---|
227 | // F(X+STP*S) - F(X) - FTOL*STP*(GRADF(X)'S).
|
---|
228 |
|
---|
229 | // IF A STEP IS OBTAINED FOR WHICH THE MODIFIED FUNCTION
|
---|
230 | // HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE DERIVATIVE,
|
---|
231 | // THEN THE INTERVAL OF UNCERTAINTY IS CHOSEN SO THAT IT
|
---|
232 | // CONTAINS A MINIMIZER OF F(X+STP*S).
|
---|
233 |
|
---|
234 | // THE ALGORITHM IS DESIGNED TO FIND A STEP WHICH SATISFIES
|
---|
235 | // THE SUFFICIENT DECREASE CONDITION
|
---|
236 |
|
---|
237 | // F(X+STP*S) .LE. F(X) + FTOL*STP*(GRADF(X)'S),
|
---|
238 |
|
---|
239 | // AND THE CURVATURE CONDITION
|
---|
240 |
|
---|
241 | // ABS(GRADF(X+STP*S)'S)) .LE. GTOL*ABS(GRADF(X)'S).
|
---|
242 |
|
---|
243 | // IF FTOL IS LESS THAN GTOL AND IF, FOR EXAMPLE, THE FUNCTION
|
---|
244 | // IS BOUNDED BELOW, THEN THERE IS ALWAYS A STEP WHICH SATISFIES
|
---|
245 | // BOTH CONDITIONS. IF NO STEP CAN BE FOUND WHICH SATISFIES BOTH
|
---|
246 | // CONDITIONS, THEN THE ALGORITHM USUALLY STOPS WHEN ROUNDING
|
---|
247 | // ERRORS PREVENT FURTHER PROGRESS. IN THIS CASE STP ONLY
|
---|
248 | // SATISFIES THE SUFFICIENT DECREASE CONDITION.
|
---|
249 |
|
---|
250 | // THE SUBROUTINE STATEMENT IS
|
---|
251 |
|
---|
252 | // SUBROUTINE MCSRCH(N,X,F,G,S,STP,FTOL,XTOL, MAXFEV,INFO,NFEV,WA)
|
---|
253 | // WHERE
|
---|
254 |
|
---|
255 | // N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
|
---|
256 | // OF VARIABLES.
|
---|
257 |
|
---|
258 | // X IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE
|
---|
259 | // BASE POINT FOR THE LINE SEARCH. ON OUTPUT IT CONTAINS
|
---|
260 | // X + STP*S.
|
---|
261 |
|
---|
262 | // F IS A VARIABLE. ON INPUT IT MUST CONTAIN THE VALUE OF F
|
---|
263 | // AT X. ON OUTPUT IT CONTAINS THE VALUE OF F AT X + STP*S.
|
---|
264 |
|
---|
265 | // G IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE
|
---|
266 | // GRADIENT OF F AT X. ON OUTPUT IT CONTAINS THE GRADIENT
|
---|
267 | // OF F AT X + STP*S.
|
---|
268 |
|
---|
269 | // S IS AN INPUT ARRAY OF LENGTH N WHICH SPECIFIES THE
|
---|
270 | // SEARCH DIRECTION.
|
---|
271 |
|
---|
272 | // STP IS A NONNEGATIVE VARIABLE. ON INPUT STP CONTAINS AN
|
---|
273 | // INITIAL ESTIMATE OF A SATISFACTORY STEP. ON OUTPUT
|
---|
274 | // STP CONTAINS THE FINAL ESTIMATE.
|
---|
275 |
|
---|
276 | // FTOL AND GTOL ARE NONNEGATIVE INPUT VARIABLES. (In this reverse
|
---|
277 | // communication implementation GTOL is defined in a COMMON
|
---|
278 | // statement.) TERMINATION OCCURS WHEN THE SUFFICIENT DECREASE
|
---|
279 | // CONDITION AND THE DIRECTIONAL DERIVATIVE CONDITION ARE
|
---|
280 | // SATISFIED.
|
---|
281 |
|
---|
282 | // XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
|
---|
283 | // WHEN THE RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY
|
---|
284 | // IS AT MOST XTOL.
|
---|
285 |
|
---|
286 | // STPMIN AND STPMAX ARE NONNEGATIVE INPUT VARIABLES WHICH
|
---|
287 | // SPECIFY LOWER AND UPPER BOUNDS FOR THE STEP. (In this reverse
|
---|
288 | // communication implementatin they are defined in a COMMON
|
---|
289 | // statement).
|
---|
290 |
|
---|
291 | // MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
|
---|
292 | // OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST
|
---|
293 | // MAXFEV BY THE END OF AN ITERATION.
|
---|
294 |
|
---|
295 | // INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS:
|
---|
296 |
|
---|
297 | // INFO = 0 IMPROPER INPUT PARAMETERS.
|
---|
298 |
|
---|
299 | // INFO =-1 A RETURN IS MADE TO COMPUTE THE FUNCTION AND GRADIENT.
|
---|
300 |
|
---|
301 | // INFO = 1 THE SUFFICIENT DECREASE CONDITION AND THE
|
---|
302 | // DIRECTIONAL DERIVATIVE CONDITION HOLD.
|
---|
303 |
|
---|
304 | // INFO = 2 RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY
|
---|
305 | // IS AT MOST XTOL.
|
---|
306 |
|
---|
307 | // INFO = 3 NUMBER OF CALLS TO FCN HAS REACHED MAXFEV.
|
---|
308 |
|
---|
309 | // INFO = 4 THE STEP IS AT THE LOWER BOUND STPMIN.
|
---|
310 |
|
---|
311 | // INFO = 5 THE STEP IS AT THE UPPER BOUND STPMAX.
|
---|
312 |
|
---|
313 | // INFO = 6 ROUNDING ERRORS PREVENT FURTHER PROGRESS.
|
---|
314 | // THERE MAY NOT BE A STEP WHICH SATISFIES THE
|
---|
315 | // SUFFICIENT DECREASE AND CURVATURE CONDITIONS.
|
---|
316 | // TOLERANCES MAY BE TOO SMALL.
|
---|
317 |
|
---|
318 | // NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
|
---|
319 | // CALLS TO FCN.
|
---|
320 |
|
---|
321 | // WA IS A WORK ARRAY OF LENGTH N.
|
---|
322 |
|
---|
323 | // SUBPROGRAMS CALLED
|
---|
324 |
|
---|
325 | // MCSTEP
|
---|
326 |
|
---|
327 | // FORTRAN-SUPPLIED...ABS,MAX,MIN
|
---|
328 |
|
---|
329 | // ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983
|
---|
330 | // JORGE J. MORE', DAVID J. THUENTE
|
---|
331 |
|
---|
332 | // **********
|
---|
333 | // Parameter adjustments
|
---|
334 | --wa;
|
---|
335 | --s;
|
---|
336 | --g;
|
---|
337 | --x;
|
---|
338 |
|
---|
339 | // Function Body
|
---|
340 | if (*info == -1) {
|
---|
341 | goto L45;
|
---|
342 | }
|
---|
343 | infoc = 1;
|
---|
344 |
|
---|
345 | // CHECK THE INPUT PARAMETERS FOR ERRORS.
|
---|
346 |
|
---|
347 | if (*n <= 0 || *stp <= zero || *ftol < zero || gtol_ < zero || *xtol
|
---|
348 | < zero || stpmin_ < zero || stpmax_ < stpmin_ || *
|
---|
349 | maxfev <= 0) {
|
---|
350 | return;
|
---|
351 | }
|
---|
352 |
|
---|
353 | // COMPUTE THE INITIAL GRADIENT IN THE SEARCH DIRECTION
|
---|
354 | // AND CHECK THAT S IS A DESCENT DIRECTION.
|
---|
355 |
|
---|
356 | dginit = zero;
|
---|
357 | i__1 = *n;
|
---|
358 | for (int j = 1; j <= i__1; ++j) {
|
---|
359 | dginit += g[j] * s[j];
|
---|
360 | // L10:
|
---|
361 | }
|
---|
362 | if (dginit >= zero) {
|
---|
363 | ExEnv::out0() << indent
|
---|
364 | << "MCSearch: "
|
---|
365 | << "The search direction is not a descent direction"
|
---|
366 | << std::endl;
|
---|
367 | return;
|
---|
368 | }
|
---|
369 |
|
---|
370 | // INITIALIZE LOCAL VARIABLES.
|
---|
371 |
|
---|
372 | brackt = false;
|
---|
373 | stage1 = true;
|
---|
374 | *nfev = 0;
|
---|
375 | finit = *f;
|
---|
376 | dgtest = *ftol * dginit;
|
---|
377 | width = stpmax_ - stpmin_;
|
---|
378 | width1 = width / p5;
|
---|
379 | i__1 = *n;
|
---|
380 | for (int j = 1; j <= i__1; ++j) {
|
---|
381 | wa[j] = x[j];
|
---|
382 | // L20:
|
---|
383 | }
|
---|
384 |
|
---|
385 | // THE VARIABLES STX, FX, DGX CONTAIN THE VALUES OF THE STEP,
|
---|
386 | // FUNCTION, AND DIRECTIONAL DERIVATIVE AT THE BEST STEP.
|
---|
387 | // THE VARIABLES STY, FY, DGY CONTAIN THE VALUE OF THE STEP,
|
---|
388 | // FUNCTION, AND DERIVATIVE AT THE OTHER ENDPOINT OF
|
---|
389 | // THE INTERVAL OF UNCERTAINTY.
|
---|
390 | // THE VARIABLES STP, F, DG CONTAIN THE VALUES OF THE STEP,
|
---|
391 | // FUNCTION, AND DERIVATIVE AT THE CURRENT STEP.
|
---|
392 |
|
---|
393 | stx = zero;
|
---|
394 | fx = finit;
|
---|
395 | dgx = dginit;
|
---|
396 | sty = zero;
|
---|
397 | fy = finit;
|
---|
398 | dgy = dginit;
|
---|
399 |
|
---|
400 | // START OF ITERATION.
|
---|
401 |
|
---|
402 | L30:
|
---|
403 |
|
---|
404 | // SET THE MINIMUM AND MAXIMUM STEPS TO CORRESPOND
|
---|
405 | // TO THE PRESENT INTERVAL OF UNCERTAINTY.
|
---|
406 |
|
---|
407 | if (brackt) {
|
---|
408 | stmin = min(stx,sty);
|
---|
409 | stmax = max(stx,sty);
|
---|
410 | } else {
|
---|
411 | stmin = stx;
|
---|
412 | stmax = *stp + xtrapf * (*stp - stx);
|
---|
413 | }
|
---|
414 |
|
---|
415 | // FORCE THE STEP TO BE WITHIN THE BOUNDS STPMAX AND STPMIN.
|
---|
416 |
|
---|
417 | *stp = max(*stp,stpmin_);
|
---|
418 | *stp = min(*stp,stpmax_);
|
---|
419 |
|
---|
420 | // IF AN UNUSUAL TERMINATION IS TO OCCUR THEN LET
|
---|
421 | // STP BE THE LOWEST POINT OBTAINED SO FAR.
|
---|
422 |
|
---|
423 | if (brackt && (*stp <= stmin || *stp >= stmax) || *nfev >= *maxfev - 1 ||
|
---|
424 | infoc == 0 || brackt && stmax - stmin <= *xtol * stmax) {
|
---|
425 | *stp = stx;
|
---|
426 | }
|
---|
427 |
|
---|
428 | // EVALUATE THE FUNCTION AND GRADIENT AT STP
|
---|
429 | // AND COMPUTE THE DIRECTIONAL DERIVATIVE.
|
---|
430 | // We return to main program to obtain F and G.
|
---|
431 |
|
---|
432 | i__1 = *n;
|
---|
433 | for (int j = 1; j <= i__1; ++j) {
|
---|
434 | x[j] = wa[j] + *stp * s[j];
|
---|
435 | // L40:
|
---|
436 | }
|
---|
437 | *info = -1;
|
---|
438 | return;
|
---|
439 |
|
---|
440 | L45:
|
---|
441 | *info = 0;
|
---|
442 | ++(*nfev);
|
---|
443 | dg = zero;
|
---|
444 | i__1 = *n;
|
---|
445 | for (int j = 1; j <= i__1; ++j) {
|
---|
446 | dg += g[j] * s[j];
|
---|
447 | // L50:
|
---|
448 | }
|
---|
449 | ftest1 = finit + *stp * dgtest;
|
---|
450 |
|
---|
451 | // TEST FOR CONVERGENCE.
|
---|
452 |
|
---|
453 | if (brackt && (*stp <= stmin || *stp >= stmax) || infoc == 0) {
|
---|
454 | *info = 6;
|
---|
455 | }
|
---|
456 | if (*stp == stpmax_ && *f <= ftest1 && dg <= dgtest) {
|
---|
457 | *info = 5;
|
---|
458 | }
|
---|
459 | if (*stp == stpmin_ && (*f > ftest1 || dg >= dgtest)) {
|
---|
460 | *info = 4;
|
---|
461 | }
|
---|
462 | if (*nfev >= *maxfev) {
|
---|
463 | *info = 3;
|
---|
464 | }
|
---|
465 | if (brackt && stmax - stmin <= *xtol * stmax) {
|
---|
466 | *info = 2;
|
---|
467 | }
|
---|
468 | if (*f <= ftest1 && fabs(dg) <= gtol_ * (-dginit)) {
|
---|
469 | *info = 1;
|
---|
470 | }
|
---|
471 |
|
---|
472 | // CHECK FOR TERMINATION.
|
---|
473 |
|
---|
474 | if (*info != 0) {
|
---|
475 | return;
|
---|
476 | }
|
---|
477 |
|
---|
478 | // IN THE FIRST STAGE WE SEEK A STEP FOR WHICH THE MODIFIED
|
---|
479 | // FUNCTION HAS A NONPOSITIVE VALUE AND NONNEGATIVE DERIVATIVE.
|
---|
480 |
|
---|
481 | if (stage1 && *f <= ftest1 && dg >= min(*ftol,gtol_) * dginit) {
|
---|
482 | stage1 = false;
|
---|
483 | }
|
---|
484 |
|
---|
485 | // A MODIFIED FUNCTION IS USED TO PREDICT THE STEP ONLY IF
|
---|
486 | // WE HAVE NOT OBTAINED A STEP FOR WHICH THE MODIFIED
|
---|
487 | // FUNCTION HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE
|
---|
488 | // DERIVATIVE, AND IF A LOWER FUNCTION VALUE HAS BEEN
|
---|
489 | // OBTAINED BUT THE DECREASE IS NOT SUFFICIENT.
|
---|
490 |
|
---|
491 | if (stage1 && *f <= fx && *f > ftest1) {
|
---|
492 |
|
---|
493 | // DEFINE THE MODIFIED FUNCTION AND DERIVATIVE VALUES.
|
---|
494 |
|
---|
495 | fm = *f - *stp * dgtest;
|
---|
496 | fxm = fx - stx * dgtest;
|
---|
497 | fym = fy - sty * dgtest;
|
---|
498 | dgm = dg - dgtest;
|
---|
499 | dgxm = dgx - dgtest;
|
---|
500 | dgym = dgy - dgtest;
|
---|
501 |
|
---|
502 | // CALL CSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY
|
---|
503 | // AND TO COMPUTE THE NEW STEP.
|
---|
504 |
|
---|
505 | mcstep(&stx, &fxm, &dgxm, &sty, &fym, &dgym, stp, &fm, &dgm, &brackt,
|
---|
506 | &stmin, &stmax, &infoc);
|
---|
507 |
|
---|
508 | // RESET THE FUNCTION AND GRADIENT VALUES FOR F.
|
---|
509 |
|
---|
510 | fx = fxm + stx * dgtest;
|
---|
511 | fy = fym + sty * dgtest;
|
---|
512 | dgx = dgxm + dgtest;
|
---|
513 | dgy = dgym + dgtest;
|
---|
514 | } else {
|
---|
515 |
|
---|
516 | // CALL MCSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY
|
---|
517 | // AND TO COMPUTE THE NEW STEP.
|
---|
518 |
|
---|
519 | mcstep(&stx, &fx, &dgx, &sty, &fy, &dgy, stp, f, &dg, &brackt, &
|
---|
520 | stmin, &stmax, &infoc);
|
---|
521 | }
|
---|
522 |
|
---|
523 | // FORCE A SUFFICIENT DECREASE IN THE SIZE OF THE
|
---|
524 | // INTERVAL OF UNCERTAINTY.
|
---|
525 |
|
---|
526 | if (brackt) {
|
---|
527 | if ((d__1 = sty - stx, fabs(d__1)) >= p66 * width1) {
|
---|
528 | *stp = stx + p5 * (sty - stx);
|
---|
529 | }
|
---|
530 | width1 = width;
|
---|
531 | width = (d__1 = sty - stx, fabs(d__1));
|
---|
532 | }
|
---|
533 |
|
---|
534 | // END OF ITERATION.
|
---|
535 |
|
---|
536 | goto L30;
|
---|
537 |
|
---|
538 | // LAST LINE OF SUBROUTINE MCSRCH.
|
---|
539 |
|
---|
540 | } // mcsrch_
|
---|
541 |
|
---|
542 | void
|
---|
543 | MCSearch::mcstep(double *stx, double *fx, double *dx,
|
---|
544 | double *sty, double *fy, double *dy, double *stp,
|
---|
545 | double *fp, double *dp, bool *brackt, double *stpmin,
|
---|
546 | double *stpmax, int *info)
|
---|
547 | {
|
---|
548 | // System generated locals
|
---|
549 | double d__1, d__2, d__3;
|
---|
550 |
|
---|
551 | // SUBROUTINE MCSTEP
|
---|
552 |
|
---|
553 | // THE PURPOSE OF MCSTEP IS TO COMPUTE A SAFEGUARDED STEP FOR
|
---|
554 | // A LINESEARCH AND TO UPDATE AN INTERVAL OF UNCERTAINTY FOR
|
---|
555 | // A MINIMIZER OF THE FUNCTION.
|
---|
556 |
|
---|
557 | // THE PARAMETER STX CONTAINS THE STEP WITH THE LEAST FUNCTION
|
---|
558 | // VALUE. THE PARAMETER STP CONTAINS THE CURRENT STEP. IT IS
|
---|
559 | // ASSUMED THAT THE DERIVATIVE AT STX IS NEGATIVE IN THE
|
---|
560 | // DIRECTION OF THE STEP. IF BRACKT IS SET TRUE THEN A
|
---|
561 | // MINIMIZER HAS BEEN BRACKETED IN AN INTERVAL OF UNCERTAINTY
|
---|
562 | // WITH ENDPOINTS STX AND STY.
|
---|
563 |
|
---|
564 | // THE SUBROUTINE STATEMENT IS
|
---|
565 |
|
---|
566 | // SUBROUTINE MCSTEP(STX,FX,DX,STY,FY,DY,STP,FP,DP,BRACKT,
|
---|
567 | // STPMIN,STPMAX,INFO)
|
---|
568 |
|
---|
569 | // WHERE
|
---|
570 |
|
---|
571 | // STX, FX, AND DX ARE VARIABLES WHICH SPECIFY THE STEP,
|
---|
572 | // THE FUNCTION, AND THE DERIVATIVE AT THE BEST STEP OBTAINED
|
---|
573 | // SO FAR. THE DERIVATIVE MUST BE NEGATIVE IN THE DIRECTION
|
---|
574 | // OF THE STEP, THAT IS, DX AND STP-STX MUST HAVE OPPOSITE
|
---|
575 | // SIGNS. ON OUTPUT THESE PARAMETERS ARE UPDATED APPROPRIATELY.
|
---|
576 |
|
---|
577 | // STY, FY, AND DY ARE VARIABLES WHICH SPECIFY THE STEP,
|
---|
578 | // THE FUNCTION, AND THE DERIVATIVE AT THE OTHER ENDPOINT OF
|
---|
579 | // THE INTERVAL OF UNCERTAINTY. ON OUTPUT THESE PARAMETERS ARE
|
---|
580 | // UPDATED APPROPRIATELY.
|
---|
581 |
|
---|
582 | // STP, FP, AND DP ARE VARIABLES WHICH SPECIFY THE STEP,
|
---|
583 | // THE FUNCTION, AND THE DERIVATIVE AT THE CURRENT STEP.
|
---|
584 | // IF BRACKT IS SET TRUE THEN ON INPUT STP MUST BE
|
---|
585 | // BETWEEN STX AND STY. ON OUTPUT STP IS SET TO THE NEW STEP.
|
---|
586 |
|
---|
587 | // BRACKT IS A LOGICAL VARIABLE WHICH SPECIFIES IF A MINIMIZER
|
---|
588 | // HAS BEEN BRACKETED. IF THE MINIMIZER HAS NOT BEEN BRACKETED
|
---|
589 | // THEN ON INPUT BRACKT MUST BE SET FALSE. IF THE MINIMIZER
|
---|
590 | // IS BRACKETED THEN ON OUTPUT BRACKT IS SET TRUE.
|
---|
591 |
|
---|
592 | // STPMIN AND STPMAX ARE INPUT VARIABLES WHICH SPECIFY LOWER
|
---|
593 | // AND UPPER BOUNDS FOR THE STEP.
|
---|
594 |
|
---|
595 | // INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS:
|
---|
596 | // IF INFO = 1,2,3,4,5, THEN THE STEP HAS BEEN COMPUTED
|
---|
597 | // ACCORDING TO ONE OF THE FIVE CASES BELOW. OTHERWISE
|
---|
598 | // INFO = 0, AND THIS INDICATES IMPROPER INPUT PARAMETERS.
|
---|
599 |
|
---|
600 | // SUBPROGRAMS CALLED
|
---|
601 |
|
---|
602 | // FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT
|
---|
603 |
|
---|
604 | // ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983
|
---|
605 | // JORGE J. MORE', DAVID J. THUENTE
|
---|
606 |
|
---|
607 | *info = 0;
|
---|
608 |
|
---|
609 | // CHECK THE INPUT PARAMETERS FOR ERRORS.
|
---|
610 |
|
---|
611 | if (*brackt && (*stp <= min(*stx,*sty) || *stp >= max(*stx,*sty)) || *dx *
|
---|
612 | (*stp - *stx) >= 0.f || *stpmax < *stpmin) {
|
---|
613 | return;
|
---|
614 | }
|
---|
615 |
|
---|
616 | // DETERMINE IF THE DERIVATIVES HAVE OPPOSITE SIGN.
|
---|
617 |
|
---|
618 | sgnd = *dp * (*dx / fabs(*dx));
|
---|
619 |
|
---|
620 | // FIRST CASE. A HIGHER FUNCTION VALUE.
|
---|
621 | // THE MINIMUM IS BRACKETED. IF THE CUBIC STEP IS CLOSER
|
---|
622 | // TO STX THAN THE QUADRATIC STEP, THE CUBIC STEP IS TAKEN,
|
---|
623 | // ELSE THE AVERAGE OF THE CUBIC AND QUADRATIC STEPS IS TAKEN.
|
---|
624 |
|
---|
625 | if (*fp > *fx) {
|
---|
626 | *info = 1;
|
---|
627 | bound = true;
|
---|
628 | theta = (*fx - *fp) * 3 / (*stp - *stx) + *dx + *dp;
|
---|
629 | // Computing MAX
|
---|
630 | d__1 = fabs(theta), d__2 = fabs(*dx), d__1 = max(d__1,d__2), d__2 = fabs(
|
---|
631 | *dp);
|
---|
632 | s = max(d__1,d__2);
|
---|
633 | // Computing 2nd power
|
---|
634 | d__1 = theta / s;
|
---|
635 | gamma = s * sqrt(d__1 * d__1 - *dx / s * (*dp / s));
|
---|
636 | if (*stp < *stx) {
|
---|
637 | gamma = -gamma;
|
---|
638 | }
|
---|
639 | p = gamma - *dx + theta;
|
---|
640 | q = gamma - *dx + gamma + *dp;
|
---|
641 | r__ = p / q;
|
---|
642 | stpc = *stx + r__ * (*stp - *stx);
|
---|
643 | stpq = *stx + *dx / ((*fx - *fp) / (*stp - *stx) + *dx) / 2 * (*stp -
|
---|
644 | *stx);
|
---|
645 | if ((d__1 = stpc - *stx, fabs(d__1)) < (d__2 = stpq - *stx, fabs(d__2)))
|
---|
646 | {
|
---|
647 | stpf = stpc;
|
---|
648 | } else {
|
---|
649 | stpf = stpc + (stpq - stpc) / 2;
|
---|
650 | }
|
---|
651 | *brackt = true;
|
---|
652 |
|
---|
653 | // SECOND CASE. A LOWER FUNCTION VALUE AND DERIVATIVES OF
|
---|
654 | // OPPOSITE SIGN. THE MINIMUM IS BRACKETED. IF THE CUBIC
|
---|
655 | // STEP IS CLOSER TO STX THAN THE QUADRATIC (SECANT) STEP,
|
---|
656 | // THE CUBIC STEP IS TAKEN, ELSE THE QUADRATIC STEP IS TAKEN.
|
---|
657 |
|
---|
658 | } else if (sgnd < 0.f) {
|
---|
659 | *info = 2;
|
---|
660 | bound = false;
|
---|
661 | theta = (*fx - *fp) * 3 / (*stp - *stx) + *dx + *dp;
|
---|
662 | // Computing MAX
|
---|
663 | d__1 = fabs(theta), d__2 = fabs(*dx), d__1 = max(d__1,d__2), d__2 = fabs(
|
---|
664 | *dp);
|
---|
665 | s = max(d__1,d__2);
|
---|
666 | // Computing 2nd power
|
---|
667 | d__1 = theta / s;
|
---|
668 | gamma = s * sqrt(d__1 * d__1 - *dx / s * (*dp / s));
|
---|
669 | if (*stp > *stx) {
|
---|
670 | gamma = -gamma;
|
---|
671 | }
|
---|
672 | p = gamma - *dp + theta;
|
---|
673 | q = gamma - *dp + gamma + *dx;
|
---|
674 | r__ = p / q;
|
---|
675 | stpc = *stp + r__ * (*stx - *stp);
|
---|
676 | stpq = *stp + *dp / (*dp - *dx) * (*stx - *stp);
|
---|
677 | if ((d__1 = stpc - *stp, fabs(d__1)) > (d__2 = stpq - *stp, fabs(d__2)))
|
---|
678 | {
|
---|
679 | stpf = stpc;
|
---|
680 | } else {
|
---|
681 | stpf = stpq;
|
---|
682 | }
|
---|
683 | *brackt = true;
|
---|
684 |
|
---|
685 | // THIRD CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE
|
---|
686 | // SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DECREASES.
|
---|
687 | // THE CUBIC STEP IS ONLY USED IF THE CUBIC TENDS TO INFINITY
|
---|
688 | // IN THE DIRECTION OF THE STEP OR IF THE MINIMUM OF THE CUBIC
|
---|
689 | // IS BEYOND STP. OTHERWISE THE CUBIC STEP IS DEFINED TO BE
|
---|
690 | // EITHER STPMIN OR STPMAX. THE QUADRATIC (SECANT) STEP IS ALSO
|
---|
691 | // COMPUTED AND IF THE MINIMUM IS BRACKETED THEN THE THE STEP
|
---|
692 | // CLOSEST TO STX IS TAKEN, ELSE THE STEP FARTHEST AWAY IS TAKEN.
|
---|
693 |
|
---|
694 | } else if (fabs(*dp) < fabs(*dx)) {
|
---|
695 | *info = 3;
|
---|
696 | bound = true;
|
---|
697 | theta = (*fx - *fp) * 3 / (*stp - *stx) + *dx + *dp;
|
---|
698 | // Computing MAX
|
---|
699 | d__1 = fabs(theta), d__2 = fabs(*dx), d__1 = max(d__1,d__2), d__2 = fabs(
|
---|
700 | *dp);
|
---|
701 | s = max(d__1,d__2);
|
---|
702 |
|
---|
703 | // THE CASE GAMMA = 0 ONLY ARISES IF THE CUBIC DOES NOT TEND
|
---|
704 | // TO INFINITY IN THE DIRECTION OF THE STEP.
|
---|
705 |
|
---|
706 | // Computing MAX
|
---|
707 | // Computing 2nd power
|
---|
708 | d__3 = theta / s;
|
---|
709 | d__1 = 0., d__2 = d__3 * d__3 - *dx / s * (*dp / s);
|
---|
710 | gamma = s * sqrt((max(d__1,d__2)));
|
---|
711 | if (*stp > *stx) {
|
---|
712 | gamma = -gamma;
|
---|
713 | }
|
---|
714 | p = gamma - *dp + theta;
|
---|
715 | q = gamma + (*dx - *dp) + gamma;
|
---|
716 | r__ = p / q;
|
---|
717 | if (r__ < 0.f && gamma != 0.f) {
|
---|
718 | stpc = *stp + r__ * (*stx - *stp);
|
---|
719 | } else if (*stp > *stx) {
|
---|
720 | stpc = *stpmax;
|
---|
721 | } else {
|
---|
722 | stpc = *stpmin;
|
---|
723 | }
|
---|
724 | stpq = *stp + *dp / (*dp - *dx) * (*stx - *stp);
|
---|
725 | if (*brackt) {
|
---|
726 | if ((d__1 = *stp - stpc, fabs(d__1)) < (d__2 = *stp - stpq, fabs(
|
---|
727 | d__2))) {
|
---|
728 | stpf = stpc;
|
---|
729 | } else {
|
---|
730 | stpf = stpq;
|
---|
731 | }
|
---|
732 | } else {
|
---|
733 | if ((d__1 = *stp - stpc, fabs(d__1)) > (d__2 = *stp - stpq, fabs(
|
---|
734 | d__2))) {
|
---|
735 | stpf = stpc;
|
---|
736 | } else {
|
---|
737 | stpf = stpq;
|
---|
738 | }
|
---|
739 | }
|
---|
740 |
|
---|
741 | // FOURTH CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE
|
---|
742 | // SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DOES
|
---|
743 | // NOT DECREASE. IF THE MINIMUM IS NOT BRACKETED, THE STEP
|
---|
744 | // IS EITHER STPMIN OR STPMAX, ELSE THE CUBIC STEP IS TAKEN.
|
---|
745 |
|
---|
746 | } else {
|
---|
747 | *info = 4;
|
---|
748 | bound = false;
|
---|
749 | if (*brackt) {
|
---|
750 | theta = (*fp - *fy) * 3 / (*sty - *stp) + *dy + *dp;
|
---|
751 | // Computing MAX
|
---|
752 | d__1 = fabs(theta), d__2 = fabs(*dy), d__1 = max(d__1,d__2), d__2 =
|
---|
753 | fabs(*dp);
|
---|
754 | s = max(d__1,d__2);
|
---|
755 | // Computing 2nd power
|
---|
756 | d__1 = theta / s;
|
---|
757 | gamma = s * sqrt(d__1 * d__1 - *dy / s * (*dp / s));
|
---|
758 | if (*stp > *sty) {
|
---|
759 | gamma = -gamma;
|
---|
760 | }
|
---|
761 | p = gamma - *dp + theta;
|
---|
762 | q = gamma - *dp + gamma + *dy;
|
---|
763 | r__ = p / q;
|
---|
764 | stpc = *stp + r__ * (*sty - *stp);
|
---|
765 | stpf = stpc;
|
---|
766 | } else if (*stp > *stx) {
|
---|
767 | stpf = *stpmax;
|
---|
768 | } else {
|
---|
769 | stpf = *stpmin;
|
---|
770 | }
|
---|
771 | }
|
---|
772 |
|
---|
773 | // UPDATE THE INTERVAL OF UNCERTAINTY. THIS UPDATE DOES NOT
|
---|
774 | // DEPEND ON THE NEW STEP OR THE CASE ANALYSIS ABOVE.
|
---|
775 |
|
---|
776 | if (*fp > *fx) {
|
---|
777 | *sty = *stp;
|
---|
778 | *fy = *fp;
|
---|
779 | *dy = *dp;
|
---|
780 | } else {
|
---|
781 | if (sgnd < 0.) {
|
---|
782 | *sty = *stx;
|
---|
783 | *fy = *fx;
|
---|
784 | *dy = *dx;
|
---|
785 | }
|
---|
786 | *stx = *stp;
|
---|
787 | *fx = *fp;
|
---|
788 | *dx = *dp;
|
---|
789 | }
|
---|
790 |
|
---|
791 | // COMPUTE THE NEW STEP AND SAFEGUARD IT.
|
---|
792 |
|
---|
793 | stpf = min(*stpmax,stpf);
|
---|
794 | stpf = max(*stpmin,stpf);
|
---|
795 | *stp = stpf;
|
---|
796 | if (*brackt && bound) {
|
---|
797 | if (*sty > *stx) {
|
---|
798 | // Computing MIN
|
---|
799 | d__1 = *stx + (*sty - *stx) * .66;
|
---|
800 | *stp = min(d__1,*stp);
|
---|
801 | } else {
|
---|
802 | // Computing MAX
|
---|
803 | d__1 = *stx + (*sty - *stx) * .66;
|
---|
804 | *stp = max(d__1,*stp);
|
---|
805 | }
|
---|
806 | }
|
---|
807 | return;
|
---|
808 |
|
---|
809 | // LAST LINE OF SUBROUTINE MCSTEP.
|
---|
810 |
|
---|
811 | } // mcstep_
|
---|
812 |
|
---|
813 | }
|
---|
814 |
|
---|