| 1 | // These routines were translated from lbfgs.f by f2c (version 20030320) | 
|---|
| 2 | // and modified by Curtis Janssen. | 
|---|
| 3 |  | 
|---|
| 4 | #ifdef __GNUC__ | 
|---|
| 5 | #pragma implementation | 
|---|
| 6 | #endif | 
|---|
| 7 |  | 
|---|
| 8 | #include <math.h> | 
|---|
| 9 | #include <util/class/scexception.h> | 
|---|
| 10 | #include <math/optimize/mcsearch.h> | 
|---|
| 11 |  | 
|---|
| 12 | static inline double min(double a, double b) | 
|---|
| 13 | { | 
|---|
| 14 | return (a<b)?a:b; | 
|---|
| 15 | } | 
|---|
| 16 |  | 
|---|
| 17 | static inline double max(double a, double b) | 
|---|
| 18 | { | 
|---|
| 19 | return (a<b)?b:a; | 
|---|
| 20 | } | 
|---|
| 21 |  | 
|---|
| 22 |  | 
|---|
| 23 | using namespace sc; | 
|---|
| 24 |  | 
|---|
| 25 | namespace sc { | 
|---|
| 26 |  | 
|---|
| 27 | static ClassDesc MCSearch_cd( | 
|---|
| 28 | typeid(MCSearch),"MCSearch",1,"public LineOpt", | 
|---|
| 29 | 0, create<MCSearch>, 0); | 
|---|
| 30 |  | 
|---|
| 31 | MCSearch::MCSearch(const Ref<KeyVal>& keyval) | 
|---|
| 32 | : LineOpt(keyval) | 
|---|
| 33 | { | 
|---|
| 34 | } | 
|---|
| 35 |  | 
|---|
| 36 | MCSearch::~MCSearch() | 
|---|
| 37 | { | 
|---|
| 38 | } | 
|---|
| 39 |  | 
|---|
| 40 | void | 
|---|
| 41 | MCSearch::mcinit() | 
|---|
| 42 | { | 
|---|
| 43 | info_ = 0; | 
|---|
| 44 |  | 
|---|
| 45 | // work area | 
|---|
| 46 | wa_.reset(new double[function()->dimension()->n()]); | 
|---|
| 47 | } | 
|---|
| 48 |  | 
|---|
| 49 | void | 
|---|
| 50 | MCSearch::init(RefSCVector& direction) | 
|---|
| 51 | { | 
|---|
| 52 | LineOpt::init(direction); | 
|---|
| 53 | mcinit(); | 
|---|
| 54 | } | 
|---|
| 55 |  | 
|---|
| 56 | void | 
|---|
| 57 | MCSearch::init(RefSCVector& direction, Ref<Function> function) | 
|---|
| 58 | { | 
|---|
| 59 | LineOpt::init(direction, function); | 
|---|
| 60 | mcinit(); | 
|---|
| 61 | } | 
|---|
| 62 |  | 
|---|
| 63 | int | 
|---|
| 64 | MCSearch::update() | 
|---|
| 65 | { | 
|---|
| 66 | int n = function()->dimension()->n(); | 
|---|
| 67 |  | 
|---|
| 68 | // function coordinate | 
|---|
| 69 | auto_vec<double> x(new double[n]); | 
|---|
| 70 | function()->get_x()->convert(x.get()); | 
|---|
| 71 |  | 
|---|
| 72 | // gradient | 
|---|
| 73 | auto_vec<double> g(new double[n]); | 
|---|
| 74 | function()->gradient()->convert(g.get()); | 
|---|
| 75 |  | 
|---|
| 76 | // function value | 
|---|
| 77 | double f = function()->value(); | 
|---|
| 78 |  | 
|---|
| 79 | // step direction | 
|---|
| 80 | auto_vec<double> s(new double[n]); | 
|---|
| 81 | search_direction_->convert(s.get()); | 
|---|
| 82 |  | 
|---|
| 83 | // step size; | 
|---|
| 84 | double stp; | 
|---|
| 85 | stp = 1.0; | 
|---|
| 86 |  | 
|---|
| 87 | // value tolerance | 
|---|
| 88 | double ftol; | 
|---|
| 89 | ftol = 1.0e-4; | 
|---|
| 90 |  | 
|---|
| 91 | // the machine precision | 
|---|
| 92 | double xtol; | 
|---|
| 93 | xtol = DBL_EPSILON; | 
|---|
| 94 |  | 
|---|
| 95 | // maximum number of function evaluations | 
|---|
| 96 | int maxfev = 20; | 
|---|
| 97 |  | 
|---|
| 98 | // number of function evaluations | 
|---|
| 99 | int nfev = 0; | 
|---|
| 100 |  | 
|---|
| 101 | // controls accuracy of line search routine | 
|---|
| 102 | gtol_ = 0.9; | 
|---|
| 103 |  | 
|---|
| 104 | // minimum step size | 
|---|
| 105 | stpmin_ = DBL_EPSILON; | 
|---|
| 106 |  | 
|---|
| 107 | // maximum step size | 
|---|
| 108 | stpmax_ = 1.0e20; | 
|---|
| 109 |  | 
|---|
| 110 | mcsrch(&n, x.get(), &f,g.get(), s.get(), &stp, &ftol, | 
|---|
| 111 | &xtol, &maxfev, &info_, &nfev, wa_.get()); | 
|---|
| 112 |  | 
|---|
| 113 | //         INFO = 0  IMPROPER INPUT PARAMETERS. | 
|---|
| 114 | if (info_ == 0) { | 
|---|
| 115 | throw ProgrammingError("error in MCSearch: info == 0", | 
|---|
| 116 | __FILE__, | 
|---|
| 117 | __LINE__, | 
|---|
| 118 | class_desc()); | 
|---|
| 119 | } | 
|---|
| 120 |  | 
|---|
| 121 | //         INFO =-1  A RETURN IS MADE TO COMPUTE THE FUNCTION AND GRADIENT. | 
|---|
| 122 | if (info_ == -1) { | 
|---|
| 123 | RefSCVector new_x = function()->get_x()->copy(); | 
|---|
| 124 | new_x->assign(x.get()); | 
|---|
| 125 | function()->set_x(new_x); | 
|---|
| 126 | return 0; | 
|---|
| 127 | } | 
|---|
| 128 |  | 
|---|
| 129 | //         INFO = 1  THE SUFFICIENT DECREASE CONDITION AND THE | 
|---|
| 130 | //                   DIRECTIONAL DERIVATIVE CONDITION HOLD. | 
|---|
| 131 | if (info_ == 1) { | 
|---|
| 132 | return 1; | 
|---|
| 133 | } | 
|---|
| 134 |  | 
|---|
| 135 | //         INFO = 2  RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY | 
|---|
| 136 | //                   IS AT MOST XTOL. | 
|---|
| 137 | if (info_ == 2) { | 
|---|
| 138 | throw AlgorithmException("error in MCSearch: info == 2", | 
|---|
| 139 | __FILE__, | 
|---|
| 140 | __LINE__, | 
|---|
| 141 | class_desc()); | 
|---|
| 142 | return 1; | 
|---|
| 143 | } | 
|---|
| 144 |  | 
|---|
| 145 | //         INFO = 3  NUMBER OF CALLS TO FCN HAS REACHED MAXFEV. | 
|---|
| 146 | if (info_ == 3) { | 
|---|
| 147 | throw ProgrammingError("error in MCSearch: info == 3", | 
|---|
| 148 | __FILE__, | 
|---|
| 149 | __LINE__, | 
|---|
| 150 | class_desc()); | 
|---|
| 151 | return 1; | 
|---|
| 152 | } | 
|---|
| 153 |  | 
|---|
| 154 | //         INFO = 4  THE STEP IS AT THE LOWER BOUND STPMIN. | 
|---|
| 155 | if (info_ == 4) { | 
|---|
| 156 | throw AlgorithmException("error in MCSearch: info == 4", | 
|---|
| 157 | __FILE__, | 
|---|
| 158 | __LINE__, | 
|---|
| 159 | class_desc()); | 
|---|
| 160 | return 1; | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | //         INFO = 5  THE STEP IS AT THE UPPER BOUND STPMAX. | 
|---|
| 164 | if (info_ == 5) { | 
|---|
| 165 | throw AlgorithmException("error in MCSearch: info == 5", | 
|---|
| 166 | __FILE__, | 
|---|
| 167 | __LINE__, | 
|---|
| 168 | class_desc()); | 
|---|
| 169 | return 1; | 
|---|
| 170 | } | 
|---|
| 171 |  | 
|---|
| 172 | //         INFO = 6  ROUNDING ERRORS PREVENT FURTHER PROGRESS. | 
|---|
| 173 | //                   THERE MAY NOT BE A STEP WHICH SATISFIES THE | 
|---|
| 174 | //                   SUFFICIENT DECREASE AND CURVATURE CONDITIONS. | 
|---|
| 175 | //                   TOLERANCES MAY BE TOO SMALL. | 
|---|
| 176 | if (info_ == 6) { | 
|---|
| 177 | throw AlgorithmException("error in MCSearch: info == 6", | 
|---|
| 178 | __FILE__, | 
|---|
| 179 | __LINE__, | 
|---|
| 180 | class_desc()); | 
|---|
| 181 | return 1; | 
|---|
| 182 | } | 
|---|
| 183 |  | 
|---|
| 184 | throw ProgrammingError("error in MCSearch: unknown info", | 
|---|
| 185 | __FILE__, | 
|---|
| 186 | __LINE__, | 
|---|
| 187 | class_desc()); | 
|---|
| 188 |  | 
|---|
| 189 | return 0; | 
|---|
| 190 | } | 
|---|
| 191 |  | 
|---|
| 192 | //     ************************** | 
|---|
| 193 | //     LINE SEARCH ROUTINE MCSRCH | 
|---|
| 194 | //     ************************** | 
|---|
| 195 |  | 
|---|
| 196 | void | 
|---|
| 197 | MCSearch::mcsrch(int *n, double *x, double *f, | 
|---|
| 198 | double *g, double *s, double *stp, double *ftol, | 
|---|
| 199 | double *xtol, int *maxfev, int *info, int *nfev, | 
|---|
| 200 | double *wa) | 
|---|
| 201 | { | 
|---|
| 202 | // Initialized data | 
|---|
| 203 |  | 
|---|
| 204 | const double p5 = .5; | 
|---|
| 205 | const double p66 = .66; | 
|---|
| 206 | const double xtrapf = 4.; | 
|---|
| 207 | const double zero = 0.; | 
|---|
| 208 |  | 
|---|
| 209 | // System generated locals | 
|---|
| 210 | int i__1; | 
|---|
| 211 | double d__1; | 
|---|
| 212 |  | 
|---|
| 213 | //                     SUBROUTINE MCSRCH | 
|---|
| 214 |  | 
|---|
| 215 | //     A slight modification of the subroutine CSRCH of More' and Thuente. | 
|---|
| 216 | //     The changes are to allow reverse communication, and do not affect | 
|---|
| 217 | //     the performance of the routine. | 
|---|
| 218 |  | 
|---|
| 219 | //     THE PURPOSE OF MCSRCH IS TO FIND A STEP WHICH SATISFIES | 
|---|
| 220 | //     A SUFFICIENT DECREASE CONDITION AND A CURVATURE CONDITION. | 
|---|
| 221 |  | 
|---|
| 222 | //     AT EACH STAGE THE SUBROUTINE UPDATES AN INTERVAL OF | 
|---|
| 223 | //     UNCERTAINTY WITH ENDPOINTS STX AND STY. THE INTERVAL OF | 
|---|
| 224 | //     UNCERTAINTY IS INITIALLY CHOSEN SO THAT IT CONTAINS A | 
|---|
| 225 | //     MINIMIZER OF THE MODIFIED FUNCTION | 
|---|
| 226 |  | 
|---|
| 227 | //          F(X+STP*S) - F(X) - FTOL*STP*(GRADF(X)'S). | 
|---|
| 228 |  | 
|---|
| 229 | //     IF A STEP IS OBTAINED FOR WHICH THE MODIFIED FUNCTION | 
|---|
| 230 | //     HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE DERIVATIVE, | 
|---|
| 231 | //     THEN THE INTERVAL OF UNCERTAINTY IS CHOSEN SO THAT IT | 
|---|
| 232 | //     CONTAINS A MINIMIZER OF F(X+STP*S). | 
|---|
| 233 |  | 
|---|
| 234 | //     THE ALGORITHM IS DESIGNED TO FIND A STEP WHICH SATISFIES | 
|---|
| 235 | //     THE SUFFICIENT DECREASE CONDITION | 
|---|
| 236 |  | 
|---|
| 237 | //           F(X+STP*S) .LE. F(X) + FTOL*STP*(GRADF(X)'S), | 
|---|
| 238 |  | 
|---|
| 239 | //     AND THE CURVATURE CONDITION | 
|---|
| 240 |  | 
|---|
| 241 | //           ABS(GRADF(X+STP*S)'S)) .LE. GTOL*ABS(GRADF(X)'S). | 
|---|
| 242 |  | 
|---|
| 243 | //     IF FTOL IS LESS THAN GTOL AND IF, FOR EXAMPLE, THE FUNCTION | 
|---|
| 244 | //     IS BOUNDED BELOW, THEN THERE IS ALWAYS A STEP WHICH SATISFIES | 
|---|
| 245 | //     BOTH CONDITIONS. IF NO STEP CAN BE FOUND WHICH SATISFIES BOTH | 
|---|
| 246 | //     CONDITIONS, THEN THE ALGORITHM USUALLY STOPS WHEN ROUNDING | 
|---|
| 247 | //     ERRORS PREVENT FURTHER PROGRESS. IN THIS CASE STP ONLY | 
|---|
| 248 | //     SATISFIES THE SUFFICIENT DECREASE CONDITION. | 
|---|
| 249 |  | 
|---|
| 250 | //     THE SUBROUTINE STATEMENT IS | 
|---|
| 251 |  | 
|---|
| 252 | //        SUBROUTINE MCSRCH(N,X,F,G,S,STP,FTOL,XTOL, MAXFEV,INFO,NFEV,WA) | 
|---|
| 253 | //     WHERE | 
|---|
| 254 |  | 
|---|
| 255 | //       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER | 
|---|
| 256 | //         OF VARIABLES. | 
|---|
| 257 |  | 
|---|
| 258 | //       X IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE | 
|---|
| 259 | //         BASE POINT FOR THE LINE SEARCH. ON OUTPUT IT CONTAINS | 
|---|
| 260 | //         X + STP*S. | 
|---|
| 261 |  | 
|---|
| 262 | //       F IS A VARIABLE. ON INPUT IT MUST CONTAIN THE VALUE OF F | 
|---|
| 263 | //         AT X. ON OUTPUT IT CONTAINS THE VALUE OF F AT X + STP*S. | 
|---|
| 264 |  | 
|---|
| 265 | //       G IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE | 
|---|
| 266 | //         GRADIENT OF F AT X. ON OUTPUT IT CONTAINS THE GRADIENT | 
|---|
| 267 | //         OF F AT X + STP*S. | 
|---|
| 268 |  | 
|---|
| 269 | //       S IS AN INPUT ARRAY OF LENGTH N WHICH SPECIFIES THE | 
|---|
| 270 | //         SEARCH DIRECTION. | 
|---|
| 271 |  | 
|---|
| 272 | //       STP IS A NONNEGATIVE VARIABLE. ON INPUT STP CONTAINS AN | 
|---|
| 273 | //         INITIAL ESTIMATE OF A SATISFACTORY STEP. ON OUTPUT | 
|---|
| 274 | //         STP CONTAINS THE FINAL ESTIMATE. | 
|---|
| 275 |  | 
|---|
| 276 | //       FTOL AND GTOL ARE NONNEGATIVE INPUT VARIABLES. (In this reverse | 
|---|
| 277 | //         communication implementation GTOL is defined in a COMMON | 
|---|
| 278 | //         statement.) TERMINATION OCCURS WHEN THE SUFFICIENT DECREASE | 
|---|
| 279 | //         CONDITION AND THE DIRECTIONAL DERIVATIVE CONDITION ARE | 
|---|
| 280 | //         SATISFIED. | 
|---|
| 281 |  | 
|---|
| 282 | //       XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS | 
|---|
| 283 | //         WHEN THE RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY | 
|---|
| 284 | //         IS AT MOST XTOL. | 
|---|
| 285 |  | 
|---|
| 286 | //       STPMIN AND STPMAX ARE NONNEGATIVE INPUT VARIABLES WHICH | 
|---|
| 287 | //         SPECIFY LOWER AND UPPER BOUNDS FOR THE STEP. (In this reverse | 
|---|
| 288 | //         communication implementatin they are defined in a COMMON | 
|---|
| 289 | //         statement). | 
|---|
| 290 |  | 
|---|
| 291 | //       MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION | 
|---|
| 292 | //         OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST | 
|---|
| 293 | //         MAXFEV BY THE END OF AN ITERATION. | 
|---|
| 294 |  | 
|---|
| 295 | //       INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS: | 
|---|
| 296 |  | 
|---|
| 297 | //         INFO = 0  IMPROPER INPUT PARAMETERS. | 
|---|
| 298 |  | 
|---|
| 299 | //         INFO =-1  A RETURN IS MADE TO COMPUTE THE FUNCTION AND GRADIENT. | 
|---|
| 300 |  | 
|---|
| 301 | //         INFO = 1  THE SUFFICIENT DECREASE CONDITION AND THE | 
|---|
| 302 | //                   DIRECTIONAL DERIVATIVE CONDITION HOLD. | 
|---|
| 303 |  | 
|---|
| 304 | //         INFO = 2  RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY | 
|---|
| 305 | //                   IS AT MOST XTOL. | 
|---|
| 306 |  | 
|---|
| 307 | //         INFO = 3  NUMBER OF CALLS TO FCN HAS REACHED MAXFEV. | 
|---|
| 308 |  | 
|---|
| 309 | //         INFO = 4  THE STEP IS AT THE LOWER BOUND STPMIN. | 
|---|
| 310 |  | 
|---|
| 311 | //         INFO = 5  THE STEP IS AT THE UPPER BOUND STPMAX. | 
|---|
| 312 |  | 
|---|
| 313 | //         INFO = 6  ROUNDING ERRORS PREVENT FURTHER PROGRESS. | 
|---|
| 314 | //                   THERE MAY NOT BE A STEP WHICH SATISFIES THE | 
|---|
| 315 | //                   SUFFICIENT DECREASE AND CURVATURE CONDITIONS. | 
|---|
| 316 | //                   TOLERANCES MAY BE TOO SMALL. | 
|---|
| 317 |  | 
|---|
| 318 | //       NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF | 
|---|
| 319 | //         CALLS TO FCN. | 
|---|
| 320 |  | 
|---|
| 321 | //       WA IS A WORK ARRAY OF LENGTH N. | 
|---|
| 322 |  | 
|---|
| 323 | //     SUBPROGRAMS CALLED | 
|---|
| 324 |  | 
|---|
| 325 | //       MCSTEP | 
|---|
| 326 |  | 
|---|
| 327 | //       FORTRAN-SUPPLIED...ABS,MAX,MIN | 
|---|
| 328 |  | 
|---|
| 329 | //     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983 | 
|---|
| 330 | //     JORGE J. MORE', DAVID J. THUENTE | 
|---|
| 331 |  | 
|---|
| 332 | //     ********** | 
|---|
| 333 | // Parameter adjustments | 
|---|
| 334 | --wa; | 
|---|
| 335 | --s; | 
|---|
| 336 | --g; | 
|---|
| 337 | --x; | 
|---|
| 338 |  | 
|---|
| 339 | // Function Body | 
|---|
| 340 | if (*info == -1) { | 
|---|
| 341 | goto L45; | 
|---|
| 342 | } | 
|---|
| 343 | infoc = 1; | 
|---|
| 344 |  | 
|---|
| 345 | //     CHECK THE INPUT PARAMETERS FOR ERRORS. | 
|---|
| 346 |  | 
|---|
| 347 | if (*n <= 0 || *stp <= zero || *ftol < zero || gtol_ < zero || *xtol | 
|---|
| 348 | < zero || stpmin_ < zero || stpmax_ < stpmin_ || * | 
|---|
| 349 | maxfev <= 0) { | 
|---|
| 350 | return; | 
|---|
| 351 | } | 
|---|
| 352 |  | 
|---|
| 353 | //     COMPUTE THE INITIAL GRADIENT IN THE SEARCH DIRECTION | 
|---|
| 354 | //     AND CHECK THAT S IS A DESCENT DIRECTION. | 
|---|
| 355 |  | 
|---|
| 356 | dginit = zero; | 
|---|
| 357 | i__1 = *n; | 
|---|
| 358 | for (int j = 1; j <= i__1; ++j) { | 
|---|
| 359 | dginit += g[j] * s[j]; | 
|---|
| 360 | // L10: | 
|---|
| 361 | } | 
|---|
| 362 | if (dginit >= zero) { | 
|---|
| 363 | ExEnv::out0() << indent | 
|---|
| 364 | << "MCSearch: " | 
|---|
| 365 | << "The search direction is not a descent direction" | 
|---|
| 366 | << std::endl; | 
|---|
| 367 | return; | 
|---|
| 368 | } | 
|---|
| 369 |  | 
|---|
| 370 | //     INITIALIZE LOCAL VARIABLES. | 
|---|
| 371 |  | 
|---|
| 372 | brackt = false; | 
|---|
| 373 | stage1 = true; | 
|---|
| 374 | *nfev = 0; | 
|---|
| 375 | finit = *f; | 
|---|
| 376 | dgtest = *ftol * dginit; | 
|---|
| 377 | width = stpmax_ - stpmin_; | 
|---|
| 378 | width1 = width / p5; | 
|---|
| 379 | i__1 = *n; | 
|---|
| 380 | for (int j = 1; j <= i__1; ++j) { | 
|---|
| 381 | wa[j] = x[j]; | 
|---|
| 382 | // L20: | 
|---|
| 383 | } | 
|---|
| 384 |  | 
|---|
| 385 | //     THE VARIABLES STX, FX, DGX CONTAIN THE VALUES OF THE STEP, | 
|---|
| 386 | //     FUNCTION, AND DIRECTIONAL DERIVATIVE AT THE BEST STEP. | 
|---|
| 387 | //     THE VARIABLES STY, FY, DGY CONTAIN THE VALUE OF THE STEP, | 
|---|
| 388 | //     FUNCTION, AND DERIVATIVE AT THE OTHER ENDPOINT OF | 
|---|
| 389 | //     THE INTERVAL OF UNCERTAINTY. | 
|---|
| 390 | //     THE VARIABLES STP, F, DG CONTAIN THE VALUES OF THE STEP, | 
|---|
| 391 | //     FUNCTION, AND DERIVATIVE AT THE CURRENT STEP. | 
|---|
| 392 |  | 
|---|
| 393 | stx = zero; | 
|---|
| 394 | fx = finit; | 
|---|
| 395 | dgx = dginit; | 
|---|
| 396 | sty = zero; | 
|---|
| 397 | fy = finit; | 
|---|
| 398 | dgy = dginit; | 
|---|
| 399 |  | 
|---|
| 400 | //     START OF ITERATION. | 
|---|
| 401 |  | 
|---|
| 402 | L30: | 
|---|
| 403 |  | 
|---|
| 404 | //        SET THE MINIMUM AND MAXIMUM STEPS TO CORRESPOND | 
|---|
| 405 | //        TO THE PRESENT INTERVAL OF UNCERTAINTY. | 
|---|
| 406 |  | 
|---|
| 407 | if (brackt) { | 
|---|
| 408 | stmin = min(stx,sty); | 
|---|
| 409 | stmax = max(stx,sty); | 
|---|
| 410 | } else { | 
|---|
| 411 | stmin = stx; | 
|---|
| 412 | stmax = *stp + xtrapf * (*stp - stx); | 
|---|
| 413 | } | 
|---|
| 414 |  | 
|---|
| 415 | //        FORCE THE STEP TO BE WITHIN THE BOUNDS STPMAX AND STPMIN. | 
|---|
| 416 |  | 
|---|
| 417 | *stp = max(*stp,stpmin_); | 
|---|
| 418 | *stp = min(*stp,stpmax_); | 
|---|
| 419 |  | 
|---|
| 420 | //        IF AN UNUSUAL TERMINATION IS TO OCCUR THEN LET | 
|---|
| 421 | //        STP BE THE LOWEST POINT OBTAINED SO FAR. | 
|---|
| 422 |  | 
|---|
| 423 | if (brackt && (*stp <= stmin || *stp >= stmax) || *nfev >= *maxfev - 1 || | 
|---|
| 424 | infoc == 0 || brackt && stmax - stmin <= *xtol * stmax) { | 
|---|
| 425 | *stp = stx; | 
|---|
| 426 | } | 
|---|
| 427 |  | 
|---|
| 428 | //        EVALUATE THE FUNCTION AND GRADIENT AT STP | 
|---|
| 429 | //        AND COMPUTE THE DIRECTIONAL DERIVATIVE. | 
|---|
| 430 | //        We return to main program to obtain F and G. | 
|---|
| 431 |  | 
|---|
| 432 | i__1 = *n; | 
|---|
| 433 | for (int j = 1; j <= i__1; ++j) { | 
|---|
| 434 | x[j] = wa[j] + *stp * s[j]; | 
|---|
| 435 | // L40: | 
|---|
| 436 | } | 
|---|
| 437 | *info = -1; | 
|---|
| 438 | return; | 
|---|
| 439 |  | 
|---|
| 440 | L45: | 
|---|
| 441 | *info = 0; | 
|---|
| 442 | ++(*nfev); | 
|---|
| 443 | dg = zero; | 
|---|
| 444 | i__1 = *n; | 
|---|
| 445 | for (int j = 1; j <= i__1; ++j) { | 
|---|
| 446 | dg += g[j] * s[j]; | 
|---|
| 447 | // L50: | 
|---|
| 448 | } | 
|---|
| 449 | ftest1 = finit + *stp * dgtest; | 
|---|
| 450 |  | 
|---|
| 451 | //        TEST FOR CONVERGENCE. | 
|---|
| 452 |  | 
|---|
| 453 | if (brackt && (*stp <= stmin || *stp >= stmax) || infoc == 0) { | 
|---|
| 454 | *info = 6; | 
|---|
| 455 | } | 
|---|
| 456 | if (*stp == stpmax_ && *f <= ftest1 && dg <= dgtest) { | 
|---|
| 457 | *info = 5; | 
|---|
| 458 | } | 
|---|
| 459 | if (*stp == stpmin_ && (*f > ftest1 || dg >= dgtest)) { | 
|---|
| 460 | *info = 4; | 
|---|
| 461 | } | 
|---|
| 462 | if (*nfev >= *maxfev) { | 
|---|
| 463 | *info = 3; | 
|---|
| 464 | } | 
|---|
| 465 | if (brackt && stmax - stmin <= *xtol * stmax) { | 
|---|
| 466 | *info = 2; | 
|---|
| 467 | } | 
|---|
| 468 | if (*f <= ftest1 && fabs(dg) <= gtol_ * (-dginit)) { | 
|---|
| 469 | *info = 1; | 
|---|
| 470 | } | 
|---|
| 471 |  | 
|---|
| 472 | //        CHECK FOR TERMINATION. | 
|---|
| 473 |  | 
|---|
| 474 | if (*info != 0) { | 
|---|
| 475 | return; | 
|---|
| 476 | } | 
|---|
| 477 |  | 
|---|
| 478 | //        IN THE FIRST STAGE WE SEEK A STEP FOR WHICH THE MODIFIED | 
|---|
| 479 | //        FUNCTION HAS A NONPOSITIVE VALUE AND NONNEGATIVE DERIVATIVE. | 
|---|
| 480 |  | 
|---|
| 481 | if (stage1 && *f <= ftest1 && dg >= min(*ftol,gtol_) * dginit) { | 
|---|
| 482 | stage1 = false; | 
|---|
| 483 | } | 
|---|
| 484 |  | 
|---|
| 485 | //        A MODIFIED FUNCTION IS USED TO PREDICT THE STEP ONLY IF | 
|---|
| 486 | //        WE HAVE NOT OBTAINED A STEP FOR WHICH THE MODIFIED | 
|---|
| 487 | //        FUNCTION HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE | 
|---|
| 488 | //        DERIVATIVE, AND IF A LOWER FUNCTION VALUE HAS BEEN | 
|---|
| 489 | //        OBTAINED BUT THE DECREASE IS NOT SUFFICIENT. | 
|---|
| 490 |  | 
|---|
| 491 | if (stage1 && *f <= fx && *f > ftest1) { | 
|---|
| 492 |  | 
|---|
| 493 | //           DEFINE THE MODIFIED FUNCTION AND DERIVATIVE VALUES. | 
|---|
| 494 |  | 
|---|
| 495 | fm = *f - *stp * dgtest; | 
|---|
| 496 | fxm = fx - stx * dgtest; | 
|---|
| 497 | fym = fy - sty * dgtest; | 
|---|
| 498 | dgm = dg - dgtest; | 
|---|
| 499 | dgxm = dgx - dgtest; | 
|---|
| 500 | dgym = dgy - dgtest; | 
|---|
| 501 |  | 
|---|
| 502 | //           CALL CSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY | 
|---|
| 503 | //           AND TO COMPUTE THE NEW STEP. | 
|---|
| 504 |  | 
|---|
| 505 | mcstep(&stx, &fxm, &dgxm, &sty, &fym, &dgym, stp, &fm, &dgm, &brackt, | 
|---|
| 506 | &stmin, &stmax, &infoc); | 
|---|
| 507 |  | 
|---|
| 508 | //           RESET THE FUNCTION AND GRADIENT VALUES FOR F. | 
|---|
| 509 |  | 
|---|
| 510 | fx = fxm + stx * dgtest; | 
|---|
| 511 | fy = fym + sty * dgtest; | 
|---|
| 512 | dgx = dgxm + dgtest; | 
|---|
| 513 | dgy = dgym + dgtest; | 
|---|
| 514 | } else { | 
|---|
| 515 |  | 
|---|
| 516 | //           CALL MCSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY | 
|---|
| 517 | //           AND TO COMPUTE THE NEW STEP. | 
|---|
| 518 |  | 
|---|
| 519 | mcstep(&stx, &fx, &dgx, &sty, &fy, &dgy, stp, f, &dg, &brackt, & | 
|---|
| 520 | stmin, &stmax, &infoc); | 
|---|
| 521 | } | 
|---|
| 522 |  | 
|---|
| 523 | //        FORCE A SUFFICIENT DECREASE IN THE SIZE OF THE | 
|---|
| 524 | //        INTERVAL OF UNCERTAINTY. | 
|---|
| 525 |  | 
|---|
| 526 | if (brackt) { | 
|---|
| 527 | if ((d__1 = sty - stx, fabs(d__1)) >= p66 * width1) { | 
|---|
| 528 | *stp = stx + p5 * (sty - stx); | 
|---|
| 529 | } | 
|---|
| 530 | width1 = width; | 
|---|
| 531 | width = (d__1 = sty - stx, fabs(d__1)); | 
|---|
| 532 | } | 
|---|
| 533 |  | 
|---|
| 534 | //        END OF ITERATION. | 
|---|
| 535 |  | 
|---|
| 536 | goto L30; | 
|---|
| 537 |  | 
|---|
| 538 | //     LAST LINE OF SUBROUTINE MCSRCH. | 
|---|
| 539 |  | 
|---|
| 540 | } // mcsrch_ | 
|---|
| 541 |  | 
|---|
| 542 | void | 
|---|
| 543 | MCSearch::mcstep(double *stx, double *fx, double *dx, | 
|---|
| 544 | double *sty, double *fy, double *dy, double *stp, | 
|---|
| 545 | double *fp, double *dp, bool *brackt, double *stpmin, | 
|---|
| 546 | double *stpmax, int *info) | 
|---|
| 547 | { | 
|---|
| 548 | // System generated locals | 
|---|
| 549 | double d__1, d__2, d__3; | 
|---|
| 550 |  | 
|---|
| 551 | //     SUBROUTINE MCSTEP | 
|---|
| 552 |  | 
|---|
| 553 | //     THE PURPOSE OF MCSTEP IS TO COMPUTE A SAFEGUARDED STEP FOR | 
|---|
| 554 | //     A LINESEARCH AND TO UPDATE AN INTERVAL OF UNCERTAINTY FOR | 
|---|
| 555 | //     A MINIMIZER OF THE FUNCTION. | 
|---|
| 556 |  | 
|---|
| 557 | //     THE PARAMETER STX CONTAINS THE STEP WITH THE LEAST FUNCTION | 
|---|
| 558 | //     VALUE. THE PARAMETER STP CONTAINS THE CURRENT STEP. IT IS | 
|---|
| 559 | //     ASSUMED THAT THE DERIVATIVE AT STX IS NEGATIVE IN THE | 
|---|
| 560 | //     DIRECTION OF THE STEP. IF BRACKT IS SET TRUE THEN A | 
|---|
| 561 | //     MINIMIZER HAS BEEN BRACKETED IN AN INTERVAL OF UNCERTAINTY | 
|---|
| 562 | //     WITH ENDPOINTS STX AND STY. | 
|---|
| 563 |  | 
|---|
| 564 | //     THE SUBROUTINE STATEMENT IS | 
|---|
| 565 |  | 
|---|
| 566 | //       SUBROUTINE MCSTEP(STX,FX,DX,STY,FY,DY,STP,FP,DP,BRACKT, | 
|---|
| 567 | //                        STPMIN,STPMAX,INFO) | 
|---|
| 568 |  | 
|---|
| 569 | //     WHERE | 
|---|
| 570 |  | 
|---|
| 571 | //       STX, FX, AND DX ARE VARIABLES WHICH SPECIFY THE STEP, | 
|---|
| 572 | //         THE FUNCTION, AND THE DERIVATIVE AT THE BEST STEP OBTAINED | 
|---|
| 573 | //         SO FAR. THE DERIVATIVE MUST BE NEGATIVE IN THE DIRECTION | 
|---|
| 574 | //         OF THE STEP, THAT IS, DX AND STP-STX MUST HAVE OPPOSITE | 
|---|
| 575 | //         SIGNS. ON OUTPUT THESE PARAMETERS ARE UPDATED APPROPRIATELY. | 
|---|
| 576 |  | 
|---|
| 577 | //       STY, FY, AND DY ARE VARIABLES WHICH SPECIFY THE STEP, | 
|---|
| 578 | //         THE FUNCTION, AND THE DERIVATIVE AT THE OTHER ENDPOINT OF | 
|---|
| 579 | //         THE INTERVAL OF UNCERTAINTY. ON OUTPUT THESE PARAMETERS ARE | 
|---|
| 580 | //         UPDATED APPROPRIATELY. | 
|---|
| 581 |  | 
|---|
| 582 | //       STP, FP, AND DP ARE VARIABLES WHICH SPECIFY THE STEP, | 
|---|
| 583 | //         THE FUNCTION, AND THE DERIVATIVE AT THE CURRENT STEP. | 
|---|
| 584 | //         IF BRACKT IS SET TRUE THEN ON INPUT STP MUST BE | 
|---|
| 585 | //         BETWEEN STX AND STY. ON OUTPUT STP IS SET TO THE NEW STEP. | 
|---|
| 586 |  | 
|---|
| 587 | //       BRACKT IS A LOGICAL VARIABLE WHICH SPECIFIES IF A MINIMIZER | 
|---|
| 588 | //         HAS BEEN BRACKETED. IF THE MINIMIZER HAS NOT BEEN BRACKETED | 
|---|
| 589 | //         THEN ON INPUT BRACKT MUST BE SET FALSE. IF THE MINIMIZER | 
|---|
| 590 | //         IS BRACKETED THEN ON OUTPUT BRACKT IS SET TRUE. | 
|---|
| 591 |  | 
|---|
| 592 | //       STPMIN AND STPMAX ARE INPUT VARIABLES WHICH SPECIFY LOWER | 
|---|
| 593 | //         AND UPPER BOUNDS FOR THE STEP. | 
|---|
| 594 |  | 
|---|
| 595 | //       INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS: | 
|---|
| 596 | //         IF INFO = 1,2,3,4,5, THEN THE STEP HAS BEEN COMPUTED | 
|---|
| 597 | //         ACCORDING TO ONE OF THE FIVE CASES BELOW. OTHERWISE | 
|---|
| 598 | //         INFO = 0, AND THIS INDICATES IMPROPER INPUT PARAMETERS. | 
|---|
| 599 |  | 
|---|
| 600 | //     SUBPROGRAMS CALLED | 
|---|
| 601 |  | 
|---|
| 602 | //       FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT | 
|---|
| 603 |  | 
|---|
| 604 | //     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983 | 
|---|
| 605 | //     JORGE J. MORE', DAVID J. THUENTE | 
|---|
| 606 |  | 
|---|
| 607 | *info = 0; | 
|---|
| 608 |  | 
|---|
| 609 | //     CHECK THE INPUT PARAMETERS FOR ERRORS. | 
|---|
| 610 |  | 
|---|
| 611 | if (*brackt && (*stp <= min(*stx,*sty) || *stp >= max(*stx,*sty)) || *dx * | 
|---|
| 612 | (*stp - *stx) >= 0.f || *stpmax < *stpmin) { | 
|---|
| 613 | return; | 
|---|
| 614 | } | 
|---|
| 615 |  | 
|---|
| 616 | //     DETERMINE IF THE DERIVATIVES HAVE OPPOSITE SIGN. | 
|---|
| 617 |  | 
|---|
| 618 | sgnd = *dp * (*dx / fabs(*dx)); | 
|---|
| 619 |  | 
|---|
| 620 | //     FIRST CASE. A HIGHER FUNCTION VALUE. | 
|---|
| 621 | //     THE MINIMUM IS BRACKETED. IF THE CUBIC STEP IS CLOSER | 
|---|
| 622 | //     TO STX THAN THE QUADRATIC STEP, THE CUBIC STEP IS TAKEN, | 
|---|
| 623 | //     ELSE THE AVERAGE OF THE CUBIC AND QUADRATIC STEPS IS TAKEN. | 
|---|
| 624 |  | 
|---|
| 625 | if (*fp > *fx) { | 
|---|
| 626 | *info = 1; | 
|---|
| 627 | bound = true; | 
|---|
| 628 | theta = (*fx - *fp) * 3 / (*stp - *stx) + *dx + *dp; | 
|---|
| 629 | // Computing MAX | 
|---|
| 630 | d__1 = fabs(theta), d__2 = fabs(*dx), d__1 = max(d__1,d__2), d__2 = fabs( | 
|---|
| 631 | *dp); | 
|---|
| 632 | s = max(d__1,d__2); | 
|---|
| 633 | // Computing 2nd power | 
|---|
| 634 | d__1 = theta / s; | 
|---|
| 635 | gamma = s * sqrt(d__1 * d__1 - *dx / s * (*dp / s)); | 
|---|
| 636 | if (*stp < *stx) { | 
|---|
| 637 | gamma = -gamma; | 
|---|
| 638 | } | 
|---|
| 639 | p = gamma - *dx + theta; | 
|---|
| 640 | q = gamma - *dx + gamma + *dp; | 
|---|
| 641 | r__ = p / q; | 
|---|
| 642 | stpc = *stx + r__ * (*stp - *stx); | 
|---|
| 643 | stpq = *stx + *dx / ((*fx - *fp) / (*stp - *stx) + *dx) / 2 * (*stp - | 
|---|
| 644 | *stx); | 
|---|
| 645 | if ((d__1 = stpc - *stx, fabs(d__1)) < (d__2 = stpq - *stx, fabs(d__2))) | 
|---|
| 646 | { | 
|---|
| 647 | stpf = stpc; | 
|---|
| 648 | } else { | 
|---|
| 649 | stpf = stpc + (stpq - stpc) / 2; | 
|---|
| 650 | } | 
|---|
| 651 | *brackt = true; | 
|---|
| 652 |  | 
|---|
| 653 | //     SECOND CASE. A LOWER FUNCTION VALUE AND DERIVATIVES OF | 
|---|
| 654 | //     OPPOSITE SIGN. THE MINIMUM IS BRACKETED. IF THE CUBIC | 
|---|
| 655 | //     STEP IS CLOSER TO STX THAN THE QUADRATIC (SECANT) STEP, | 
|---|
| 656 | //     THE CUBIC STEP IS TAKEN, ELSE THE QUADRATIC STEP IS TAKEN. | 
|---|
| 657 |  | 
|---|
| 658 | } else if (sgnd < 0.f) { | 
|---|
| 659 | *info = 2; | 
|---|
| 660 | bound = false; | 
|---|
| 661 | theta = (*fx - *fp) * 3 / (*stp - *stx) + *dx + *dp; | 
|---|
| 662 | // Computing MAX | 
|---|
| 663 | d__1 = fabs(theta), d__2 = fabs(*dx), d__1 = max(d__1,d__2), d__2 = fabs( | 
|---|
| 664 | *dp); | 
|---|
| 665 | s = max(d__1,d__2); | 
|---|
| 666 | // Computing 2nd power | 
|---|
| 667 | d__1 = theta / s; | 
|---|
| 668 | gamma = s * sqrt(d__1 * d__1 - *dx / s * (*dp / s)); | 
|---|
| 669 | if (*stp > *stx) { | 
|---|
| 670 | gamma = -gamma; | 
|---|
| 671 | } | 
|---|
| 672 | p = gamma - *dp + theta; | 
|---|
| 673 | q = gamma - *dp + gamma + *dx; | 
|---|
| 674 | r__ = p / q; | 
|---|
| 675 | stpc = *stp + r__ * (*stx - *stp); | 
|---|
| 676 | stpq = *stp + *dp / (*dp - *dx) * (*stx - *stp); | 
|---|
| 677 | if ((d__1 = stpc - *stp, fabs(d__1)) > (d__2 = stpq - *stp, fabs(d__2))) | 
|---|
| 678 | { | 
|---|
| 679 | stpf = stpc; | 
|---|
| 680 | } else { | 
|---|
| 681 | stpf = stpq; | 
|---|
| 682 | } | 
|---|
| 683 | *brackt = true; | 
|---|
| 684 |  | 
|---|
| 685 | //     THIRD CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE | 
|---|
| 686 | //     SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DECREASES. | 
|---|
| 687 | //     THE CUBIC STEP IS ONLY USED IF THE CUBIC TENDS TO INFINITY | 
|---|
| 688 | //     IN THE DIRECTION OF THE STEP OR IF THE MINIMUM OF THE CUBIC | 
|---|
| 689 | //     IS BEYOND STP. OTHERWISE THE CUBIC STEP IS DEFINED TO BE | 
|---|
| 690 | //     EITHER STPMIN OR STPMAX. THE QUADRATIC (SECANT) STEP IS ALSO | 
|---|
| 691 | //     COMPUTED AND IF THE MINIMUM IS BRACKETED THEN THE THE STEP | 
|---|
| 692 | //     CLOSEST TO STX IS TAKEN, ELSE THE STEP FARTHEST AWAY IS TAKEN. | 
|---|
| 693 |  | 
|---|
| 694 | } else if (fabs(*dp) < fabs(*dx)) { | 
|---|
| 695 | *info = 3; | 
|---|
| 696 | bound = true; | 
|---|
| 697 | theta = (*fx - *fp) * 3 / (*stp - *stx) + *dx + *dp; | 
|---|
| 698 | // Computing MAX | 
|---|
| 699 | d__1 = fabs(theta), d__2 = fabs(*dx), d__1 = max(d__1,d__2), d__2 = fabs( | 
|---|
| 700 | *dp); | 
|---|
| 701 | s = max(d__1,d__2); | 
|---|
| 702 |  | 
|---|
| 703 | //        THE CASE GAMMA = 0 ONLY ARISES IF THE CUBIC DOES NOT TEND | 
|---|
| 704 | //        TO INFINITY IN THE DIRECTION OF THE STEP. | 
|---|
| 705 |  | 
|---|
| 706 | // Computing MAX | 
|---|
| 707 | // Computing 2nd power | 
|---|
| 708 | d__3 = theta / s; | 
|---|
| 709 | d__1 = 0., d__2 = d__3 * d__3 - *dx / s * (*dp / s); | 
|---|
| 710 | gamma = s * sqrt((max(d__1,d__2))); | 
|---|
| 711 | if (*stp > *stx) { | 
|---|
| 712 | gamma = -gamma; | 
|---|
| 713 | } | 
|---|
| 714 | p = gamma - *dp + theta; | 
|---|
| 715 | q = gamma + (*dx - *dp) + gamma; | 
|---|
| 716 | r__ = p / q; | 
|---|
| 717 | if (r__ < 0.f && gamma != 0.f) { | 
|---|
| 718 | stpc = *stp + r__ * (*stx - *stp); | 
|---|
| 719 | } else if (*stp > *stx) { | 
|---|
| 720 | stpc = *stpmax; | 
|---|
| 721 | } else { | 
|---|
| 722 | stpc = *stpmin; | 
|---|
| 723 | } | 
|---|
| 724 | stpq = *stp + *dp / (*dp - *dx) * (*stx - *stp); | 
|---|
| 725 | if (*brackt) { | 
|---|
| 726 | if ((d__1 = *stp - stpc, fabs(d__1)) < (d__2 = *stp - stpq, fabs( | 
|---|
| 727 | d__2))) { | 
|---|
| 728 | stpf = stpc; | 
|---|
| 729 | } else { | 
|---|
| 730 | stpf = stpq; | 
|---|
| 731 | } | 
|---|
| 732 | } else { | 
|---|
| 733 | if ((d__1 = *stp - stpc, fabs(d__1)) > (d__2 = *stp - stpq, fabs( | 
|---|
| 734 | d__2))) { | 
|---|
| 735 | stpf = stpc; | 
|---|
| 736 | } else { | 
|---|
| 737 | stpf = stpq; | 
|---|
| 738 | } | 
|---|
| 739 | } | 
|---|
| 740 |  | 
|---|
| 741 | //     FOURTH CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE | 
|---|
| 742 | //     SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DOES | 
|---|
| 743 | //     NOT DECREASE. IF THE MINIMUM IS NOT BRACKETED, THE STEP | 
|---|
| 744 | //     IS EITHER STPMIN OR STPMAX, ELSE THE CUBIC STEP IS TAKEN. | 
|---|
| 745 |  | 
|---|
| 746 | } else { | 
|---|
| 747 | *info = 4; | 
|---|
| 748 | bound = false; | 
|---|
| 749 | if (*brackt) { | 
|---|
| 750 | theta = (*fp - *fy) * 3 / (*sty - *stp) + *dy + *dp; | 
|---|
| 751 | // Computing MAX | 
|---|
| 752 | d__1 = fabs(theta), d__2 = fabs(*dy), d__1 = max(d__1,d__2), d__2 = | 
|---|
| 753 | fabs(*dp); | 
|---|
| 754 | s = max(d__1,d__2); | 
|---|
| 755 | // Computing 2nd power | 
|---|
| 756 | d__1 = theta / s; | 
|---|
| 757 | gamma = s * sqrt(d__1 * d__1 - *dy / s * (*dp / s)); | 
|---|
| 758 | if (*stp > *sty) { | 
|---|
| 759 | gamma = -gamma; | 
|---|
| 760 | } | 
|---|
| 761 | p = gamma - *dp + theta; | 
|---|
| 762 | q = gamma - *dp + gamma + *dy; | 
|---|
| 763 | r__ = p / q; | 
|---|
| 764 | stpc = *stp + r__ * (*sty - *stp); | 
|---|
| 765 | stpf = stpc; | 
|---|
| 766 | } else if (*stp > *stx) { | 
|---|
| 767 | stpf = *stpmax; | 
|---|
| 768 | } else { | 
|---|
| 769 | stpf = *stpmin; | 
|---|
| 770 | } | 
|---|
| 771 | } | 
|---|
| 772 |  | 
|---|
| 773 | //     UPDATE THE INTERVAL OF UNCERTAINTY. THIS UPDATE DOES NOT | 
|---|
| 774 | //     DEPEND ON THE NEW STEP OR THE CASE ANALYSIS ABOVE. | 
|---|
| 775 |  | 
|---|
| 776 | if (*fp > *fx) { | 
|---|
| 777 | *sty = *stp; | 
|---|
| 778 | *fy = *fp; | 
|---|
| 779 | *dy = *dp; | 
|---|
| 780 | } else { | 
|---|
| 781 | if (sgnd < 0.) { | 
|---|
| 782 | *sty = *stx; | 
|---|
| 783 | *fy = *fx; | 
|---|
| 784 | *dy = *dx; | 
|---|
| 785 | } | 
|---|
| 786 | *stx = *stp; | 
|---|
| 787 | *fx = *fp; | 
|---|
| 788 | *dx = *dp; | 
|---|
| 789 | } | 
|---|
| 790 |  | 
|---|
| 791 | //     COMPUTE THE NEW STEP AND SAFEGUARD IT. | 
|---|
| 792 |  | 
|---|
| 793 | stpf = min(*stpmax,stpf); | 
|---|
| 794 | stpf = max(*stpmin,stpf); | 
|---|
| 795 | *stp = stpf; | 
|---|
| 796 | if (*brackt && bound) { | 
|---|
| 797 | if (*sty > *stx) { | 
|---|
| 798 | // Computing MIN | 
|---|
| 799 | d__1 = *stx + (*sty - *stx) * .66; | 
|---|
| 800 | *stp = min(d__1,*stp); | 
|---|
| 801 | } else { | 
|---|
| 802 | // Computing MAX | 
|---|
| 803 | d__1 = *stx + (*sty - *stx) * .66; | 
|---|
| 804 | *stp = max(d__1,*stp); | 
|---|
| 805 | } | 
|---|
| 806 | } | 
|---|
| 807 | return; | 
|---|
| 808 |  | 
|---|
| 809 | //     LAST LINE OF SUBROUTINE MCSTEP. | 
|---|
| 810 |  | 
|---|
| 811 | } // mcstep_ | 
|---|
| 812 |  | 
|---|
| 813 | } | 
|---|
| 814 |  | 
|---|