| [0b990d] | 1 | // These routines were translated from lbfgs.f by f2c (version 20030320) | 
|---|
|  | 2 | // and modified by Curtis Janssen. | 
|---|
|  | 3 |  | 
|---|
|  | 4 | #ifdef __GNUC__ | 
|---|
|  | 5 | #pragma implementation | 
|---|
|  | 6 | #endif | 
|---|
|  | 7 |  | 
|---|
|  | 8 | #include <math.h> | 
|---|
|  | 9 | #include <util/class/scexception.h> | 
|---|
|  | 10 | #include <math/optimize/mcsearch.h> | 
|---|
|  | 11 |  | 
|---|
|  | 12 | static inline double min(double a, double b) | 
|---|
|  | 13 | { | 
|---|
|  | 14 | return (a<b)?a:b; | 
|---|
|  | 15 | } | 
|---|
|  | 16 |  | 
|---|
|  | 17 | static inline double max(double a, double b) | 
|---|
|  | 18 | { | 
|---|
|  | 19 | return (a<b)?b:a; | 
|---|
|  | 20 | } | 
|---|
|  | 21 |  | 
|---|
|  | 22 |  | 
|---|
|  | 23 | using namespace sc; | 
|---|
|  | 24 |  | 
|---|
|  | 25 | namespace sc { | 
|---|
|  | 26 |  | 
|---|
|  | 27 | static ClassDesc MCSearch_cd( | 
|---|
|  | 28 | typeid(MCSearch),"MCSearch",1,"public LineOpt", | 
|---|
|  | 29 | 0, create<MCSearch>, 0); | 
|---|
|  | 30 |  | 
|---|
|  | 31 | MCSearch::MCSearch(const Ref<KeyVal>& keyval) | 
|---|
|  | 32 | : LineOpt(keyval) | 
|---|
|  | 33 | { | 
|---|
|  | 34 | } | 
|---|
|  | 35 |  | 
|---|
|  | 36 | MCSearch::~MCSearch() | 
|---|
|  | 37 | { | 
|---|
|  | 38 | } | 
|---|
|  | 39 |  | 
|---|
|  | 40 | void | 
|---|
|  | 41 | MCSearch::mcinit() | 
|---|
|  | 42 | { | 
|---|
|  | 43 | info_ = 0; | 
|---|
|  | 44 |  | 
|---|
|  | 45 | // work area | 
|---|
|  | 46 | wa_.reset(new double[function()->dimension()->n()]); | 
|---|
|  | 47 | } | 
|---|
|  | 48 |  | 
|---|
|  | 49 | void | 
|---|
|  | 50 | MCSearch::init(RefSCVector& direction) | 
|---|
|  | 51 | { | 
|---|
|  | 52 | LineOpt::init(direction); | 
|---|
|  | 53 | mcinit(); | 
|---|
|  | 54 | } | 
|---|
|  | 55 |  | 
|---|
|  | 56 | void | 
|---|
|  | 57 | MCSearch::init(RefSCVector& direction, Ref<Function> function) | 
|---|
|  | 58 | { | 
|---|
|  | 59 | LineOpt::init(direction, function); | 
|---|
|  | 60 | mcinit(); | 
|---|
|  | 61 | } | 
|---|
|  | 62 |  | 
|---|
|  | 63 | int | 
|---|
|  | 64 | MCSearch::update() | 
|---|
|  | 65 | { | 
|---|
|  | 66 | int n = function()->dimension()->n(); | 
|---|
|  | 67 |  | 
|---|
|  | 68 | // function coordinate | 
|---|
|  | 69 | auto_vec<double> x(new double[n]); | 
|---|
|  | 70 | function()->get_x()->convert(x.get()); | 
|---|
|  | 71 |  | 
|---|
|  | 72 | // gradient | 
|---|
|  | 73 | auto_vec<double> g(new double[n]); | 
|---|
|  | 74 | function()->gradient()->convert(g.get()); | 
|---|
|  | 75 |  | 
|---|
|  | 76 | // function value | 
|---|
|  | 77 | double f = function()->value(); | 
|---|
|  | 78 |  | 
|---|
|  | 79 | // step direction | 
|---|
|  | 80 | auto_vec<double> s(new double[n]); | 
|---|
|  | 81 | search_direction_->convert(s.get()); | 
|---|
|  | 82 |  | 
|---|
|  | 83 | // step size; | 
|---|
|  | 84 | double stp; | 
|---|
|  | 85 | stp = 1.0; | 
|---|
|  | 86 |  | 
|---|
|  | 87 | // value tolerance | 
|---|
|  | 88 | double ftol; | 
|---|
|  | 89 | ftol = 1.0e-4; | 
|---|
|  | 90 |  | 
|---|
|  | 91 | // the machine precision | 
|---|
|  | 92 | double xtol; | 
|---|
|  | 93 | xtol = DBL_EPSILON; | 
|---|
|  | 94 |  | 
|---|
|  | 95 | // maximum number of function evaluations | 
|---|
|  | 96 | int maxfev = 20; | 
|---|
|  | 97 |  | 
|---|
|  | 98 | // number of function evaluations | 
|---|
|  | 99 | int nfev = 0; | 
|---|
|  | 100 |  | 
|---|
|  | 101 | // controls accuracy of line search routine | 
|---|
|  | 102 | gtol_ = 0.9; | 
|---|
|  | 103 |  | 
|---|
|  | 104 | // minimum step size | 
|---|
|  | 105 | stpmin_ = DBL_EPSILON; | 
|---|
|  | 106 |  | 
|---|
|  | 107 | // maximum step size | 
|---|
|  | 108 | stpmax_ = 1.0e20; | 
|---|
|  | 109 |  | 
|---|
|  | 110 | mcsrch(&n, x.get(), &f,g.get(), s.get(), &stp, &ftol, | 
|---|
|  | 111 | &xtol, &maxfev, &info_, &nfev, wa_.get()); | 
|---|
|  | 112 |  | 
|---|
|  | 113 | //         INFO = 0  IMPROPER INPUT PARAMETERS. | 
|---|
|  | 114 | if (info_ == 0) { | 
|---|
|  | 115 | throw ProgrammingError("error in MCSearch: info == 0", | 
|---|
|  | 116 | __FILE__, | 
|---|
|  | 117 | __LINE__, | 
|---|
|  | 118 | class_desc()); | 
|---|
|  | 119 | } | 
|---|
|  | 120 |  | 
|---|
|  | 121 | //         INFO =-1  A RETURN IS MADE TO COMPUTE THE FUNCTION AND GRADIENT. | 
|---|
|  | 122 | if (info_ == -1) { | 
|---|
|  | 123 | RefSCVector new_x = function()->get_x()->copy(); | 
|---|
|  | 124 | new_x->assign(x.get()); | 
|---|
|  | 125 | function()->set_x(new_x); | 
|---|
|  | 126 | return 0; | 
|---|
|  | 127 | } | 
|---|
|  | 128 |  | 
|---|
|  | 129 | //         INFO = 1  THE SUFFICIENT DECREASE CONDITION AND THE | 
|---|
|  | 130 | //                   DIRECTIONAL DERIVATIVE CONDITION HOLD. | 
|---|
|  | 131 | if (info_ == 1) { | 
|---|
|  | 132 | return 1; | 
|---|
|  | 133 | } | 
|---|
|  | 134 |  | 
|---|
|  | 135 | //         INFO = 2  RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY | 
|---|
|  | 136 | //                   IS AT MOST XTOL. | 
|---|
|  | 137 | if (info_ == 2) { | 
|---|
|  | 138 | throw AlgorithmException("error in MCSearch: info == 2", | 
|---|
|  | 139 | __FILE__, | 
|---|
|  | 140 | __LINE__, | 
|---|
|  | 141 | class_desc()); | 
|---|
|  | 142 | return 1; | 
|---|
|  | 143 | } | 
|---|
|  | 144 |  | 
|---|
|  | 145 | //         INFO = 3  NUMBER OF CALLS TO FCN HAS REACHED MAXFEV. | 
|---|
|  | 146 | if (info_ == 3) { | 
|---|
|  | 147 | throw ProgrammingError("error in MCSearch: info == 3", | 
|---|
|  | 148 | __FILE__, | 
|---|
|  | 149 | __LINE__, | 
|---|
|  | 150 | class_desc()); | 
|---|
|  | 151 | return 1; | 
|---|
|  | 152 | } | 
|---|
|  | 153 |  | 
|---|
|  | 154 | //         INFO = 4  THE STEP IS AT THE LOWER BOUND STPMIN. | 
|---|
|  | 155 | if (info_ == 4) { | 
|---|
|  | 156 | throw AlgorithmException("error in MCSearch: info == 4", | 
|---|
|  | 157 | __FILE__, | 
|---|
|  | 158 | __LINE__, | 
|---|
|  | 159 | class_desc()); | 
|---|
|  | 160 | return 1; | 
|---|
|  | 161 | } | 
|---|
|  | 162 |  | 
|---|
|  | 163 | //         INFO = 5  THE STEP IS AT THE UPPER BOUND STPMAX. | 
|---|
|  | 164 | if (info_ == 5) { | 
|---|
|  | 165 | throw AlgorithmException("error in MCSearch: info == 5", | 
|---|
|  | 166 | __FILE__, | 
|---|
|  | 167 | __LINE__, | 
|---|
|  | 168 | class_desc()); | 
|---|
|  | 169 | return 1; | 
|---|
|  | 170 | } | 
|---|
|  | 171 |  | 
|---|
|  | 172 | //         INFO = 6  ROUNDING ERRORS PREVENT FURTHER PROGRESS. | 
|---|
|  | 173 | //                   THERE MAY NOT BE A STEP WHICH SATISFIES THE | 
|---|
|  | 174 | //                   SUFFICIENT DECREASE AND CURVATURE CONDITIONS. | 
|---|
|  | 175 | //                   TOLERANCES MAY BE TOO SMALL. | 
|---|
|  | 176 | if (info_ == 6) { | 
|---|
|  | 177 | throw AlgorithmException("error in MCSearch: info == 6", | 
|---|
|  | 178 | __FILE__, | 
|---|
|  | 179 | __LINE__, | 
|---|
|  | 180 | class_desc()); | 
|---|
|  | 181 | return 1; | 
|---|
|  | 182 | } | 
|---|
|  | 183 |  | 
|---|
|  | 184 | throw ProgrammingError("error in MCSearch: unknown info", | 
|---|
|  | 185 | __FILE__, | 
|---|
|  | 186 | __LINE__, | 
|---|
|  | 187 | class_desc()); | 
|---|
|  | 188 |  | 
|---|
|  | 189 | return 0; | 
|---|
|  | 190 | } | 
|---|
|  | 191 |  | 
|---|
|  | 192 | //     ************************** | 
|---|
|  | 193 | //     LINE SEARCH ROUTINE MCSRCH | 
|---|
|  | 194 | //     ************************** | 
|---|
|  | 195 |  | 
|---|
|  | 196 | void | 
|---|
|  | 197 | MCSearch::mcsrch(int *n, double *x, double *f, | 
|---|
|  | 198 | double *g, double *s, double *stp, double *ftol, | 
|---|
|  | 199 | double *xtol, int *maxfev, int *info, int *nfev, | 
|---|
|  | 200 | double *wa) | 
|---|
|  | 201 | { | 
|---|
|  | 202 | // Initialized data | 
|---|
|  | 203 |  | 
|---|
|  | 204 | const double p5 = .5; | 
|---|
|  | 205 | const double p66 = .66; | 
|---|
|  | 206 | const double xtrapf = 4.; | 
|---|
|  | 207 | const double zero = 0.; | 
|---|
|  | 208 |  | 
|---|
|  | 209 | // System generated locals | 
|---|
|  | 210 | int i__1; | 
|---|
|  | 211 | double d__1; | 
|---|
|  | 212 |  | 
|---|
|  | 213 | //                     SUBROUTINE MCSRCH | 
|---|
|  | 214 |  | 
|---|
|  | 215 | //     A slight modification of the subroutine CSRCH of More' and Thuente. | 
|---|
|  | 216 | //     The changes are to allow reverse communication, and do not affect | 
|---|
|  | 217 | //     the performance of the routine. | 
|---|
|  | 218 |  | 
|---|
|  | 219 | //     THE PURPOSE OF MCSRCH IS TO FIND A STEP WHICH SATISFIES | 
|---|
|  | 220 | //     A SUFFICIENT DECREASE CONDITION AND A CURVATURE CONDITION. | 
|---|
|  | 221 |  | 
|---|
|  | 222 | //     AT EACH STAGE THE SUBROUTINE UPDATES AN INTERVAL OF | 
|---|
|  | 223 | //     UNCERTAINTY WITH ENDPOINTS STX AND STY. THE INTERVAL OF | 
|---|
|  | 224 | //     UNCERTAINTY IS INITIALLY CHOSEN SO THAT IT CONTAINS A | 
|---|
|  | 225 | //     MINIMIZER OF THE MODIFIED FUNCTION | 
|---|
|  | 226 |  | 
|---|
|  | 227 | //          F(X+STP*S) - F(X) - FTOL*STP*(GRADF(X)'S). | 
|---|
|  | 228 |  | 
|---|
|  | 229 | //     IF A STEP IS OBTAINED FOR WHICH THE MODIFIED FUNCTION | 
|---|
|  | 230 | //     HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE DERIVATIVE, | 
|---|
|  | 231 | //     THEN THE INTERVAL OF UNCERTAINTY IS CHOSEN SO THAT IT | 
|---|
|  | 232 | //     CONTAINS A MINIMIZER OF F(X+STP*S). | 
|---|
|  | 233 |  | 
|---|
|  | 234 | //     THE ALGORITHM IS DESIGNED TO FIND A STEP WHICH SATISFIES | 
|---|
|  | 235 | //     THE SUFFICIENT DECREASE CONDITION | 
|---|
|  | 236 |  | 
|---|
|  | 237 | //           F(X+STP*S) .LE. F(X) + FTOL*STP*(GRADF(X)'S), | 
|---|
|  | 238 |  | 
|---|
|  | 239 | //     AND THE CURVATURE CONDITION | 
|---|
|  | 240 |  | 
|---|
|  | 241 | //           ABS(GRADF(X+STP*S)'S)) .LE. GTOL*ABS(GRADF(X)'S). | 
|---|
|  | 242 |  | 
|---|
|  | 243 | //     IF FTOL IS LESS THAN GTOL AND IF, FOR EXAMPLE, THE FUNCTION | 
|---|
|  | 244 | //     IS BOUNDED BELOW, THEN THERE IS ALWAYS A STEP WHICH SATISFIES | 
|---|
|  | 245 | //     BOTH CONDITIONS. IF NO STEP CAN BE FOUND WHICH SATISFIES BOTH | 
|---|
|  | 246 | //     CONDITIONS, THEN THE ALGORITHM USUALLY STOPS WHEN ROUNDING | 
|---|
|  | 247 | //     ERRORS PREVENT FURTHER PROGRESS. IN THIS CASE STP ONLY | 
|---|
|  | 248 | //     SATISFIES THE SUFFICIENT DECREASE CONDITION. | 
|---|
|  | 249 |  | 
|---|
|  | 250 | //     THE SUBROUTINE STATEMENT IS | 
|---|
|  | 251 |  | 
|---|
|  | 252 | //        SUBROUTINE MCSRCH(N,X,F,G,S,STP,FTOL,XTOL, MAXFEV,INFO,NFEV,WA) | 
|---|
|  | 253 | //     WHERE | 
|---|
|  | 254 |  | 
|---|
|  | 255 | //       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER | 
|---|
|  | 256 | //         OF VARIABLES. | 
|---|
|  | 257 |  | 
|---|
|  | 258 | //       X IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE | 
|---|
|  | 259 | //         BASE POINT FOR THE LINE SEARCH. ON OUTPUT IT CONTAINS | 
|---|
|  | 260 | //         X + STP*S. | 
|---|
|  | 261 |  | 
|---|
|  | 262 | //       F IS A VARIABLE. ON INPUT IT MUST CONTAIN THE VALUE OF F | 
|---|
|  | 263 | //         AT X. ON OUTPUT IT CONTAINS THE VALUE OF F AT X + STP*S. | 
|---|
|  | 264 |  | 
|---|
|  | 265 | //       G IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE | 
|---|
|  | 266 | //         GRADIENT OF F AT X. ON OUTPUT IT CONTAINS THE GRADIENT | 
|---|
|  | 267 | //         OF F AT X + STP*S. | 
|---|
|  | 268 |  | 
|---|
|  | 269 | //       S IS AN INPUT ARRAY OF LENGTH N WHICH SPECIFIES THE | 
|---|
|  | 270 | //         SEARCH DIRECTION. | 
|---|
|  | 271 |  | 
|---|
|  | 272 | //       STP IS A NONNEGATIVE VARIABLE. ON INPUT STP CONTAINS AN | 
|---|
|  | 273 | //         INITIAL ESTIMATE OF A SATISFACTORY STEP. ON OUTPUT | 
|---|
|  | 274 | //         STP CONTAINS THE FINAL ESTIMATE. | 
|---|
|  | 275 |  | 
|---|
|  | 276 | //       FTOL AND GTOL ARE NONNEGATIVE INPUT VARIABLES. (In this reverse | 
|---|
|  | 277 | //         communication implementation GTOL is defined in a COMMON | 
|---|
|  | 278 | //         statement.) TERMINATION OCCURS WHEN THE SUFFICIENT DECREASE | 
|---|
|  | 279 | //         CONDITION AND THE DIRECTIONAL DERIVATIVE CONDITION ARE | 
|---|
|  | 280 | //         SATISFIED. | 
|---|
|  | 281 |  | 
|---|
|  | 282 | //       XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS | 
|---|
|  | 283 | //         WHEN THE RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY | 
|---|
|  | 284 | //         IS AT MOST XTOL. | 
|---|
|  | 285 |  | 
|---|
|  | 286 | //       STPMIN AND STPMAX ARE NONNEGATIVE INPUT VARIABLES WHICH | 
|---|
|  | 287 | //         SPECIFY LOWER AND UPPER BOUNDS FOR THE STEP. (In this reverse | 
|---|
|  | 288 | //         communication implementatin they are defined in a COMMON | 
|---|
|  | 289 | //         statement). | 
|---|
|  | 290 |  | 
|---|
|  | 291 | //       MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION | 
|---|
|  | 292 | //         OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST | 
|---|
|  | 293 | //         MAXFEV BY THE END OF AN ITERATION. | 
|---|
|  | 294 |  | 
|---|
|  | 295 | //       INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS: | 
|---|
|  | 296 |  | 
|---|
|  | 297 | //         INFO = 0  IMPROPER INPUT PARAMETERS. | 
|---|
|  | 298 |  | 
|---|
|  | 299 | //         INFO =-1  A RETURN IS MADE TO COMPUTE THE FUNCTION AND GRADIENT. | 
|---|
|  | 300 |  | 
|---|
|  | 301 | //         INFO = 1  THE SUFFICIENT DECREASE CONDITION AND THE | 
|---|
|  | 302 | //                   DIRECTIONAL DERIVATIVE CONDITION HOLD. | 
|---|
|  | 303 |  | 
|---|
|  | 304 | //         INFO = 2  RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY | 
|---|
|  | 305 | //                   IS AT MOST XTOL. | 
|---|
|  | 306 |  | 
|---|
|  | 307 | //         INFO = 3  NUMBER OF CALLS TO FCN HAS REACHED MAXFEV. | 
|---|
|  | 308 |  | 
|---|
|  | 309 | //         INFO = 4  THE STEP IS AT THE LOWER BOUND STPMIN. | 
|---|
|  | 310 |  | 
|---|
|  | 311 | //         INFO = 5  THE STEP IS AT THE UPPER BOUND STPMAX. | 
|---|
|  | 312 |  | 
|---|
|  | 313 | //         INFO = 6  ROUNDING ERRORS PREVENT FURTHER PROGRESS. | 
|---|
|  | 314 | //                   THERE MAY NOT BE A STEP WHICH SATISFIES THE | 
|---|
|  | 315 | //                   SUFFICIENT DECREASE AND CURVATURE CONDITIONS. | 
|---|
|  | 316 | //                   TOLERANCES MAY BE TOO SMALL. | 
|---|
|  | 317 |  | 
|---|
|  | 318 | //       NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF | 
|---|
|  | 319 | //         CALLS TO FCN. | 
|---|
|  | 320 |  | 
|---|
|  | 321 | //       WA IS A WORK ARRAY OF LENGTH N. | 
|---|
|  | 322 |  | 
|---|
|  | 323 | //     SUBPROGRAMS CALLED | 
|---|
|  | 324 |  | 
|---|
|  | 325 | //       MCSTEP | 
|---|
|  | 326 |  | 
|---|
|  | 327 | //       FORTRAN-SUPPLIED...ABS,MAX,MIN | 
|---|
|  | 328 |  | 
|---|
|  | 329 | //     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983 | 
|---|
|  | 330 | //     JORGE J. MORE', DAVID J. THUENTE | 
|---|
|  | 331 |  | 
|---|
|  | 332 | //     ********** | 
|---|
|  | 333 | // Parameter adjustments | 
|---|
|  | 334 | --wa; | 
|---|
|  | 335 | --s; | 
|---|
|  | 336 | --g; | 
|---|
|  | 337 | --x; | 
|---|
|  | 338 |  | 
|---|
|  | 339 | // Function Body | 
|---|
|  | 340 | if (*info == -1) { | 
|---|
|  | 341 | goto L45; | 
|---|
|  | 342 | } | 
|---|
|  | 343 | infoc = 1; | 
|---|
|  | 344 |  | 
|---|
|  | 345 | //     CHECK THE INPUT PARAMETERS FOR ERRORS. | 
|---|
|  | 346 |  | 
|---|
|  | 347 | if (*n <= 0 || *stp <= zero || *ftol < zero || gtol_ < zero || *xtol | 
|---|
|  | 348 | < zero || stpmin_ < zero || stpmax_ < stpmin_ || * | 
|---|
|  | 349 | maxfev <= 0) { | 
|---|
|  | 350 | return; | 
|---|
|  | 351 | } | 
|---|
|  | 352 |  | 
|---|
|  | 353 | //     COMPUTE THE INITIAL GRADIENT IN THE SEARCH DIRECTION | 
|---|
|  | 354 | //     AND CHECK THAT S IS A DESCENT DIRECTION. | 
|---|
|  | 355 |  | 
|---|
|  | 356 | dginit = zero; | 
|---|
|  | 357 | i__1 = *n; | 
|---|
|  | 358 | for (int j = 1; j <= i__1; ++j) { | 
|---|
|  | 359 | dginit += g[j] * s[j]; | 
|---|
|  | 360 | // L10: | 
|---|
|  | 361 | } | 
|---|
|  | 362 | if (dginit >= zero) { | 
|---|
|  | 363 | ExEnv::out0() << indent | 
|---|
|  | 364 | << "MCSearch: " | 
|---|
|  | 365 | << "The search direction is not a descent direction" | 
|---|
|  | 366 | << std::endl; | 
|---|
|  | 367 | return; | 
|---|
|  | 368 | } | 
|---|
|  | 369 |  | 
|---|
|  | 370 | //     INITIALIZE LOCAL VARIABLES. | 
|---|
|  | 371 |  | 
|---|
|  | 372 | brackt = false; | 
|---|
|  | 373 | stage1 = true; | 
|---|
|  | 374 | *nfev = 0; | 
|---|
|  | 375 | finit = *f; | 
|---|
|  | 376 | dgtest = *ftol * dginit; | 
|---|
|  | 377 | width = stpmax_ - stpmin_; | 
|---|
|  | 378 | width1 = width / p5; | 
|---|
|  | 379 | i__1 = *n; | 
|---|
|  | 380 | for (int j = 1; j <= i__1; ++j) { | 
|---|
|  | 381 | wa[j] = x[j]; | 
|---|
|  | 382 | // L20: | 
|---|
|  | 383 | } | 
|---|
|  | 384 |  | 
|---|
|  | 385 | //     THE VARIABLES STX, FX, DGX CONTAIN THE VALUES OF THE STEP, | 
|---|
|  | 386 | //     FUNCTION, AND DIRECTIONAL DERIVATIVE AT THE BEST STEP. | 
|---|
|  | 387 | //     THE VARIABLES STY, FY, DGY CONTAIN THE VALUE OF THE STEP, | 
|---|
|  | 388 | //     FUNCTION, AND DERIVATIVE AT THE OTHER ENDPOINT OF | 
|---|
|  | 389 | //     THE INTERVAL OF UNCERTAINTY. | 
|---|
|  | 390 | //     THE VARIABLES STP, F, DG CONTAIN THE VALUES OF THE STEP, | 
|---|
|  | 391 | //     FUNCTION, AND DERIVATIVE AT THE CURRENT STEP. | 
|---|
|  | 392 |  | 
|---|
|  | 393 | stx = zero; | 
|---|
|  | 394 | fx = finit; | 
|---|
|  | 395 | dgx = dginit; | 
|---|
|  | 396 | sty = zero; | 
|---|
|  | 397 | fy = finit; | 
|---|
|  | 398 | dgy = dginit; | 
|---|
|  | 399 |  | 
|---|
|  | 400 | //     START OF ITERATION. | 
|---|
|  | 401 |  | 
|---|
|  | 402 | L30: | 
|---|
|  | 403 |  | 
|---|
|  | 404 | //        SET THE MINIMUM AND MAXIMUM STEPS TO CORRESPOND | 
|---|
|  | 405 | //        TO THE PRESENT INTERVAL OF UNCERTAINTY. | 
|---|
|  | 406 |  | 
|---|
|  | 407 | if (brackt) { | 
|---|
|  | 408 | stmin = min(stx,sty); | 
|---|
|  | 409 | stmax = max(stx,sty); | 
|---|
|  | 410 | } else { | 
|---|
|  | 411 | stmin = stx; | 
|---|
|  | 412 | stmax = *stp + xtrapf * (*stp - stx); | 
|---|
|  | 413 | } | 
|---|
|  | 414 |  | 
|---|
|  | 415 | //        FORCE THE STEP TO BE WITHIN THE BOUNDS STPMAX AND STPMIN. | 
|---|
|  | 416 |  | 
|---|
|  | 417 | *stp = max(*stp,stpmin_); | 
|---|
|  | 418 | *stp = min(*stp,stpmax_); | 
|---|
|  | 419 |  | 
|---|
|  | 420 | //        IF AN UNUSUAL TERMINATION IS TO OCCUR THEN LET | 
|---|
|  | 421 | //        STP BE THE LOWEST POINT OBTAINED SO FAR. | 
|---|
|  | 422 |  | 
|---|
|  | 423 | if (brackt && (*stp <= stmin || *stp >= stmax) || *nfev >= *maxfev - 1 || | 
|---|
|  | 424 | infoc == 0 || brackt && stmax - stmin <= *xtol * stmax) { | 
|---|
|  | 425 | *stp = stx; | 
|---|
|  | 426 | } | 
|---|
|  | 427 |  | 
|---|
|  | 428 | //        EVALUATE THE FUNCTION AND GRADIENT AT STP | 
|---|
|  | 429 | //        AND COMPUTE THE DIRECTIONAL DERIVATIVE. | 
|---|
|  | 430 | //        We return to main program to obtain F and G. | 
|---|
|  | 431 |  | 
|---|
|  | 432 | i__1 = *n; | 
|---|
|  | 433 | for (int j = 1; j <= i__1; ++j) { | 
|---|
|  | 434 | x[j] = wa[j] + *stp * s[j]; | 
|---|
|  | 435 | // L40: | 
|---|
|  | 436 | } | 
|---|
|  | 437 | *info = -1; | 
|---|
|  | 438 | return; | 
|---|
|  | 439 |  | 
|---|
|  | 440 | L45: | 
|---|
|  | 441 | *info = 0; | 
|---|
|  | 442 | ++(*nfev); | 
|---|
|  | 443 | dg = zero; | 
|---|
|  | 444 | i__1 = *n; | 
|---|
|  | 445 | for (int j = 1; j <= i__1; ++j) { | 
|---|
|  | 446 | dg += g[j] * s[j]; | 
|---|
|  | 447 | // L50: | 
|---|
|  | 448 | } | 
|---|
|  | 449 | ftest1 = finit + *stp * dgtest; | 
|---|
|  | 450 |  | 
|---|
|  | 451 | //        TEST FOR CONVERGENCE. | 
|---|
|  | 452 |  | 
|---|
|  | 453 | if (brackt && (*stp <= stmin || *stp >= stmax) || infoc == 0) { | 
|---|
|  | 454 | *info = 6; | 
|---|
|  | 455 | } | 
|---|
|  | 456 | if (*stp == stpmax_ && *f <= ftest1 && dg <= dgtest) { | 
|---|
|  | 457 | *info = 5; | 
|---|
|  | 458 | } | 
|---|
|  | 459 | if (*stp == stpmin_ && (*f > ftest1 || dg >= dgtest)) { | 
|---|
|  | 460 | *info = 4; | 
|---|
|  | 461 | } | 
|---|
|  | 462 | if (*nfev >= *maxfev) { | 
|---|
|  | 463 | *info = 3; | 
|---|
|  | 464 | } | 
|---|
|  | 465 | if (brackt && stmax - stmin <= *xtol * stmax) { | 
|---|
|  | 466 | *info = 2; | 
|---|
|  | 467 | } | 
|---|
|  | 468 | if (*f <= ftest1 && fabs(dg) <= gtol_ * (-dginit)) { | 
|---|
|  | 469 | *info = 1; | 
|---|
|  | 470 | } | 
|---|
|  | 471 |  | 
|---|
|  | 472 | //        CHECK FOR TERMINATION. | 
|---|
|  | 473 |  | 
|---|
|  | 474 | if (*info != 0) { | 
|---|
|  | 475 | return; | 
|---|
|  | 476 | } | 
|---|
|  | 477 |  | 
|---|
|  | 478 | //        IN THE FIRST STAGE WE SEEK A STEP FOR WHICH THE MODIFIED | 
|---|
|  | 479 | //        FUNCTION HAS A NONPOSITIVE VALUE AND NONNEGATIVE DERIVATIVE. | 
|---|
|  | 480 |  | 
|---|
|  | 481 | if (stage1 && *f <= ftest1 && dg >= min(*ftol,gtol_) * dginit) { | 
|---|
|  | 482 | stage1 = false; | 
|---|
|  | 483 | } | 
|---|
|  | 484 |  | 
|---|
|  | 485 | //        A MODIFIED FUNCTION IS USED TO PREDICT THE STEP ONLY IF | 
|---|
|  | 486 | //        WE HAVE NOT OBTAINED A STEP FOR WHICH THE MODIFIED | 
|---|
|  | 487 | //        FUNCTION HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE | 
|---|
|  | 488 | //        DERIVATIVE, AND IF A LOWER FUNCTION VALUE HAS BEEN | 
|---|
|  | 489 | //        OBTAINED BUT THE DECREASE IS NOT SUFFICIENT. | 
|---|
|  | 490 |  | 
|---|
|  | 491 | if (stage1 && *f <= fx && *f > ftest1) { | 
|---|
|  | 492 |  | 
|---|
|  | 493 | //           DEFINE THE MODIFIED FUNCTION AND DERIVATIVE VALUES. | 
|---|
|  | 494 |  | 
|---|
|  | 495 | fm = *f - *stp * dgtest; | 
|---|
|  | 496 | fxm = fx - stx * dgtest; | 
|---|
|  | 497 | fym = fy - sty * dgtest; | 
|---|
|  | 498 | dgm = dg - dgtest; | 
|---|
|  | 499 | dgxm = dgx - dgtest; | 
|---|
|  | 500 | dgym = dgy - dgtest; | 
|---|
|  | 501 |  | 
|---|
|  | 502 | //           CALL CSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY | 
|---|
|  | 503 | //           AND TO COMPUTE THE NEW STEP. | 
|---|
|  | 504 |  | 
|---|
|  | 505 | mcstep(&stx, &fxm, &dgxm, &sty, &fym, &dgym, stp, &fm, &dgm, &brackt, | 
|---|
|  | 506 | &stmin, &stmax, &infoc); | 
|---|
|  | 507 |  | 
|---|
|  | 508 | //           RESET THE FUNCTION AND GRADIENT VALUES FOR F. | 
|---|
|  | 509 |  | 
|---|
|  | 510 | fx = fxm + stx * dgtest; | 
|---|
|  | 511 | fy = fym + sty * dgtest; | 
|---|
|  | 512 | dgx = dgxm + dgtest; | 
|---|
|  | 513 | dgy = dgym + dgtest; | 
|---|
|  | 514 | } else { | 
|---|
|  | 515 |  | 
|---|
|  | 516 | //           CALL MCSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY | 
|---|
|  | 517 | //           AND TO COMPUTE THE NEW STEP. | 
|---|
|  | 518 |  | 
|---|
|  | 519 | mcstep(&stx, &fx, &dgx, &sty, &fy, &dgy, stp, f, &dg, &brackt, & | 
|---|
|  | 520 | stmin, &stmax, &infoc); | 
|---|
|  | 521 | } | 
|---|
|  | 522 |  | 
|---|
|  | 523 | //        FORCE A SUFFICIENT DECREASE IN THE SIZE OF THE | 
|---|
|  | 524 | //        INTERVAL OF UNCERTAINTY. | 
|---|
|  | 525 |  | 
|---|
|  | 526 | if (brackt) { | 
|---|
|  | 527 | if ((d__1 = sty - stx, fabs(d__1)) >= p66 * width1) { | 
|---|
|  | 528 | *stp = stx + p5 * (sty - stx); | 
|---|
|  | 529 | } | 
|---|
|  | 530 | width1 = width; | 
|---|
|  | 531 | width = (d__1 = sty - stx, fabs(d__1)); | 
|---|
|  | 532 | } | 
|---|
|  | 533 |  | 
|---|
|  | 534 | //        END OF ITERATION. | 
|---|
|  | 535 |  | 
|---|
|  | 536 | goto L30; | 
|---|
|  | 537 |  | 
|---|
|  | 538 | //     LAST LINE OF SUBROUTINE MCSRCH. | 
|---|
|  | 539 |  | 
|---|
|  | 540 | } // mcsrch_ | 
|---|
|  | 541 |  | 
|---|
|  | 542 | void | 
|---|
|  | 543 | MCSearch::mcstep(double *stx, double *fx, double *dx, | 
|---|
|  | 544 | double *sty, double *fy, double *dy, double *stp, | 
|---|
|  | 545 | double *fp, double *dp, bool *brackt, double *stpmin, | 
|---|
|  | 546 | double *stpmax, int *info) | 
|---|
|  | 547 | { | 
|---|
|  | 548 | // System generated locals | 
|---|
|  | 549 | double d__1, d__2, d__3; | 
|---|
|  | 550 |  | 
|---|
|  | 551 | //     SUBROUTINE MCSTEP | 
|---|
|  | 552 |  | 
|---|
|  | 553 | //     THE PURPOSE OF MCSTEP IS TO COMPUTE A SAFEGUARDED STEP FOR | 
|---|
|  | 554 | //     A LINESEARCH AND TO UPDATE AN INTERVAL OF UNCERTAINTY FOR | 
|---|
|  | 555 | //     A MINIMIZER OF THE FUNCTION. | 
|---|
|  | 556 |  | 
|---|
|  | 557 | //     THE PARAMETER STX CONTAINS THE STEP WITH THE LEAST FUNCTION | 
|---|
|  | 558 | //     VALUE. THE PARAMETER STP CONTAINS THE CURRENT STEP. IT IS | 
|---|
|  | 559 | //     ASSUMED THAT THE DERIVATIVE AT STX IS NEGATIVE IN THE | 
|---|
|  | 560 | //     DIRECTION OF THE STEP. IF BRACKT IS SET TRUE THEN A | 
|---|
|  | 561 | //     MINIMIZER HAS BEEN BRACKETED IN AN INTERVAL OF UNCERTAINTY | 
|---|
|  | 562 | //     WITH ENDPOINTS STX AND STY. | 
|---|
|  | 563 |  | 
|---|
|  | 564 | //     THE SUBROUTINE STATEMENT IS | 
|---|
|  | 565 |  | 
|---|
|  | 566 | //       SUBROUTINE MCSTEP(STX,FX,DX,STY,FY,DY,STP,FP,DP,BRACKT, | 
|---|
|  | 567 | //                        STPMIN,STPMAX,INFO) | 
|---|
|  | 568 |  | 
|---|
|  | 569 | //     WHERE | 
|---|
|  | 570 |  | 
|---|
|  | 571 | //       STX, FX, AND DX ARE VARIABLES WHICH SPECIFY THE STEP, | 
|---|
|  | 572 | //         THE FUNCTION, AND THE DERIVATIVE AT THE BEST STEP OBTAINED | 
|---|
|  | 573 | //         SO FAR. THE DERIVATIVE MUST BE NEGATIVE IN THE DIRECTION | 
|---|
|  | 574 | //         OF THE STEP, THAT IS, DX AND STP-STX MUST HAVE OPPOSITE | 
|---|
|  | 575 | //         SIGNS. ON OUTPUT THESE PARAMETERS ARE UPDATED APPROPRIATELY. | 
|---|
|  | 576 |  | 
|---|
|  | 577 | //       STY, FY, AND DY ARE VARIABLES WHICH SPECIFY THE STEP, | 
|---|
|  | 578 | //         THE FUNCTION, AND THE DERIVATIVE AT THE OTHER ENDPOINT OF | 
|---|
|  | 579 | //         THE INTERVAL OF UNCERTAINTY. ON OUTPUT THESE PARAMETERS ARE | 
|---|
|  | 580 | //         UPDATED APPROPRIATELY. | 
|---|
|  | 581 |  | 
|---|
|  | 582 | //       STP, FP, AND DP ARE VARIABLES WHICH SPECIFY THE STEP, | 
|---|
|  | 583 | //         THE FUNCTION, AND THE DERIVATIVE AT THE CURRENT STEP. | 
|---|
|  | 584 | //         IF BRACKT IS SET TRUE THEN ON INPUT STP MUST BE | 
|---|
|  | 585 | //         BETWEEN STX AND STY. ON OUTPUT STP IS SET TO THE NEW STEP. | 
|---|
|  | 586 |  | 
|---|
|  | 587 | //       BRACKT IS A LOGICAL VARIABLE WHICH SPECIFIES IF A MINIMIZER | 
|---|
|  | 588 | //         HAS BEEN BRACKETED. IF THE MINIMIZER HAS NOT BEEN BRACKETED | 
|---|
|  | 589 | //         THEN ON INPUT BRACKT MUST BE SET FALSE. IF THE MINIMIZER | 
|---|
|  | 590 | //         IS BRACKETED THEN ON OUTPUT BRACKT IS SET TRUE. | 
|---|
|  | 591 |  | 
|---|
|  | 592 | //       STPMIN AND STPMAX ARE INPUT VARIABLES WHICH SPECIFY LOWER | 
|---|
|  | 593 | //         AND UPPER BOUNDS FOR THE STEP. | 
|---|
|  | 594 |  | 
|---|
|  | 595 | //       INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS: | 
|---|
|  | 596 | //         IF INFO = 1,2,3,4,5, THEN THE STEP HAS BEEN COMPUTED | 
|---|
|  | 597 | //         ACCORDING TO ONE OF THE FIVE CASES BELOW. OTHERWISE | 
|---|
|  | 598 | //         INFO = 0, AND THIS INDICATES IMPROPER INPUT PARAMETERS. | 
|---|
|  | 599 |  | 
|---|
|  | 600 | //     SUBPROGRAMS CALLED | 
|---|
|  | 601 |  | 
|---|
|  | 602 | //       FORTRAN-SUPPLIED ... ABS,MAX,MIN,SQRT | 
|---|
|  | 603 |  | 
|---|
|  | 604 | //     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983 | 
|---|
|  | 605 | //     JORGE J. MORE', DAVID J. THUENTE | 
|---|
|  | 606 |  | 
|---|
|  | 607 | *info = 0; | 
|---|
|  | 608 |  | 
|---|
|  | 609 | //     CHECK THE INPUT PARAMETERS FOR ERRORS. | 
|---|
|  | 610 |  | 
|---|
|  | 611 | if (*brackt && (*stp <= min(*stx,*sty) || *stp >= max(*stx,*sty)) || *dx * | 
|---|
|  | 612 | (*stp - *stx) >= 0.f || *stpmax < *stpmin) { | 
|---|
|  | 613 | return; | 
|---|
|  | 614 | } | 
|---|
|  | 615 |  | 
|---|
|  | 616 | //     DETERMINE IF THE DERIVATIVES HAVE OPPOSITE SIGN. | 
|---|
|  | 617 |  | 
|---|
|  | 618 | sgnd = *dp * (*dx / fabs(*dx)); | 
|---|
|  | 619 |  | 
|---|
|  | 620 | //     FIRST CASE. A HIGHER FUNCTION VALUE. | 
|---|
|  | 621 | //     THE MINIMUM IS BRACKETED. IF THE CUBIC STEP IS CLOSER | 
|---|
|  | 622 | //     TO STX THAN THE QUADRATIC STEP, THE CUBIC STEP IS TAKEN, | 
|---|
|  | 623 | //     ELSE THE AVERAGE OF THE CUBIC AND QUADRATIC STEPS IS TAKEN. | 
|---|
|  | 624 |  | 
|---|
|  | 625 | if (*fp > *fx) { | 
|---|
|  | 626 | *info = 1; | 
|---|
|  | 627 | bound = true; | 
|---|
|  | 628 | theta = (*fx - *fp) * 3 / (*stp - *stx) + *dx + *dp; | 
|---|
|  | 629 | // Computing MAX | 
|---|
|  | 630 | d__1 = fabs(theta), d__2 = fabs(*dx), d__1 = max(d__1,d__2), d__2 = fabs( | 
|---|
|  | 631 | *dp); | 
|---|
|  | 632 | s = max(d__1,d__2); | 
|---|
|  | 633 | // Computing 2nd power | 
|---|
|  | 634 | d__1 = theta / s; | 
|---|
|  | 635 | gamma = s * sqrt(d__1 * d__1 - *dx / s * (*dp / s)); | 
|---|
|  | 636 | if (*stp < *stx) { | 
|---|
|  | 637 | gamma = -gamma; | 
|---|
|  | 638 | } | 
|---|
|  | 639 | p = gamma - *dx + theta; | 
|---|
|  | 640 | q = gamma - *dx + gamma + *dp; | 
|---|
|  | 641 | r__ = p / q; | 
|---|
|  | 642 | stpc = *stx + r__ * (*stp - *stx); | 
|---|
|  | 643 | stpq = *stx + *dx / ((*fx - *fp) / (*stp - *stx) + *dx) / 2 * (*stp - | 
|---|
|  | 644 | *stx); | 
|---|
|  | 645 | if ((d__1 = stpc - *stx, fabs(d__1)) < (d__2 = stpq - *stx, fabs(d__2))) | 
|---|
|  | 646 | { | 
|---|
|  | 647 | stpf = stpc; | 
|---|
|  | 648 | } else { | 
|---|
|  | 649 | stpf = stpc + (stpq - stpc) / 2; | 
|---|
|  | 650 | } | 
|---|
|  | 651 | *brackt = true; | 
|---|
|  | 652 |  | 
|---|
|  | 653 | //     SECOND CASE. A LOWER FUNCTION VALUE AND DERIVATIVES OF | 
|---|
|  | 654 | //     OPPOSITE SIGN. THE MINIMUM IS BRACKETED. IF THE CUBIC | 
|---|
|  | 655 | //     STEP IS CLOSER TO STX THAN THE QUADRATIC (SECANT) STEP, | 
|---|
|  | 656 | //     THE CUBIC STEP IS TAKEN, ELSE THE QUADRATIC STEP IS TAKEN. | 
|---|
|  | 657 |  | 
|---|
|  | 658 | } else if (sgnd < 0.f) { | 
|---|
|  | 659 | *info = 2; | 
|---|
|  | 660 | bound = false; | 
|---|
|  | 661 | theta = (*fx - *fp) * 3 / (*stp - *stx) + *dx + *dp; | 
|---|
|  | 662 | // Computing MAX | 
|---|
|  | 663 | d__1 = fabs(theta), d__2 = fabs(*dx), d__1 = max(d__1,d__2), d__2 = fabs( | 
|---|
|  | 664 | *dp); | 
|---|
|  | 665 | s = max(d__1,d__2); | 
|---|
|  | 666 | // Computing 2nd power | 
|---|
|  | 667 | d__1 = theta / s; | 
|---|
|  | 668 | gamma = s * sqrt(d__1 * d__1 - *dx / s * (*dp / s)); | 
|---|
|  | 669 | if (*stp > *stx) { | 
|---|
|  | 670 | gamma = -gamma; | 
|---|
|  | 671 | } | 
|---|
|  | 672 | p = gamma - *dp + theta; | 
|---|
|  | 673 | q = gamma - *dp + gamma + *dx; | 
|---|
|  | 674 | r__ = p / q; | 
|---|
|  | 675 | stpc = *stp + r__ * (*stx - *stp); | 
|---|
|  | 676 | stpq = *stp + *dp / (*dp - *dx) * (*stx - *stp); | 
|---|
|  | 677 | if ((d__1 = stpc - *stp, fabs(d__1)) > (d__2 = stpq - *stp, fabs(d__2))) | 
|---|
|  | 678 | { | 
|---|
|  | 679 | stpf = stpc; | 
|---|
|  | 680 | } else { | 
|---|
|  | 681 | stpf = stpq; | 
|---|
|  | 682 | } | 
|---|
|  | 683 | *brackt = true; | 
|---|
|  | 684 |  | 
|---|
|  | 685 | //     THIRD CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE | 
|---|
|  | 686 | //     SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DECREASES. | 
|---|
|  | 687 | //     THE CUBIC STEP IS ONLY USED IF THE CUBIC TENDS TO INFINITY | 
|---|
|  | 688 | //     IN THE DIRECTION OF THE STEP OR IF THE MINIMUM OF THE CUBIC | 
|---|
|  | 689 | //     IS BEYOND STP. OTHERWISE THE CUBIC STEP IS DEFINED TO BE | 
|---|
|  | 690 | //     EITHER STPMIN OR STPMAX. THE QUADRATIC (SECANT) STEP IS ALSO | 
|---|
|  | 691 | //     COMPUTED AND IF THE MINIMUM IS BRACKETED THEN THE THE STEP | 
|---|
|  | 692 | //     CLOSEST TO STX IS TAKEN, ELSE THE STEP FARTHEST AWAY IS TAKEN. | 
|---|
|  | 693 |  | 
|---|
|  | 694 | } else if (fabs(*dp) < fabs(*dx)) { | 
|---|
|  | 695 | *info = 3; | 
|---|
|  | 696 | bound = true; | 
|---|
|  | 697 | theta = (*fx - *fp) * 3 / (*stp - *stx) + *dx + *dp; | 
|---|
|  | 698 | // Computing MAX | 
|---|
|  | 699 | d__1 = fabs(theta), d__2 = fabs(*dx), d__1 = max(d__1,d__2), d__2 = fabs( | 
|---|
|  | 700 | *dp); | 
|---|
|  | 701 | s = max(d__1,d__2); | 
|---|
|  | 702 |  | 
|---|
|  | 703 | //        THE CASE GAMMA = 0 ONLY ARISES IF THE CUBIC DOES NOT TEND | 
|---|
|  | 704 | //        TO INFINITY IN THE DIRECTION OF THE STEP. | 
|---|
|  | 705 |  | 
|---|
|  | 706 | // Computing MAX | 
|---|
|  | 707 | // Computing 2nd power | 
|---|
|  | 708 | d__3 = theta / s; | 
|---|
|  | 709 | d__1 = 0., d__2 = d__3 * d__3 - *dx / s * (*dp / s); | 
|---|
|  | 710 | gamma = s * sqrt((max(d__1,d__2))); | 
|---|
|  | 711 | if (*stp > *stx) { | 
|---|
|  | 712 | gamma = -gamma; | 
|---|
|  | 713 | } | 
|---|
|  | 714 | p = gamma - *dp + theta; | 
|---|
|  | 715 | q = gamma + (*dx - *dp) + gamma; | 
|---|
|  | 716 | r__ = p / q; | 
|---|
|  | 717 | if (r__ < 0.f && gamma != 0.f) { | 
|---|
|  | 718 | stpc = *stp + r__ * (*stx - *stp); | 
|---|
|  | 719 | } else if (*stp > *stx) { | 
|---|
|  | 720 | stpc = *stpmax; | 
|---|
|  | 721 | } else { | 
|---|
|  | 722 | stpc = *stpmin; | 
|---|
|  | 723 | } | 
|---|
|  | 724 | stpq = *stp + *dp / (*dp - *dx) * (*stx - *stp); | 
|---|
|  | 725 | if (*brackt) { | 
|---|
|  | 726 | if ((d__1 = *stp - stpc, fabs(d__1)) < (d__2 = *stp - stpq, fabs( | 
|---|
|  | 727 | d__2))) { | 
|---|
|  | 728 | stpf = stpc; | 
|---|
|  | 729 | } else { | 
|---|
|  | 730 | stpf = stpq; | 
|---|
|  | 731 | } | 
|---|
|  | 732 | } else { | 
|---|
|  | 733 | if ((d__1 = *stp - stpc, fabs(d__1)) > (d__2 = *stp - stpq, fabs( | 
|---|
|  | 734 | d__2))) { | 
|---|
|  | 735 | stpf = stpc; | 
|---|
|  | 736 | } else { | 
|---|
|  | 737 | stpf = stpq; | 
|---|
|  | 738 | } | 
|---|
|  | 739 | } | 
|---|
|  | 740 |  | 
|---|
|  | 741 | //     FOURTH CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE | 
|---|
|  | 742 | //     SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DOES | 
|---|
|  | 743 | //     NOT DECREASE. IF THE MINIMUM IS NOT BRACKETED, THE STEP | 
|---|
|  | 744 | //     IS EITHER STPMIN OR STPMAX, ELSE THE CUBIC STEP IS TAKEN. | 
|---|
|  | 745 |  | 
|---|
|  | 746 | } else { | 
|---|
|  | 747 | *info = 4; | 
|---|
|  | 748 | bound = false; | 
|---|
|  | 749 | if (*brackt) { | 
|---|
|  | 750 | theta = (*fp - *fy) * 3 / (*sty - *stp) + *dy + *dp; | 
|---|
|  | 751 | // Computing MAX | 
|---|
|  | 752 | d__1 = fabs(theta), d__2 = fabs(*dy), d__1 = max(d__1,d__2), d__2 = | 
|---|
|  | 753 | fabs(*dp); | 
|---|
|  | 754 | s = max(d__1,d__2); | 
|---|
|  | 755 | // Computing 2nd power | 
|---|
|  | 756 | d__1 = theta / s; | 
|---|
|  | 757 | gamma = s * sqrt(d__1 * d__1 - *dy / s * (*dp / s)); | 
|---|
|  | 758 | if (*stp > *sty) { | 
|---|
|  | 759 | gamma = -gamma; | 
|---|
|  | 760 | } | 
|---|
|  | 761 | p = gamma - *dp + theta; | 
|---|
|  | 762 | q = gamma - *dp + gamma + *dy; | 
|---|
|  | 763 | r__ = p / q; | 
|---|
|  | 764 | stpc = *stp + r__ * (*sty - *stp); | 
|---|
|  | 765 | stpf = stpc; | 
|---|
|  | 766 | } else if (*stp > *stx) { | 
|---|
|  | 767 | stpf = *stpmax; | 
|---|
|  | 768 | } else { | 
|---|
|  | 769 | stpf = *stpmin; | 
|---|
|  | 770 | } | 
|---|
|  | 771 | } | 
|---|
|  | 772 |  | 
|---|
|  | 773 | //     UPDATE THE INTERVAL OF UNCERTAINTY. THIS UPDATE DOES NOT | 
|---|
|  | 774 | //     DEPEND ON THE NEW STEP OR THE CASE ANALYSIS ABOVE. | 
|---|
|  | 775 |  | 
|---|
|  | 776 | if (*fp > *fx) { | 
|---|
|  | 777 | *sty = *stp; | 
|---|
|  | 778 | *fy = *fp; | 
|---|
|  | 779 | *dy = *dp; | 
|---|
|  | 780 | } else { | 
|---|
|  | 781 | if (sgnd < 0.) { | 
|---|
|  | 782 | *sty = *stx; | 
|---|
|  | 783 | *fy = *fx; | 
|---|
|  | 784 | *dy = *dx; | 
|---|
|  | 785 | } | 
|---|
|  | 786 | *stx = *stp; | 
|---|
|  | 787 | *fx = *fp; | 
|---|
|  | 788 | *dx = *dp; | 
|---|
|  | 789 | } | 
|---|
|  | 790 |  | 
|---|
|  | 791 | //     COMPUTE THE NEW STEP AND SAFEGUARD IT. | 
|---|
|  | 792 |  | 
|---|
|  | 793 | stpf = min(*stpmax,stpf); | 
|---|
|  | 794 | stpf = max(*stpmin,stpf); | 
|---|
|  | 795 | *stp = stpf; | 
|---|
|  | 796 | if (*brackt && bound) { | 
|---|
|  | 797 | if (*sty > *stx) { | 
|---|
|  | 798 | // Computing MIN | 
|---|
|  | 799 | d__1 = *stx + (*sty - *stx) * .66; | 
|---|
|  | 800 | *stp = min(d__1,*stp); | 
|---|
|  | 801 | } else { | 
|---|
|  | 802 | // Computing MAX | 
|---|
|  | 803 | d__1 = *stx + (*sty - *stx) * .66; | 
|---|
|  | 804 | *stp = max(d__1,*stp); | 
|---|
|  | 805 | } | 
|---|
|  | 806 | } | 
|---|
|  | 807 | return; | 
|---|
|  | 808 |  | 
|---|
|  | 809 | //     LAST LINE OF SUBROUTINE MCSTEP. | 
|---|
|  | 810 |  | 
|---|
|  | 811 | } // mcstep_ | 
|---|
|  | 812 |  | 
|---|
|  | 813 | } | 
|---|
|  | 814 |  | 
|---|