| 1 | //
 | 
|---|
| 2 | // efc.cc
 | 
|---|
| 3 | //
 | 
|---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
 | 
|---|
| 5 | //
 | 
|---|
| 6 | // Author: Edward Seidl <seidl@janed.com>
 | 
|---|
| 7 | // Maintainer: LPS
 | 
|---|
| 8 | //
 | 
|---|
| 9 | // This file is part of the SC Toolkit.
 | 
|---|
| 10 | //
 | 
|---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
 | 
|---|
| 12 | // it under the terms of the GNU Library General Public License as published by
 | 
|---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
 | 
|---|
| 14 | // any later version.
 | 
|---|
| 15 | //
 | 
|---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
 | 
|---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 19 | // GNU Library General Public License for more details.
 | 
|---|
| 20 | //
 | 
|---|
| 21 | // You should have received a copy of the GNU Library General Public License
 | 
|---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
 | 
|---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
|---|
| 24 | //
 | 
|---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
 | 
|---|
| 26 | //
 | 
|---|
| 27 | 
 | 
|---|
| 28 | #ifdef __GNUC__
 | 
|---|
| 29 | #pragma implementation
 | 
|---|
| 30 | #endif
 | 
|---|
| 31 | 
 | 
|---|
| 32 | #include <math.h>
 | 
|---|
| 33 | #include <float.h>
 | 
|---|
| 34 | 
 | 
|---|
| 35 | #include <util/state/stateio.h>
 | 
|---|
| 36 | #include <math/optimize/efc.h>
 | 
|---|
| 37 | #include <util/misc/formio.h>
 | 
|---|
| 38 | #include <util/keyval/keyval.h>
 | 
|---|
| 39 | #include <math/scmat/local.h>
 | 
|---|
| 40 | 
 | 
|---|
| 41 | using namespace std;
 | 
|---|
| 42 | using namespace sc;
 | 
|---|
| 43 | 
 | 
|---|
| 44 | /////////////////////////////////////////////////////////////////////////
 | 
|---|
| 45 | // EFCOpt
 | 
|---|
| 46 | 
 | 
|---|
| 47 | static ClassDesc EFCOpt_cd(
 | 
|---|
| 48 |   typeid(EFCOpt),"EFCOpt",2,"public Optimize",
 | 
|---|
| 49 |   0, create<EFCOpt>, create<EFCOpt>);
 | 
|---|
| 50 | 
 | 
|---|
| 51 | EFCOpt::EFCOpt(const Ref<KeyVal>&keyval):
 | 
|---|
| 52 |   Optimize(keyval),
 | 
|---|
| 53 |   maxabs_gradient(-1.0)
 | 
|---|
| 54 | {
 | 
|---|
| 55 |   update_ << keyval->describedclassvalue("update");
 | 
|---|
| 56 |   
 | 
|---|
| 57 |   accuracy_ = keyval->doublevalue("accuracy");
 | 
|---|
| 58 |   if (keyval->error() != KeyVal::OK) accuracy_ = 0.0001;
 | 
|---|
| 59 | 
 | 
|---|
| 60 |   tstate = keyval->booleanvalue("transition_state");
 | 
|---|
| 61 |   if (keyval->error() != KeyVal::OK) tstate = 0;
 | 
|---|
| 62 | 
 | 
|---|
| 63 |   modef = keyval->booleanvalue("mode_following");
 | 
|---|
| 64 |   if (keyval->error() != KeyVal::OK) modef = 0;
 | 
|---|
| 65 | 
 | 
|---|
| 66 |   if (tstate)
 | 
|---|
| 67 |     ExEnv::out0() << endl << indent
 | 
|---|
| 68 |          << "performing a transition state search\n\n";
 | 
|---|
| 69 |   
 | 
|---|
| 70 |   RefSymmSCMatrix hessian(dimension(),matrixkit());
 | 
|---|
| 71 |   // get a guess hessian from function
 | 
|---|
| 72 |   function()->guess_hessian(hessian);
 | 
|---|
| 73 |   
 | 
|---|
| 74 |   // see if any hessian matrix elements have been given in the input
 | 
|---|
| 75 |   if (keyval->exists("hessian")) {
 | 
|---|
| 76 |     int n = hessian.n();
 | 
|---|
| 77 |     for (int i=0; i<n; i++) {
 | 
|---|
| 78 |       if (keyval->exists("hessian",i)) {
 | 
|---|
| 79 |         for (int j=0; j<=i; j++) {
 | 
|---|
| 80 |           double tmp = keyval->doublevalue("hessian",i,j);
 | 
|---|
| 81 |           if (keyval->error() == KeyVal::OK) hessian(i,j) = tmp;
 | 
|---|
| 82 |         }
 | 
|---|
| 83 |       }
 | 
|---|
| 84 |     }
 | 
|---|
| 85 |   }
 | 
|---|
| 86 |   hessian_ = hessian;
 | 
|---|
| 87 |   last_mode_ = 0;
 | 
|---|
| 88 | }
 | 
|---|
| 89 | 
 | 
|---|
| 90 | EFCOpt::EFCOpt(StateIn&s):
 | 
|---|
| 91 |   SavableState(s),
 | 
|---|
| 92 |   Optimize(s)
 | 
|---|
| 93 | {
 | 
|---|
| 94 |   s.get(tstate);
 | 
|---|
| 95 |   s.get(modef);
 | 
|---|
| 96 |   hessian_ = matrixkit()->symmmatrix(dimension());
 | 
|---|
| 97 |   hessian_.restore(s);
 | 
|---|
| 98 |   update_ << SavableState::restore_state(s);
 | 
|---|
| 99 |   last_mode_ = matrixkit()->vector(dimension());
 | 
|---|
| 100 |   last_mode_.restore(s);
 | 
|---|
| 101 |   if (s.version(::class_desc<EFCOpt>()) < 2) {
 | 
|---|
| 102 |     double convergence;
 | 
|---|
| 103 |     s.get(convergence);
 | 
|---|
| 104 |   }
 | 
|---|
| 105 |   s.get(accuracy_);
 | 
|---|
| 106 |   s.get(maxabs_gradient);
 | 
|---|
| 107 | }
 | 
|---|
| 108 | 
 | 
|---|
| 109 | EFCOpt::~EFCOpt()
 | 
|---|
| 110 | {
 | 
|---|
| 111 | }
 | 
|---|
| 112 | 
 | 
|---|
| 113 | void
 | 
|---|
| 114 | EFCOpt::save_data_state(StateOut&s)
 | 
|---|
| 115 | {
 | 
|---|
| 116 |   Optimize::save_data_state(s);
 | 
|---|
| 117 |   s.put(tstate);
 | 
|---|
| 118 |   s.put(modef);
 | 
|---|
| 119 |   hessian_.save(s);
 | 
|---|
| 120 |   SavableState::save_state(update_.pointer(),s);
 | 
|---|
| 121 |   last_mode_.save(s);
 | 
|---|
| 122 |   s.put(accuracy_);
 | 
|---|
| 123 |   s.put(maxabs_gradient);
 | 
|---|
| 124 | }
 | 
|---|
| 125 | 
 | 
|---|
| 126 | void
 | 
|---|
| 127 | EFCOpt::init()
 | 
|---|
| 128 | {
 | 
|---|
| 129 |   Optimize::init();
 | 
|---|
| 130 |   maxabs_gradient = -1.0;
 | 
|---|
| 131 | }
 | 
|---|
| 132 | 
 | 
|---|
| 133 | int
 | 
|---|
| 134 | EFCOpt::update()
 | 
|---|
| 135 | {
 | 
|---|
| 136 |   int i,j;
 | 
|---|
| 137 |   
 | 
|---|
| 138 |   // these are good candidates to be input options
 | 
|---|
| 139 |   const double maxabs_gradient_to_desired_accuracy = 0.05;
 | 
|---|
| 140 |   const double maxabs_gradient_to_next_desired_accuracy = 0.005;
 | 
|---|
| 141 |   const double roundoff_error_factor = 1.1;
 | 
|---|
| 142 | 
 | 
|---|
| 143 |   // the gradient convergence criterion.
 | 
|---|
| 144 |   double old_maxabs_gradient = maxabs_gradient;
 | 
|---|
| 145 |   RefSCVector xcurrent;
 | 
|---|
| 146 |   RefSCVector gcurrent;
 | 
|---|
| 147 | 
 | 
|---|
| 148 |   ExEnv::out0().flush();
 | 
|---|
| 149 |     
 | 
|---|
| 150 |   // get the next gradient at the required level of accuracy.
 | 
|---|
| 151 |   // usually only one pass is needed, unless we happen to find
 | 
|---|
| 152 |   // that the accuracy was set too low.
 | 
|---|
| 153 |   int accurate_enough;
 | 
|---|
| 154 |   do {
 | 
|---|
| 155 |     // compute the current point
 | 
|---|
| 156 |     function()->set_desired_gradient_accuracy(accuracy_);
 | 
|---|
| 157 |     
 | 
|---|
| 158 |     xcurrent = function()->get_x();
 | 
|---|
| 159 |     gcurrent = function()->gradient().copy();
 | 
|---|
| 160 | 
 | 
|---|
| 161 |     // compute the gradient convergence criterion now so i can see if
 | 
|---|
| 162 |     // the accuracy needs to be tighter
 | 
|---|
| 163 |     maxabs_gradient = gcurrent.maxabs();
 | 
|---|
| 164 |     // compute the required accuracy
 | 
|---|
| 165 |     accuracy_ = maxabs_gradient * maxabs_gradient_to_desired_accuracy;
 | 
|---|
| 166 | 
 | 
|---|
| 167 |     if (accuracy_ < DBL_EPSILON) accuracy_ = DBL_EPSILON;
 | 
|---|
| 168 | 
 | 
|---|
| 169 |     // The roundoff_error_factor is thrown in to allow for round off making
 | 
|---|
| 170 |     // the current gcurrent.maxabs() a bit smaller than the previous,
 | 
|---|
| 171 |     // which would make the current required accuracy less than the
 | 
|---|
| 172 |     // gradient's actual accuracy and cause everything to be recomputed.
 | 
|---|
| 173 |     accurate_enough = (function()->actual_gradient_accuracy() <=
 | 
|---|
| 174 |                        accuracy_*roundoff_error_factor);
 | 
|---|
| 175 | 
 | 
|---|
| 176 |     if (!accurate_enough) {
 | 
|---|
| 177 |       ExEnv::out0() << indent
 | 
|---|
| 178 |            << "NOTICE: function()->actual_gradient_accuracy() > accuracy_:\n"
 | 
|---|
| 179 |            << indent << scprintf(
 | 
|---|
| 180 |              "        function()->actual_gradient_accuracy() = %15.8e",
 | 
|---|
| 181 |              function()->actual_gradient_accuracy()) << endl
 | 
|---|
| 182 |            << scprintf(
 | 
|---|
| 183 |              "                                     accuracy_ = %15.8e",
 | 
|---|
| 184 |              accuracy_) << endl;
 | 
|---|
| 185 |     }
 | 
|---|
| 186 |   } while(!accurate_enough);
 | 
|---|
| 187 | 
 | 
|---|
| 188 |   if (old_maxabs_gradient >= 0.0 && old_maxabs_gradient < maxabs_gradient) {
 | 
|---|
| 189 |     ExEnv::out0() << indent
 | 
|---|
| 190 |          << scprintf("NOTICE: maxabs_gradient increased from %8.4e to %8.4e",
 | 
|---|
| 191 |                      old_maxabs_gradient, maxabs_gradient) << endl;
 | 
|---|
| 192 |   }
 | 
|---|
| 193 | 
 | 
|---|
| 194 |   // update the hessian
 | 
|---|
| 195 |   if (update_.nonnull()) {
 | 
|---|
| 196 |     update_->update(hessian_,function(),xcurrent,gcurrent);
 | 
|---|
| 197 |   }
 | 
|---|
| 198 | 
 | 
|---|
| 199 |   // begin efc junk
 | 
|---|
| 200 |   // first diagonalize hessian
 | 
|---|
| 201 |   RefSCMatrix evecs(dimension(),dimension(),matrixkit());
 | 
|---|
| 202 |   RefDiagSCMatrix evals(dimension(),matrixkit());
 | 
|---|
| 203 | 
 | 
|---|
| 204 |   hessian_.diagonalize(evals,evecs);
 | 
|---|
| 205 |   //evals.print("hessian eigenvalues");
 | 
|---|
| 206 |   //evecs.print("hessian eigenvectors");
 | 
|---|
| 207 | 
 | 
|---|
| 208 |   // form gradient to local hessian modes F = Ug
 | 
|---|
| 209 |   RefSCVector F = evecs.t() * gcurrent;
 | 
|---|
| 210 |   //F.print("F");
 | 
|---|
| 211 | 
 | 
|---|
| 212 |   // figure out if hessian has the right number of negative eigenvalues
 | 
|---|
| 213 |   int ncoord = evals.n();
 | 
|---|
| 214 |   int npos=0,nneg=0;
 | 
|---|
| 215 |   for (i=0; i < ncoord; i++) {
 | 
|---|
| 216 |     if (evals.get_element(i) >= 0.0) npos++;
 | 
|---|
| 217 |     else nneg++;
 | 
|---|
| 218 |   }
 | 
|---|
| 219 | 
 | 
|---|
| 220 |   RefSCVector xdisp(dimension(),matrixkit());
 | 
|---|
| 221 |   xdisp.assign(0.0);
 | 
|---|
| 222 |   
 | 
|---|
| 223 |   // for now, we always take the P-RFO for tstate (could take NR if
 | 
|---|
| 224 |   // nneg==1, but we won't make that an option yet)
 | 
|---|
| 225 |   if (tstate) {
 | 
|---|
| 226 |     int mode = 0;
 | 
|---|
| 227 | 
 | 
|---|
| 228 |     if (modef) {
 | 
|---|
| 229 |       // which mode are we following.  find mode with maximum overlap with
 | 
|---|
| 230 |       // last mode followed
 | 
|---|
| 231 |       if (last_mode_.nonnull()) {
 | 
|---|
| 232 |         double overlap=0;
 | 
|---|
| 233 |         for (i=0; i < ncoord; i++) {
 | 
|---|
| 234 |           double S=0;
 | 
|---|
| 235 |           for (j=0; j < ncoord; j++) {
 | 
|---|
| 236 |             S += last_mode_.get_element(j)*evecs.get_element(j,i);
 | 
|---|
| 237 |           }
 | 
|---|
| 238 |           S = fabs(S);
 | 
|---|
| 239 |           if (S > overlap) {
 | 
|---|
| 240 |             mode = i;
 | 
|---|
| 241 |             overlap = S;
 | 
|---|
| 242 |           }
 | 
|---|
| 243 |         }
 | 
|---|
| 244 |       } else {
 | 
|---|
| 245 |         last_mode_ = matrixkit()->vector(dimension());
 | 
|---|
| 246 |       
 | 
|---|
| 247 |         // find mode with max component = coord 0 which should be the
 | 
|---|
| 248 |         // mode being followed
 | 
|---|
| 249 |         double comp=0;
 | 
|---|
| 250 |         for (i=0; i < ncoord; i++) {
 | 
|---|
| 251 |           double S = fabs(evecs.get_element(0,i));
 | 
|---|
| 252 |           if (S>comp) {
 | 
|---|
| 253 |             mode=i;
 | 
|---|
| 254 |             comp=S;
 | 
|---|
| 255 |           }
 | 
|---|
| 256 |         }
 | 
|---|
| 257 |       }
 | 
|---|
| 258 |     
 | 
|---|
| 259 |       for (i=0; i < ncoord; i++)
 | 
|---|
| 260 |         last_mode_(i) = evecs(i,mode);
 | 
|---|
| 261 | 
 | 
|---|
| 262 |       ExEnv::out0() << endl << indent << "\n following mode " << mode << endl;
 | 
|---|
| 263 |     }
 | 
|---|
| 264 |     
 | 
|---|
| 265 |     double bk = evals(mode);
 | 
|---|
| 266 |     double Fk = F(mode);
 | 
|---|
| 267 |     double lambda_p = 0.5*bk + 0.5*sqrt(bk*bk + 4*Fk*Fk);
 | 
|---|
| 268 |     
 | 
|---|
| 269 |     double lambda_n;
 | 
|---|
| 270 |     double nlambda=1.0;
 | 
|---|
| 271 |     do {
 | 
|---|
| 272 |       lambda_n=nlambda;
 | 
|---|
| 273 |       nlambda=0;
 | 
|---|
| 274 |       for (i=0; i < ncoord; i++) {
 | 
|---|
| 275 |         if (i==mode) continue;
 | 
|---|
| 276 |         
 | 
|---|
| 277 |         nlambda += F.get_element(i)*F.get_element(i) /
 | 
|---|
| 278 |                     (lambda_n - evals.get_element(i));
 | 
|---|
| 279 |       }
 | 
|---|
| 280 |     } while(fabs(nlambda-lambda_n) > 1.0e-8);
 | 
|---|
| 281 | 
 | 
|---|
| 282 |     ExEnv::out0()
 | 
|---|
| 283 |          << indent << scprintf("lambda_p = %8.5g",lambda_p) << endl
 | 
|---|
| 284 |          << indent << scprintf("lambda_n = %8.5g",lambda_n) << endl;
 | 
|---|
| 285 | 
 | 
|---|
| 286 |     // form Xk
 | 
|---|
| 287 |     double Fkobkl = F(mode)/(evals(mode)-lambda_p);
 | 
|---|
| 288 |     for (j=0; j < F.n(); j++)
 | 
|---|
| 289 |       xdisp(j) = xdisp(j) - evecs(j,mode) * Fkobkl;
 | 
|---|
| 290 |     
 | 
|---|
| 291 |     // form displacement x = sum -Fi*Vi/(bi-lam)
 | 
|---|
| 292 |     for (i=0; i < F.n(); i++) {
 | 
|---|
| 293 |       if (i==mode) continue;
 | 
|---|
| 294 |       
 | 
|---|
| 295 |       double Fiobil = F(i) / (evals(i)-lambda_n);
 | 
|---|
| 296 |       for (j=0; j < F.n(); j++) {
 | 
|---|
| 297 |         xdisp(j) = xdisp(j) - evecs(j,i) * Fiobil;
 | 
|---|
| 298 |       }
 | 
|---|
| 299 |     }
 | 
|---|
| 300 |     
 | 
|---|
| 301 |  // minimum search
 | 
|---|
| 302 |   } else {
 | 
|---|
| 303 |     // evaluate lambda
 | 
|---|
| 304 |     double lambda;
 | 
|---|
| 305 |     double nlambda=1.0;
 | 
|---|
| 306 |     do {
 | 
|---|
| 307 |       lambda=nlambda;
 | 
|---|
| 308 |       nlambda=0;
 | 
|---|
| 309 |       for (i=0; i < F.n(); i++) {
 | 
|---|
| 310 |         double Fi = F(i);
 | 
|---|
| 311 |         nlambda += Fi*Fi / (lambda - evals.get_element(i));
 | 
|---|
| 312 |       }
 | 
|---|
| 313 |     } while(fabs(nlambda-lambda) > 1.0e-8);
 | 
|---|
| 314 | 
 | 
|---|
| 315 |     ExEnv::out0() << indent << scprintf("lambda = %8.5g", lambda) << endl;
 | 
|---|
| 316 | 
 | 
|---|
| 317 |   // form displacement x = sum -Fi*Vi/(bi-lam)
 | 
|---|
| 318 |     for (i=0; i < F.n(); i++) {
 | 
|---|
| 319 |       double Fiobil = F(i) / (evals(i)-lambda);
 | 
|---|
| 320 |       for (j=0; j < F.n(); j++) {
 | 
|---|
| 321 |         xdisp(j) = xdisp(j) - evecs(j,i) * Fiobil;
 | 
|---|
| 322 |       }
 | 
|---|
| 323 |     }
 | 
|---|
| 324 |   }
 | 
|---|
| 325 | 
 | 
|---|
| 326 |   // scale the displacement vector if it's too large
 | 
|---|
| 327 |   double tot = sqrt(xdisp.scalar_product(xdisp));
 | 
|---|
| 328 |   if (tot > max_stepsize_) {
 | 
|---|
| 329 |     double scal = max_stepsize_/tot;
 | 
|---|
| 330 |     ExEnv::out0() << endl << indent
 | 
|---|
| 331 |          << scprintf("stepsize of %f is too big, scaling by %f",tot,scal)
 | 
|---|
| 332 |          << endl;
 | 
|---|
| 333 |     xdisp.scale(scal);
 | 
|---|
| 334 |     tot *= scal;
 | 
|---|
| 335 |   }
 | 
|---|
| 336 | 
 | 
|---|
| 337 |   //xdisp.print("xdisp");
 | 
|---|
| 338 | 
 | 
|---|
| 339 |   // try steepest descent
 | 
|---|
| 340 |   // RefSCVector xdisp = -1.0*gcurrent;
 | 
|---|
| 341 |   RefSCVector xnext = xcurrent + xdisp;
 | 
|---|
| 342 | 
 | 
|---|
| 343 |   conv_->reset();
 | 
|---|
| 344 |   conv_->get_grad(function());
 | 
|---|
| 345 |   conv_->get_x(function());
 | 
|---|
| 346 |   conv_->set_nextx(xnext);
 | 
|---|
| 347 | 
 | 
|---|
| 348 |   // check for conergence before resetting the geometry
 | 
|---|
| 349 |   int converged = conv_->converged();
 | 
|---|
| 350 |   if (converged)
 | 
|---|
| 351 |     return converged;
 | 
|---|
| 352 | 
 | 
|---|
| 353 |   ExEnv::out0() << endl
 | 
|---|
| 354 |        << indent << scprintf("taking step of size %f",tot) << endl;
 | 
|---|
| 355 |                     
 | 
|---|
| 356 |   function()->set_x(xnext);
 | 
|---|
| 357 |   Ref<NonlinearTransform> t = function()->change_coordinates();
 | 
|---|
| 358 |   apply_transform(t);
 | 
|---|
| 359 | 
 | 
|---|
| 360 |   // make the next gradient computed more accurate, since it will
 | 
|---|
| 361 |   // be smaller
 | 
|---|
| 362 |   accuracy_ = maxabs_gradient * maxabs_gradient_to_next_desired_accuracy;
 | 
|---|
| 363 |   
 | 
|---|
| 364 |   return converged;
 | 
|---|
| 365 | }
 | 
|---|
| 366 | 
 | 
|---|
| 367 | void
 | 
|---|
| 368 | EFCOpt::apply_transform(const Ref<NonlinearTransform> &t)
 | 
|---|
| 369 | {
 | 
|---|
| 370 |   if (t.null()) return;
 | 
|---|
| 371 |   Optimize::apply_transform(t);
 | 
|---|
| 372 |   if (last_mode_.nonnull()) t->transform_gradient(last_mode_);
 | 
|---|
| 373 |   if (hessian_.nonnull()) t->transform_hessian(hessian_);
 | 
|---|
| 374 |   if (update_.nonnull()) update_->apply_transform(t);
 | 
|---|
| 375 | }
 | 
|---|
| 376 | 
 | 
|---|
| 377 | /////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 378 | 
 | 
|---|
| 379 | // Local Variables:
 | 
|---|
| 380 | // mode: c++
 | 
|---|
| 381 | // c-file-style: "ETS"
 | 
|---|
| 382 | // End:
 | 
|---|