1 | //
|
---|
2 | // efc.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Edward Seidl <seidl@janed.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <math.h>
|
---|
33 | #include <float.h>
|
---|
34 |
|
---|
35 | #include <util/state/stateio.h>
|
---|
36 | #include <math/optimize/efc.h>
|
---|
37 | #include <util/misc/formio.h>
|
---|
38 | #include <util/keyval/keyval.h>
|
---|
39 | #include <math/scmat/local.h>
|
---|
40 |
|
---|
41 | using namespace std;
|
---|
42 | using namespace sc;
|
---|
43 |
|
---|
44 | /////////////////////////////////////////////////////////////////////////
|
---|
45 | // EFCOpt
|
---|
46 |
|
---|
47 | static ClassDesc EFCOpt_cd(
|
---|
48 | typeid(EFCOpt),"EFCOpt",2,"public Optimize",
|
---|
49 | 0, create<EFCOpt>, create<EFCOpt>);
|
---|
50 |
|
---|
51 | EFCOpt::EFCOpt(const Ref<KeyVal>&keyval):
|
---|
52 | Optimize(keyval),
|
---|
53 | maxabs_gradient(-1.0)
|
---|
54 | {
|
---|
55 | update_ << keyval->describedclassvalue("update");
|
---|
56 |
|
---|
57 | accuracy_ = keyval->doublevalue("accuracy");
|
---|
58 | if (keyval->error() != KeyVal::OK) accuracy_ = 0.0001;
|
---|
59 |
|
---|
60 | tstate = keyval->booleanvalue("transition_state");
|
---|
61 | if (keyval->error() != KeyVal::OK) tstate = 0;
|
---|
62 |
|
---|
63 | modef = keyval->booleanvalue("mode_following");
|
---|
64 | if (keyval->error() != KeyVal::OK) modef = 0;
|
---|
65 |
|
---|
66 | if (tstate)
|
---|
67 | ExEnv::out0() << endl << indent
|
---|
68 | << "performing a transition state search\n\n";
|
---|
69 |
|
---|
70 | RefSymmSCMatrix hessian(dimension(),matrixkit());
|
---|
71 | // get a guess hessian from function
|
---|
72 | function()->guess_hessian(hessian);
|
---|
73 |
|
---|
74 | // see if any hessian matrix elements have been given in the input
|
---|
75 | if (keyval->exists("hessian")) {
|
---|
76 | int n = hessian.n();
|
---|
77 | for (int i=0; i<n; i++) {
|
---|
78 | if (keyval->exists("hessian",i)) {
|
---|
79 | for (int j=0; j<=i; j++) {
|
---|
80 | double tmp = keyval->doublevalue("hessian",i,j);
|
---|
81 | if (keyval->error() == KeyVal::OK) hessian(i,j) = tmp;
|
---|
82 | }
|
---|
83 | }
|
---|
84 | }
|
---|
85 | }
|
---|
86 | hessian_ = hessian;
|
---|
87 | last_mode_ = 0;
|
---|
88 | }
|
---|
89 |
|
---|
90 | EFCOpt::EFCOpt(StateIn&s):
|
---|
91 | SavableState(s),
|
---|
92 | Optimize(s)
|
---|
93 | {
|
---|
94 | s.get(tstate);
|
---|
95 | s.get(modef);
|
---|
96 | hessian_ = matrixkit()->symmmatrix(dimension());
|
---|
97 | hessian_.restore(s);
|
---|
98 | update_ << SavableState::restore_state(s);
|
---|
99 | last_mode_ = matrixkit()->vector(dimension());
|
---|
100 | last_mode_.restore(s);
|
---|
101 | if (s.version(::class_desc<EFCOpt>()) < 2) {
|
---|
102 | double convergence;
|
---|
103 | s.get(convergence);
|
---|
104 | }
|
---|
105 | s.get(accuracy_);
|
---|
106 | s.get(maxabs_gradient);
|
---|
107 | }
|
---|
108 |
|
---|
109 | EFCOpt::~EFCOpt()
|
---|
110 | {
|
---|
111 | }
|
---|
112 |
|
---|
113 | void
|
---|
114 | EFCOpt::save_data_state(StateOut&s)
|
---|
115 | {
|
---|
116 | Optimize::save_data_state(s);
|
---|
117 | s.put(tstate);
|
---|
118 | s.put(modef);
|
---|
119 | hessian_.save(s);
|
---|
120 | SavableState::save_state(update_.pointer(),s);
|
---|
121 | last_mode_.save(s);
|
---|
122 | s.put(accuracy_);
|
---|
123 | s.put(maxabs_gradient);
|
---|
124 | }
|
---|
125 |
|
---|
126 | void
|
---|
127 | EFCOpt::init()
|
---|
128 | {
|
---|
129 | Optimize::init();
|
---|
130 | maxabs_gradient = -1.0;
|
---|
131 | }
|
---|
132 |
|
---|
133 | int
|
---|
134 | EFCOpt::update()
|
---|
135 | {
|
---|
136 | int i,j;
|
---|
137 |
|
---|
138 | // these are good candidates to be input options
|
---|
139 | const double maxabs_gradient_to_desired_accuracy = 0.05;
|
---|
140 | const double maxabs_gradient_to_next_desired_accuracy = 0.005;
|
---|
141 | const double roundoff_error_factor = 1.1;
|
---|
142 |
|
---|
143 | // the gradient convergence criterion.
|
---|
144 | double old_maxabs_gradient = maxabs_gradient;
|
---|
145 | RefSCVector xcurrent;
|
---|
146 | RefSCVector gcurrent;
|
---|
147 |
|
---|
148 | ExEnv::out0().flush();
|
---|
149 |
|
---|
150 | // get the next gradient at the required level of accuracy.
|
---|
151 | // usually only one pass is needed, unless we happen to find
|
---|
152 | // that the accuracy was set too low.
|
---|
153 | int accurate_enough;
|
---|
154 | do {
|
---|
155 | // compute the current point
|
---|
156 | function()->set_desired_gradient_accuracy(accuracy_);
|
---|
157 |
|
---|
158 | xcurrent = function()->get_x();
|
---|
159 | gcurrent = function()->gradient().copy();
|
---|
160 |
|
---|
161 | // compute the gradient convergence criterion now so i can see if
|
---|
162 | // the accuracy needs to be tighter
|
---|
163 | maxabs_gradient = gcurrent.maxabs();
|
---|
164 | // compute the required accuracy
|
---|
165 | accuracy_ = maxabs_gradient * maxabs_gradient_to_desired_accuracy;
|
---|
166 |
|
---|
167 | if (accuracy_ < DBL_EPSILON) accuracy_ = DBL_EPSILON;
|
---|
168 |
|
---|
169 | // The roundoff_error_factor is thrown in to allow for round off making
|
---|
170 | // the current gcurrent.maxabs() a bit smaller than the previous,
|
---|
171 | // which would make the current required accuracy less than the
|
---|
172 | // gradient's actual accuracy and cause everything to be recomputed.
|
---|
173 | accurate_enough = (function()->actual_gradient_accuracy() <=
|
---|
174 | accuracy_*roundoff_error_factor);
|
---|
175 |
|
---|
176 | if (!accurate_enough) {
|
---|
177 | ExEnv::out0() << indent
|
---|
178 | << "NOTICE: function()->actual_gradient_accuracy() > accuracy_:\n"
|
---|
179 | << indent << scprintf(
|
---|
180 | " function()->actual_gradient_accuracy() = %15.8e",
|
---|
181 | function()->actual_gradient_accuracy()) << endl
|
---|
182 | << scprintf(
|
---|
183 | " accuracy_ = %15.8e",
|
---|
184 | accuracy_) << endl;
|
---|
185 | }
|
---|
186 | } while(!accurate_enough);
|
---|
187 |
|
---|
188 | if (old_maxabs_gradient >= 0.0 && old_maxabs_gradient < maxabs_gradient) {
|
---|
189 | ExEnv::out0() << indent
|
---|
190 | << scprintf("NOTICE: maxabs_gradient increased from %8.4e to %8.4e",
|
---|
191 | old_maxabs_gradient, maxabs_gradient) << endl;
|
---|
192 | }
|
---|
193 |
|
---|
194 | // update the hessian
|
---|
195 | if (update_.nonnull()) {
|
---|
196 | update_->update(hessian_,function(),xcurrent,gcurrent);
|
---|
197 | }
|
---|
198 |
|
---|
199 | // begin efc junk
|
---|
200 | // first diagonalize hessian
|
---|
201 | RefSCMatrix evecs(dimension(),dimension(),matrixkit());
|
---|
202 | RefDiagSCMatrix evals(dimension(),matrixkit());
|
---|
203 |
|
---|
204 | hessian_.diagonalize(evals,evecs);
|
---|
205 | //evals.print("hessian eigenvalues");
|
---|
206 | //evecs.print("hessian eigenvectors");
|
---|
207 |
|
---|
208 | // form gradient to local hessian modes F = Ug
|
---|
209 | RefSCVector F = evecs.t() * gcurrent;
|
---|
210 | //F.print("F");
|
---|
211 |
|
---|
212 | // figure out if hessian has the right number of negative eigenvalues
|
---|
213 | int ncoord = evals.n();
|
---|
214 | int npos=0,nneg=0;
|
---|
215 | for (i=0; i < ncoord; i++) {
|
---|
216 | if (evals.get_element(i) >= 0.0) npos++;
|
---|
217 | else nneg++;
|
---|
218 | }
|
---|
219 |
|
---|
220 | RefSCVector xdisp(dimension(),matrixkit());
|
---|
221 | xdisp.assign(0.0);
|
---|
222 |
|
---|
223 | // for now, we always take the P-RFO for tstate (could take NR if
|
---|
224 | // nneg==1, but we won't make that an option yet)
|
---|
225 | if (tstate) {
|
---|
226 | int mode = 0;
|
---|
227 |
|
---|
228 | if (modef) {
|
---|
229 | // which mode are we following. find mode with maximum overlap with
|
---|
230 | // last mode followed
|
---|
231 | if (last_mode_.nonnull()) {
|
---|
232 | double overlap=0;
|
---|
233 | for (i=0; i < ncoord; i++) {
|
---|
234 | double S=0;
|
---|
235 | for (j=0; j < ncoord; j++) {
|
---|
236 | S += last_mode_.get_element(j)*evecs.get_element(j,i);
|
---|
237 | }
|
---|
238 | S = fabs(S);
|
---|
239 | if (S > overlap) {
|
---|
240 | mode = i;
|
---|
241 | overlap = S;
|
---|
242 | }
|
---|
243 | }
|
---|
244 | } else {
|
---|
245 | last_mode_ = matrixkit()->vector(dimension());
|
---|
246 |
|
---|
247 | // find mode with max component = coord 0 which should be the
|
---|
248 | // mode being followed
|
---|
249 | double comp=0;
|
---|
250 | for (i=0; i < ncoord; i++) {
|
---|
251 | double S = fabs(evecs.get_element(0,i));
|
---|
252 | if (S>comp) {
|
---|
253 | mode=i;
|
---|
254 | comp=S;
|
---|
255 | }
|
---|
256 | }
|
---|
257 | }
|
---|
258 |
|
---|
259 | for (i=0; i < ncoord; i++)
|
---|
260 | last_mode_(i) = evecs(i,mode);
|
---|
261 |
|
---|
262 | ExEnv::out0() << endl << indent << "\n following mode " << mode << endl;
|
---|
263 | }
|
---|
264 |
|
---|
265 | double bk = evals(mode);
|
---|
266 | double Fk = F(mode);
|
---|
267 | double lambda_p = 0.5*bk + 0.5*sqrt(bk*bk + 4*Fk*Fk);
|
---|
268 |
|
---|
269 | double lambda_n;
|
---|
270 | double nlambda=1.0;
|
---|
271 | do {
|
---|
272 | lambda_n=nlambda;
|
---|
273 | nlambda=0;
|
---|
274 | for (i=0; i < ncoord; i++) {
|
---|
275 | if (i==mode) continue;
|
---|
276 |
|
---|
277 | nlambda += F.get_element(i)*F.get_element(i) /
|
---|
278 | (lambda_n - evals.get_element(i));
|
---|
279 | }
|
---|
280 | } while(fabs(nlambda-lambda_n) > 1.0e-8);
|
---|
281 |
|
---|
282 | ExEnv::out0()
|
---|
283 | << indent << scprintf("lambda_p = %8.5g",lambda_p) << endl
|
---|
284 | << indent << scprintf("lambda_n = %8.5g",lambda_n) << endl;
|
---|
285 |
|
---|
286 | // form Xk
|
---|
287 | double Fkobkl = F(mode)/(evals(mode)-lambda_p);
|
---|
288 | for (j=0; j < F.n(); j++)
|
---|
289 | xdisp(j) = xdisp(j) - evecs(j,mode) * Fkobkl;
|
---|
290 |
|
---|
291 | // form displacement x = sum -Fi*Vi/(bi-lam)
|
---|
292 | for (i=0; i < F.n(); i++) {
|
---|
293 | if (i==mode) continue;
|
---|
294 |
|
---|
295 | double Fiobil = F(i) / (evals(i)-lambda_n);
|
---|
296 | for (j=0; j < F.n(); j++) {
|
---|
297 | xdisp(j) = xdisp(j) - evecs(j,i) * Fiobil;
|
---|
298 | }
|
---|
299 | }
|
---|
300 |
|
---|
301 | // minimum search
|
---|
302 | } else {
|
---|
303 | // evaluate lambda
|
---|
304 | double lambda;
|
---|
305 | double nlambda=1.0;
|
---|
306 | do {
|
---|
307 | lambda=nlambda;
|
---|
308 | nlambda=0;
|
---|
309 | for (i=0; i < F.n(); i++) {
|
---|
310 | double Fi = F(i);
|
---|
311 | nlambda += Fi*Fi / (lambda - evals.get_element(i));
|
---|
312 | }
|
---|
313 | } while(fabs(nlambda-lambda) > 1.0e-8);
|
---|
314 |
|
---|
315 | ExEnv::out0() << indent << scprintf("lambda = %8.5g", lambda) << endl;
|
---|
316 |
|
---|
317 | // form displacement x = sum -Fi*Vi/(bi-lam)
|
---|
318 | for (i=0; i < F.n(); i++) {
|
---|
319 | double Fiobil = F(i) / (evals(i)-lambda);
|
---|
320 | for (j=0; j < F.n(); j++) {
|
---|
321 | xdisp(j) = xdisp(j) - evecs(j,i) * Fiobil;
|
---|
322 | }
|
---|
323 | }
|
---|
324 | }
|
---|
325 |
|
---|
326 | // scale the displacement vector if it's too large
|
---|
327 | double tot = sqrt(xdisp.scalar_product(xdisp));
|
---|
328 | if (tot > max_stepsize_) {
|
---|
329 | double scal = max_stepsize_/tot;
|
---|
330 | ExEnv::out0() << endl << indent
|
---|
331 | << scprintf("stepsize of %f is too big, scaling by %f",tot,scal)
|
---|
332 | << endl;
|
---|
333 | xdisp.scale(scal);
|
---|
334 | tot *= scal;
|
---|
335 | }
|
---|
336 |
|
---|
337 | //xdisp.print("xdisp");
|
---|
338 |
|
---|
339 | // try steepest descent
|
---|
340 | // RefSCVector xdisp = -1.0*gcurrent;
|
---|
341 | RefSCVector xnext = xcurrent + xdisp;
|
---|
342 |
|
---|
343 | conv_->reset();
|
---|
344 | conv_->get_grad(function());
|
---|
345 | conv_->get_x(function());
|
---|
346 | conv_->set_nextx(xnext);
|
---|
347 |
|
---|
348 | // check for conergence before resetting the geometry
|
---|
349 | int converged = conv_->converged();
|
---|
350 | if (converged)
|
---|
351 | return converged;
|
---|
352 |
|
---|
353 | ExEnv::out0() << endl
|
---|
354 | << indent << scprintf("taking step of size %f",tot) << endl;
|
---|
355 |
|
---|
356 | function()->set_x(xnext);
|
---|
357 | Ref<NonlinearTransform> t = function()->change_coordinates();
|
---|
358 | apply_transform(t);
|
---|
359 |
|
---|
360 | // make the next gradient computed more accurate, since it will
|
---|
361 | // be smaller
|
---|
362 | accuracy_ = maxabs_gradient * maxabs_gradient_to_next_desired_accuracy;
|
---|
363 |
|
---|
364 | return converged;
|
---|
365 | }
|
---|
366 |
|
---|
367 | void
|
---|
368 | EFCOpt::apply_transform(const Ref<NonlinearTransform> &t)
|
---|
369 | {
|
---|
370 | if (t.null()) return;
|
---|
371 | Optimize::apply_transform(t);
|
---|
372 | if (last_mode_.nonnull()) t->transform_gradient(last_mode_);
|
---|
373 | if (hessian_.nonnull()) t->transform_hessian(hessian_);
|
---|
374 | if (update_.nonnull()) update_->apply_transform(t);
|
---|
375 | }
|
---|
376 |
|
---|
377 | /////////////////////////////////////////////////////////////////////////////
|
---|
378 |
|
---|
379 | // Local Variables:
|
---|
380 | // mode: c++
|
---|
381 | // c-file-style: "ETS"
|
---|
382 | // End:
|
---|