1 | //
|
---|
2 | // tricoef.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <math/isosurf/triangle.h>
|
---|
33 | #include <math/isosurf/tricoef.h>
|
---|
34 |
|
---|
35 | using namespace sc;
|
---|
36 |
|
---|
37 | /////////////////////////////////////////////////////////////////////////
|
---|
38 | // Utility functions
|
---|
39 |
|
---|
40 | static inline void
|
---|
41 | init_coef_deriv(double L, int order, double *Lcoef, double *Lcoefderiv)
|
---|
42 | {
|
---|
43 | int i;
|
---|
44 | Lcoef[0] = 1.0;
|
---|
45 | Lcoefderiv[0] = 0.0;
|
---|
46 | double spacing = 1.0/order;
|
---|
47 | for (i=1; i<=order; i++) {
|
---|
48 | Lcoef[i] = Lcoef[i-1] * (L - (i-1)*spacing)/(i*spacing);
|
---|
49 | Lcoefderiv[i] = Lcoefderiv[i-1] * (L - (i-1)*spacing)/(i*spacing)
|
---|
50 | + Lcoef[i-1]/(i*spacing);
|
---|
51 | }
|
---|
52 | }
|
---|
53 |
|
---|
54 |
|
---|
55 | /////////////////////////////////////////////////////////////////////////
|
---|
56 | // The TriInterpCoef Utility Class
|
---|
57 |
|
---|
58 | TriInterpCoef::TriInterpCoef(const TriInterpCoefKey& key)
|
---|
59 | {
|
---|
60 | int i,j,k;
|
---|
61 |
|
---|
62 | int order = key.order();
|
---|
63 | double L1 = key.L1();
|
---|
64 | double L2 = key.L2();
|
---|
65 | double L3 = key.L3();
|
---|
66 | int n = order_to_nvertex(order);
|
---|
67 | coef_ = new double[n];
|
---|
68 | rderiv_ = new double[n];
|
---|
69 | sderiv_ = new double[n];
|
---|
70 |
|
---|
71 | double L1coef[Triangle::max_order+1];
|
---|
72 | double L2coef[Triangle::max_order+1];
|
---|
73 | double L3coef[Triangle::max_order+1];
|
---|
74 |
|
---|
75 | double L1coefderiv[Triangle::max_order+1];
|
---|
76 | double L2coefderiv[Triangle::max_order+1];
|
---|
77 | double L3coefderiv[Triangle::max_order+1];
|
---|
78 |
|
---|
79 | init_coef_deriv(L1, order, L1coef, L1coefderiv);
|
---|
80 | init_coef_deriv(L2, order, L2coef, L2coefderiv);
|
---|
81 | init_coef_deriv(L3, order, L3coef, L3coefderiv);
|
---|
82 |
|
---|
83 | // the r derivatives
|
---|
84 | double L1coef_r[Triangle::max_order+1];
|
---|
85 | double L2coef_r[Triangle::max_order+1];
|
---|
86 | double L3coef_r[Triangle::max_order+1];
|
---|
87 |
|
---|
88 | // the s derivatives
|
---|
89 | double L1coef_s[Triangle::max_order+1];
|
---|
90 | double L2coef_s[Triangle::max_order+1];
|
---|
91 | double L3coef_s[Triangle::max_order+1];
|
---|
92 |
|
---|
93 | // convert into r and s derivatives
|
---|
94 | for (i=0; i<=order; i++) {
|
---|
95 | L1coef_r[i] = -L1coefderiv[i];
|
---|
96 | L1coef_s[i] = -L1coefderiv[i];
|
---|
97 | L2coef_r[i] = L2coefderiv[i];
|
---|
98 | L2coef_s[i] = 0.0;
|
---|
99 | L3coef_r[i] = 0.0;
|
---|
100 | L3coef_s[i] = L3coefderiv[i];
|
---|
101 | }
|
---|
102 |
|
---|
103 | for (i=0; i<=order; i++) {
|
---|
104 | for (j=0; j <= order-i; j++) {
|
---|
105 | k = order - i - j;
|
---|
106 | coef(i,j,k) = L1coef[i]*L2coef[j]*L3coef[k];
|
---|
107 | sderiv(i,j,k) = L1coef_s[i]*L2coef[j]*L3coef[k]
|
---|
108 | +L1coef[i]*L2coef_s[j]*L3coef[k]
|
---|
109 | +L1coef[i]*L2coef[j]*L3coef_s[k];
|
---|
110 | rderiv(i,j,k) = L1coef_r[i]*L2coef[j]*L3coef[k]
|
---|
111 | +L1coef[i]*L2coef_r[j]*L3coef[k]
|
---|
112 | +L1coef[i]*L2coef[j]*L3coef_r[k];
|
---|
113 | }
|
---|
114 | }
|
---|
115 | }
|
---|
116 |
|
---|
117 | TriInterpCoef::~TriInterpCoef()
|
---|
118 | {
|
---|
119 | delete[] coef_;
|
---|
120 | delete[] rderiv_;
|
---|
121 | delete[] sderiv_;
|
---|
122 | }
|
---|
123 |
|
---|
124 | /////////////////////////////////////////////////////////////////////////////
|
---|
125 |
|
---|
126 | // Local Variables:
|
---|
127 | // mode: c++
|
---|
128 | // c-file-style: "CLJ"
|
---|
129 | // End:
|
---|