// // tricoef.cc // // Copyright (C) 1996 Limit Point Systems, Inc. // // Author: Curtis Janssen // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // #ifdef __GNUC__ #pragma implementation #endif #include #include using namespace sc; ///////////////////////////////////////////////////////////////////////// // Utility functions static inline void init_coef_deriv(double L, int order, double *Lcoef, double *Lcoefderiv) { int i; Lcoef[0] = 1.0; Lcoefderiv[0] = 0.0; double spacing = 1.0/order; for (i=1; i<=order; i++) { Lcoef[i] = Lcoef[i-1] * (L - (i-1)*spacing)/(i*spacing); Lcoefderiv[i] = Lcoefderiv[i-1] * (L - (i-1)*spacing)/(i*spacing) + Lcoef[i-1]/(i*spacing); } } ///////////////////////////////////////////////////////////////////////// // The TriInterpCoef Utility Class TriInterpCoef::TriInterpCoef(const TriInterpCoefKey& key) { int i,j,k; int order = key.order(); double L1 = key.L1(); double L2 = key.L2(); double L3 = key.L3(); int n = order_to_nvertex(order); coef_ = new double[n]; rderiv_ = new double[n]; sderiv_ = new double[n]; double L1coef[Triangle::max_order+1]; double L2coef[Triangle::max_order+1]; double L3coef[Triangle::max_order+1]; double L1coefderiv[Triangle::max_order+1]; double L2coefderiv[Triangle::max_order+1]; double L3coefderiv[Triangle::max_order+1]; init_coef_deriv(L1, order, L1coef, L1coefderiv); init_coef_deriv(L2, order, L2coef, L2coefderiv); init_coef_deriv(L3, order, L3coef, L3coefderiv); // the r derivatives double L1coef_r[Triangle::max_order+1]; double L2coef_r[Triangle::max_order+1]; double L3coef_r[Triangle::max_order+1]; // the s derivatives double L1coef_s[Triangle::max_order+1]; double L2coef_s[Triangle::max_order+1]; double L3coef_s[Triangle::max_order+1]; // convert into r and s derivatives for (i=0; i<=order; i++) { L1coef_r[i] = -L1coefderiv[i]; L1coef_s[i] = -L1coefderiv[i]; L2coef_r[i] = L2coefderiv[i]; L2coef_s[i] = 0.0; L3coef_r[i] = 0.0; L3coef_s[i] = L3coefderiv[i]; } for (i=0; i<=order; i++) { for (j=0; j <= order-i; j++) { k = order - i - j; coef(i,j,k) = L1coef[i]*L2coef[j]*L3coef[k]; sderiv(i,j,k) = L1coef_s[i]*L2coef[j]*L3coef[k] +L1coef[i]*L2coef_s[j]*L3coef[k] +L1coef[i]*L2coef[j]*L3coef_s[k]; rderiv(i,j,k) = L1coef_r[i]*L2coef[j]*L3coef[k] +L1coef[i]*L2coef_r[j]*L3coef[k] +L1coef[i]*L2coef[j]*L3coef_r[k]; } } } TriInterpCoef::~TriInterpCoef() { delete[] coef_; delete[] rderiv_; delete[] sderiv_; } ///////////////////////////////////////////////////////////////////////////// // Local Variables: // mode: c++ // c-file-style: "CLJ" // End: