1 | //
|
---|
2 | // triangle.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <util/misc/formio.h>
|
---|
33 | #include <util/keyval/keyval.h>
|
---|
34 | #include <math/isosurf/triangle.h>
|
---|
35 | #include <math/scmat/vector3.h>
|
---|
36 |
|
---|
37 | using namespace std;
|
---|
38 | using namespace sc;
|
---|
39 |
|
---|
40 | /////////////////////////////////////////////////////////////////////////
|
---|
41 | // Triangle
|
---|
42 | ///////////////////////////////////////////////////////////////////////////
|
---|
43 | // Here is the layout of the vertices and edges in the triangles: |
|
---|
44 | // |
|
---|
45 | // vertex(1) (r=0, s=1) |
|
---|
46 | // + |
|
---|
47 | // / \ _edges[1].vertex(_orientation1) |
|
---|
48 | // / \ |
|
---|
49 | // / \ |
|
---|
50 | // / \ |
|
---|
51 | // / \ |
|
---|
52 | // / \ |
|
---|
53 | // _edges[0] / \ _edges[1] |
|
---|
54 | // (r = 0) / \ (1-r-s = 0) |
|
---|
55 | // / \ |
|
---|
56 | // / \ |
|
---|
57 | // / \ |
|
---|
58 | // / \ _edges[1].vertex(!_orientation1)|
|
---|
59 | // / \ |
|
---|
60 | // vertex(0)+---------------------------+ |
|
---|
61 | // (r=0, s=0) _edges[2] (s = 0) vertex(2) (r=1, s=0) |
|
---|
62 | // |
|
---|
63 | // Zienkiewicz and Taylor, "The Finite Element Method", 4th Ed, Vol 1, |
|
---|
64 | // use |
|
---|
65 | // L1 = 1 - r - s |
|
---|
66 | // L2 = r, |
|
---|
67 | // L3 = s. |
|
---|
68 | // I also use these below. |
|
---|
69 | ///////////////////////////////////////////////////////////////////////////
|
---|
70 |
|
---|
71 | Triangle::Triangle(const Ref<Edge>& v1, const Ref<Edge>& v2, const Ref<Edge>& v3,
|
---|
72 | unsigned int orientation0)
|
---|
73 | {
|
---|
74 | _orientation0 = orientation0;
|
---|
75 |
|
---|
76 | _edges[0] = v1;
|
---|
77 | _edges[1] = v2;
|
---|
78 | _edges[2] = v3;
|
---|
79 |
|
---|
80 | // edge 0 corresponds to r = 0
|
---|
81 | // edge 1 corresponds to (1-r-s) = 0
|
---|
82 | // edge 2 corresponds to s = 0
|
---|
83 | // edge 0 vertex _orientation0 is (r=0,s=0)
|
---|
84 | // edge 1 vertex _orientation1 is (r=0,s=1)
|
---|
85 | // edge 2 vertex _orientation2 is (r=1,s=0)
|
---|
86 | // edge 0 vertex (1-_orientation0) is edge 1 vertex _orientation1
|
---|
87 | // edge 1 vertex (1-_orientation1) is edge 2 vertex _orientation2
|
---|
88 | // edge 2 vertex (1-_orientation2) is edge 0 vertex _orientation0
|
---|
89 |
|
---|
90 | Ref<Edge> *e = _edges;
|
---|
91 |
|
---|
92 | // swap edges 1 and 2 if necessary
|
---|
93 | if (e[0]->vertex(1-_orientation0) != e[1]->vertex(0)) {
|
---|
94 | if (e[0]->vertex(1-_orientation0) != e[1]->vertex(1)) {
|
---|
95 | e[1] = v3;
|
---|
96 | e[2] = v2;
|
---|
97 | }
|
---|
98 | }
|
---|
99 |
|
---|
100 | // compute the orientation of _edge[1]
|
---|
101 | if (e[0]->vertex(1-_orientation0) == e[1]->vertex(0)) {
|
---|
102 | _orientation1 = 0;
|
---|
103 | }
|
---|
104 | else {
|
---|
105 | _orientation1 = 1;
|
---|
106 | }
|
---|
107 |
|
---|
108 | // compute the orientation of _edge[2]
|
---|
109 | if (e[1]->vertex(1-_orientation1) == e[2]->vertex(0)) {
|
---|
110 | _orientation2 = 0;
|
---|
111 | }
|
---|
112 | else {
|
---|
113 | _orientation2 = 1;
|
---|
114 | }
|
---|
115 |
|
---|
116 | // make sure that the triangle is really a triangle
|
---|
117 | if ( e[0]->vertex(1-_orientation0) != e[1]->vertex(_orientation1)
|
---|
118 | || e[1]->vertex(1-_orientation1) != e[2]->vertex(_orientation2)
|
---|
119 | || e[2]->vertex(1-_orientation2) != e[0]->vertex(_orientation0))
|
---|
120 | {
|
---|
121 | ExEnv::errn() << "Triangle: given edges that don't form a triangle" << endl;
|
---|
122 | abort();
|
---|
123 | }
|
---|
124 |
|
---|
125 | _order = 1;
|
---|
126 | _vertices = new Ref<Vertex>[3];
|
---|
127 |
|
---|
128 | _vertices[TriInterpCoef::ijk_to_index(_order, 0, 0)] = vertex(0);
|
---|
129 | _vertices[TriInterpCoef::ijk_to_index(0, 0, _order)] = vertex(1);
|
---|
130 | _vertices[TriInterpCoef::ijk_to_index(0, _order, 0)] = vertex(2);
|
---|
131 | }
|
---|
132 |
|
---|
133 | Triangle::~Triangle()
|
---|
134 | {
|
---|
135 | if (_vertices) delete[] _vertices;
|
---|
136 | }
|
---|
137 |
|
---|
138 | Ref<Vertex>
|
---|
139 | Triangle::vertex(int i)
|
---|
140 | {
|
---|
141 | return _edges[i]->vertex(orientation(i));
|
---|
142 | }
|
---|
143 |
|
---|
144 | unsigned int
|
---|
145 | Triangle::orientation(const Ref<Edge>& e) const
|
---|
146 | {
|
---|
147 | if (e == _edges[0]) return orientation(0);
|
---|
148 | if (e == _edges[1]) return orientation(1);
|
---|
149 | return orientation(2);
|
---|
150 | }
|
---|
151 |
|
---|
152 | int
|
---|
153 | Triangle::contains(const Ref<Edge>& e) const
|
---|
154 | {
|
---|
155 | if (_edges[0] == e) return 1;
|
---|
156 | if (_edges[1] == e) return 1;
|
---|
157 | if (_edges[2] == e) return 1;
|
---|
158 | return 0;
|
---|
159 | }
|
---|
160 |
|
---|
161 | double Triangle::flat_area()
|
---|
162 | {
|
---|
163 | double a = _edges[0]->straight_length();
|
---|
164 | double b = _edges[1]->straight_length();
|
---|
165 | double c = _edges[2]->straight_length();
|
---|
166 | double a2 = a*a;
|
---|
167 | double b2 = b*b;
|
---|
168 | double c2 = c*c;
|
---|
169 | return 0.25 * sqrt( 2.0 * (c2*b2 + c2*a2 + a2*b2)
|
---|
170 | - c2*c2 - b2*b2 - a2*a2);
|
---|
171 | }
|
---|
172 |
|
---|
173 | void Triangle::add_vertices(std::set<Ref<Vertex> >&set)
|
---|
174 | {
|
---|
175 | for (int i=0; i<3; i++) set.insert(_edges[i]->vertex(orientation(i)));
|
---|
176 | }
|
---|
177 |
|
---|
178 | void Triangle::add_edges(std::set<Ref<Edge> >&set)
|
---|
179 | {
|
---|
180 | for (int i=0; i<3; i++) set.insert(_edges[i]);
|
---|
181 | }
|
---|
182 |
|
---|
183 | void
|
---|
184 | Triangle::interpolate(double r,double s,const Ref<Vertex>&result,SCVector3&dA)
|
---|
185 | {
|
---|
186 | TriInterpCoefKey key(_order, r, s);
|
---|
187 | Ref<TriInterpCoef> coef = new TriInterpCoef(key);
|
---|
188 | interpolate(coef, r, s, result, dA);
|
---|
189 | }
|
---|
190 |
|
---|
191 | void
|
---|
192 | Triangle::interpolate(const Ref<TriInterpCoef>& coef,
|
---|
193 | double r, double s,
|
---|
194 | const Ref<Vertex>&result, SCVector3&dA)
|
---|
195 | {
|
---|
196 | unsigned int i, j, k;
|
---|
197 |
|
---|
198 | //double L1 = 1 - r - s;
|
---|
199 | //double L2 = r;
|
---|
200 | //double L3 = s;
|
---|
201 |
|
---|
202 | SCVector3 tmp(0.0);
|
---|
203 | SCVector3 x_s(0.0);
|
---|
204 | SCVector3 x_r(0.0);
|
---|
205 | for (i=0; i<=_order; i++) {
|
---|
206 | for (j=0; j <= _order-i; j++) {
|
---|
207 | k = _order - i - j;
|
---|
208 | int index = TriInterpCoef::ijk_to_index(i,j,k);
|
---|
209 | tmp += coef->coef(i,j,k)*_vertices[index]->point();
|
---|
210 | x_s += coef->sderiv(i,j,k)*_vertices[index]->point();
|
---|
211 | x_r += coef->rderiv(i,j,k)*_vertices[index]->point();
|
---|
212 | }
|
---|
213 | }
|
---|
214 | result->set_point(tmp);
|
---|
215 |
|
---|
216 | if (result->has_normal()) {
|
---|
217 | for (i=0; i<_order; i++) {
|
---|
218 | for (j=0; j <= _order-i; j++) {
|
---|
219 | k = _order - i - j;
|
---|
220 | int index = TriInterpCoef::ijk_to_index(i,j,k);
|
---|
221 | tmp += coef->coef(i,j,k)*_vertices[index]->point();
|
---|
222 | }
|
---|
223 | }
|
---|
224 | result->set_normal(tmp);
|
---|
225 | }
|
---|
226 |
|
---|
227 | // Find the surface element
|
---|
228 | dA = x_r.cross(x_s);
|
---|
229 | }
|
---|
230 |
|
---|
231 | void
|
---|
232 | Triangle::interpolate(double r, double s,
|
---|
233 | const Ref<Vertex>&result, SCVector3&dA,
|
---|
234 | const Ref<Volume> &vol, double isoval)
|
---|
235 | {
|
---|
236 | // set up an initial dummy norm
|
---|
237 | SCVector3 norm(0.0);
|
---|
238 | result->set_normal(norm);
|
---|
239 |
|
---|
240 | // initial guess
|
---|
241 | interpolate(r,s,result,dA);
|
---|
242 |
|
---|
243 | // now refine that guess
|
---|
244 | SCVector3 trialpoint = result->point();
|
---|
245 | SCVector3 trialnorm = result->normal();
|
---|
246 | SCVector3 newpoint;
|
---|
247 | vol->solve(trialpoint,trialnorm,isoval,newpoint);
|
---|
248 | // compute the true normal
|
---|
249 | vol->set_x(newpoint);
|
---|
250 | if (vol->gradient_implemented()) {
|
---|
251 | vol->get_gradient(trialnorm);
|
---|
252 | }
|
---|
253 | trialnorm.normalize();
|
---|
254 | result->set_point(newpoint);
|
---|
255 | result->set_normal(trialnorm);
|
---|
256 | }
|
---|
257 |
|
---|
258 | void
|
---|
259 | Triangle::flip()
|
---|
260 | {
|
---|
261 | _orientation0 = _orientation0?0:1;
|
---|
262 | _orientation1 = _orientation1?0:1;
|
---|
263 | _orientation2 = _orientation2?0:1;
|
---|
264 | }
|
---|
265 |
|
---|
266 | void
|
---|
267 | Triangle::set_order(int order, const Ref<Volume>&vol, double isovalue)
|
---|
268 | {
|
---|
269 | if (order > max_order) {
|
---|
270 | ExEnv::errn() << scprintf("Triangle::set_order: max_order = %d but order = %d\n",
|
---|
271 | max_order, order);
|
---|
272 | abort();
|
---|
273 | }
|
---|
274 |
|
---|
275 | unsigned int i, j, k;
|
---|
276 |
|
---|
277 | if (edge(0)->order() != order
|
---|
278 | ||edge(1)->order() != order
|
---|
279 | ||edge(2)->order() != order) {
|
---|
280 | ExEnv::errn() << "Triangle::set_order: edge order doesn't match" << endl;
|
---|
281 | abort();
|
---|
282 | }
|
---|
283 |
|
---|
284 | _order = order;
|
---|
285 | delete[] _vertices;
|
---|
286 |
|
---|
287 | _vertices = new Ref<Vertex>[TriInterpCoef::order_to_nvertex(_order)];
|
---|
288 |
|
---|
289 | // fill in the corner vertices
|
---|
290 | _vertices[TriInterpCoef::ijk_to_index(_order, 0, 0)] = vertex(0);
|
---|
291 | _vertices[TriInterpCoef::ijk_to_index(0, 0, _order)] = vertex(1);
|
---|
292 | _vertices[TriInterpCoef::ijk_to_index(0, _order, 0)] = vertex(2);
|
---|
293 |
|
---|
294 | // fill in the interior edge vertices
|
---|
295 | for (i = 1; i < _order; i++) {
|
---|
296 | j = _order - i;
|
---|
297 | _vertices[TriInterpCoef::ijk_to_index(0, i, j)]
|
---|
298 | = _edges[1]->interior_vertex(_orientation1?i:j);
|
---|
299 | _vertices[TriInterpCoef::ijk_to_index(j, 0, i)]
|
---|
300 | = _edges[0]->interior_vertex(_orientation0?i:j);
|
---|
301 | _vertices[TriInterpCoef::ijk_to_index(i, j, 0)]
|
---|
302 | = _edges[2]->interior_vertex(_orientation2?i:j);
|
---|
303 | }
|
---|
304 |
|
---|
305 | const SCVector3& p0 = vertex(0)->point();
|
---|
306 | const SCVector3& p1 = vertex(1)->point();
|
---|
307 | const SCVector3& p2 = vertex(2)->point();
|
---|
308 | const SCVector3& norm0 = vertex(0)->normal();
|
---|
309 | const SCVector3& norm1 = vertex(1)->normal();
|
---|
310 | const SCVector3& norm2 = vertex(2)->normal();
|
---|
311 |
|
---|
312 | for (i=0; i<=_order; i++) {
|
---|
313 | double I = (1.0*i)/_order;
|
---|
314 | for (j=0; j<=_order-i; j++) {
|
---|
315 | SCVector3 trialpoint;
|
---|
316 | SCVector3 trialnorm;
|
---|
317 | SCVector3 newpoint;
|
---|
318 | double J = (1.0*j)/_order;
|
---|
319 | k = _order - i - j;
|
---|
320 | if (!i || !j || !k) continue; // interior point check
|
---|
321 | double K = (1.0*k)/_order;
|
---|
322 | int index = TriInterpCoef::ijk_to_index(i,j,k);
|
---|
323 | // this get approximate vertices and normals
|
---|
324 | trialpoint = I*p0 + J*p1 + K*p2;
|
---|
325 | trialnorm = I*norm0 + J*norm1 + K*norm2;
|
---|
326 | // now refine that guess
|
---|
327 | vol->solve(trialpoint,trialnorm,isovalue,newpoint);
|
---|
328 | // compute the true normal
|
---|
329 | vol->set_x(newpoint);
|
---|
330 | if (vol->gradient_implemented()) {
|
---|
331 | vol->get_gradient(trialnorm);
|
---|
332 | }
|
---|
333 | trialnorm.normalize();
|
---|
334 | _vertices[index] = new Vertex(newpoint,trialnorm);
|
---|
335 | }
|
---|
336 | }
|
---|
337 | }
|
---|
338 |
|
---|
339 | /////////////////////////////////////////////////////////////////////////
|
---|
340 | // TriangleIntegrator
|
---|
341 |
|
---|
342 | static ClassDesc TriangleIntegrator_cd(
|
---|
343 | typeid(TriangleIntegrator),"TriangleIntegrator",1,"public DescribedClass",
|
---|
344 | 0, create<TriangleIntegrator>, 0);
|
---|
345 |
|
---|
346 | TriangleIntegrator::TriangleIntegrator(int order):
|
---|
347 | _n(order)
|
---|
348 | {
|
---|
349 | _r = new double [_n];
|
---|
350 | _s = new double [_n];
|
---|
351 | _w = new double [_n];
|
---|
352 | coef_ = 0;
|
---|
353 | }
|
---|
354 |
|
---|
355 | TriangleIntegrator::TriangleIntegrator(const Ref<KeyVal>& keyval)
|
---|
356 | {
|
---|
357 | _n = keyval->intvalue("n");
|
---|
358 | if (keyval->error() != KeyVal::OK) {
|
---|
359 | _n = 7;
|
---|
360 | }
|
---|
361 | _r = new double [_n];
|
---|
362 | _s = new double [_n];
|
---|
363 | _w = new double [_n];
|
---|
364 | coef_ = 0;
|
---|
365 | }
|
---|
366 |
|
---|
367 | TriangleIntegrator::~TriangleIntegrator()
|
---|
368 | {
|
---|
369 | delete[] _r;
|
---|
370 | delete[] _s;
|
---|
371 | delete[] _w;
|
---|
372 | clear_coef();
|
---|
373 | }
|
---|
374 |
|
---|
375 | void
|
---|
376 | TriangleIntegrator::set_n(int n)
|
---|
377 | {
|
---|
378 | delete[] _r;
|
---|
379 | delete[] _s;
|
---|
380 | delete[] _w;
|
---|
381 | _n = n;
|
---|
382 | _r = new double [_n];
|
---|
383 | _s = new double [_n];
|
---|
384 | _w = new double [_n];
|
---|
385 | clear_coef();
|
---|
386 | }
|
---|
387 |
|
---|
388 | void
|
---|
389 | TriangleIntegrator::set_w(int i,double w)
|
---|
390 | {
|
---|
391 | _w[i] = w;
|
---|
392 | }
|
---|
393 |
|
---|
394 | void
|
---|
395 | TriangleIntegrator::set_r(int i,double r)
|
---|
396 | {
|
---|
397 | _r[i] = r;
|
---|
398 | }
|
---|
399 |
|
---|
400 | void
|
---|
401 | TriangleIntegrator::set_s(int i,double s)
|
---|
402 | {
|
---|
403 | _s[i] = s;
|
---|
404 | }
|
---|
405 |
|
---|
406 | void
|
---|
407 | TriangleIntegrator::init_coef()
|
---|
408 | {
|
---|
409 | int i, j;
|
---|
410 |
|
---|
411 | clear_coef();
|
---|
412 |
|
---|
413 | coef_ = new Ref<TriInterpCoef>*[Triangle::max_order];
|
---|
414 | for (i=0; i<Triangle::max_order; i++) {
|
---|
415 | coef_[i] = new Ref<TriInterpCoef>[_n];
|
---|
416 | for (j=0; j<_n; j++) {
|
---|
417 | TriInterpCoefKey key(i+1,_r[j],_s[j]);
|
---|
418 | coef_[i][j] = new TriInterpCoef(key);
|
---|
419 | }
|
---|
420 | }
|
---|
421 | }
|
---|
422 |
|
---|
423 | void
|
---|
424 | TriangleIntegrator::clear_coef()
|
---|
425 | {
|
---|
426 | int i, j;
|
---|
427 |
|
---|
428 | if (coef_) {
|
---|
429 | for (i=0; i<Triangle::max_order; i++) {
|
---|
430 | for (j=0; j<_n; j++) {
|
---|
431 | coef_[i][j] = 0;
|
---|
432 | }
|
---|
433 | delete[] coef_[i];
|
---|
434 | }
|
---|
435 | }
|
---|
436 | delete[] coef_;
|
---|
437 | coef_ = 0;
|
---|
438 | }
|
---|
439 |
|
---|
440 | /////////////////////////////////////////////////////////////////////////
|
---|
441 | // GaussTriangleIntegrator
|
---|
442 |
|
---|
443 | static ClassDesc GaussTriangleIntegrator_cd(
|
---|
444 | typeid(GaussTriangleIntegrator),"GaussTriangleIntegrator",1,"public TriangleIntegrator",
|
---|
445 | 0, create<GaussTriangleIntegrator>, 0);
|
---|
446 |
|
---|
447 | GaussTriangleIntegrator::GaussTriangleIntegrator(const Ref<KeyVal>& keyval):
|
---|
448 | TriangleIntegrator(keyval)
|
---|
449 | {
|
---|
450 | ExEnv::out0() << "Created a GaussTriangleIntegrator with n = " << n() << endl;
|
---|
451 | init_rw(n());
|
---|
452 | init_coef();
|
---|
453 | }
|
---|
454 |
|
---|
455 | GaussTriangleIntegrator::GaussTriangleIntegrator(int order):
|
---|
456 | TriangleIntegrator(order)
|
---|
457 | {
|
---|
458 | init_rw(n());
|
---|
459 | init_coef();
|
---|
460 | }
|
---|
461 |
|
---|
462 | void
|
---|
463 | GaussTriangleIntegrator::set_n(int n)
|
---|
464 | {
|
---|
465 | TriangleIntegrator::set_n(n);
|
---|
466 | init_rw(n);
|
---|
467 | init_coef();
|
---|
468 | }
|
---|
469 |
|
---|
470 | void
|
---|
471 | GaussTriangleIntegrator::init_rw(int order)
|
---|
472 | {
|
---|
473 | if (order == 1) {
|
---|
474 | set_r(0, 1.0/3.0);
|
---|
475 | set_s(0, 1.0/3.0);
|
---|
476 | set_w(0, 1.0);
|
---|
477 | }
|
---|
478 | else if (order == 3) {
|
---|
479 | set_r(0, 1.0/6.0);
|
---|
480 | set_r(1, 2.0/3.0);
|
---|
481 | set_r(2, 1.0/6.0);
|
---|
482 | set_s(0, 1.0/6.0);
|
---|
483 | set_s(1, 1.0/6.0);
|
---|
484 | set_s(2, 2.0/3.0);
|
---|
485 | set_w(0, 1.0/3.0);
|
---|
486 | set_w(1, 1.0/3.0);
|
---|
487 | set_w(2, 1.0/3.0);
|
---|
488 | }
|
---|
489 | else if (order == 4) {
|
---|
490 | set_r(0, 1.0/3.0);
|
---|
491 | set_r(1, 1.0/5.0);
|
---|
492 | set_r(2, 3.0/5.0);
|
---|
493 | set_r(3, 1.0/5.0);
|
---|
494 | set_s(0, 1.0/3.0);
|
---|
495 | set_s(1, 1.0/5.0);
|
---|
496 | set_s(2, 1.0/5.0);
|
---|
497 | set_s(3, 3.0/5.0);
|
---|
498 | set_w(0, -27.0/48.0);
|
---|
499 | set_w(1, 25.0/48.0);
|
---|
500 | set_w(2, 25.0/48.0);
|
---|
501 | set_w(3, 25.0/48.0);
|
---|
502 | }
|
---|
503 | else if (order == 6) {
|
---|
504 | set_r(0, 0.091576213509771);
|
---|
505 | set_r(1, 0.816847572980459);
|
---|
506 | set_r(2, r(0));
|
---|
507 | set_r(3, 0.445948490915965);
|
---|
508 | set_r(4, 0.108103018168070);
|
---|
509 | set_r(5, r(3));
|
---|
510 | set_s(0, r(0));
|
---|
511 | set_s(1, r(0));
|
---|
512 | set_s(2, r(1));
|
---|
513 | set_s(3, r(3));
|
---|
514 | set_s(4, r(3));
|
---|
515 | set_s(5, r(4));
|
---|
516 | set_w(0, 0.109951743655322);
|
---|
517 | set_w(1, w(0));
|
---|
518 | set_w(2, w(0));
|
---|
519 | set_w(3, 0.223381589678011);
|
---|
520 | set_w(4, w(3));
|
---|
521 | set_w(5, w(3));
|
---|
522 | }
|
---|
523 | else if (order == 7) {
|
---|
524 | set_r(0, 1.0/3.0);
|
---|
525 | set_r(1, 0.101286507323456);
|
---|
526 | set_r(2, 0.797426985353087);
|
---|
527 | set_r(3, r(1));
|
---|
528 | set_r(4, 0.470142064105115);
|
---|
529 | set_r(5, 0.059715871789770);
|
---|
530 | set_r(6, r(4));
|
---|
531 | set_s(0, r(0));
|
---|
532 | set_s(1, r(1));
|
---|
533 | set_s(2, r(1));
|
---|
534 | set_s(3, r(2));
|
---|
535 | set_s(4, r(4));
|
---|
536 | set_s(5, r(4));
|
---|
537 | set_s(6, r(5));
|
---|
538 | set_w(0, 0.225);
|
---|
539 | set_w(1, 0.125939180544827);
|
---|
540 | set_w(2, w(1));
|
---|
541 | set_w(3, w(1));
|
---|
542 | set_w(4, 0.132394152788506);
|
---|
543 | set_w(5, w(4));
|
---|
544 | set_w(6, w(4));
|
---|
545 | }
|
---|
546 | else {
|
---|
547 | ExEnv::errn() << "GaussTriangleIntegrator: invalid order " << order << endl;
|
---|
548 | abort();
|
---|
549 | }
|
---|
550 |
|
---|
551 | // scale the weights by the area of the unit triangle
|
---|
552 | for (int i=0; i<order; i++) {
|
---|
553 | set_w(i, w(i)*0.5);
|
---|
554 | }
|
---|
555 | }
|
---|
556 |
|
---|
557 | GaussTriangleIntegrator::~GaussTriangleIntegrator()
|
---|
558 | {
|
---|
559 | }
|
---|
560 |
|
---|
561 | /////////////////////////////////////////////////////////////////////////////
|
---|
562 |
|
---|
563 | // Local Variables:
|
---|
564 | // mode: c++
|
---|
565 | // c-file-style: "CLJ"
|
---|
566 | // End:
|
---|