1 | //
|
---|
2 | // shape.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <stdio.h>
|
---|
33 | #include <util/misc/math.h>
|
---|
34 |
|
---|
35 | #include <util/misc/formio.h>
|
---|
36 | #include <util/keyval/keyval.h>
|
---|
37 | #include <math/isosurf/shape.h>
|
---|
38 |
|
---|
39 | using namespace std;
|
---|
40 | using namespace sc;
|
---|
41 |
|
---|
42 | static const double shape_infinity = 1.0e23;
|
---|
43 |
|
---|
44 | // given a vector X find which of the points in the vector of
|
---|
45 | // vectors, A, is closest to it and return the distance
|
---|
46 | static double
|
---|
47 | closest_distance(SCVector3& X,SCVector3*A,int n,SCVector3*grad)
|
---|
48 | {
|
---|
49 | SCVector3 T = X-A[0];
|
---|
50 | double min = T.dot(T);
|
---|
51 | int imin = 0;
|
---|
52 | for (int i=1; i<n; i++) {
|
---|
53 | T = X-A[i];
|
---|
54 | double tmp = T.dot(T);
|
---|
55 | if (tmp < min) {min = tmp; imin = i;}
|
---|
56 | }
|
---|
57 | if (grad) {
|
---|
58 | T = X - A[imin];
|
---|
59 | T.normalize();
|
---|
60 | *grad = T;
|
---|
61 | }
|
---|
62 | return sqrt(min);
|
---|
63 | }
|
---|
64 |
|
---|
65 | //////////////////////////////////////////////////////////////////////
|
---|
66 | // Shape
|
---|
67 |
|
---|
68 | static ClassDesc Shape_cd(
|
---|
69 | typeid(Shape),"Shape",1,"public Volume",
|
---|
70 | 0, 0, 0);
|
---|
71 |
|
---|
72 | Shape::Shape():
|
---|
73 | Volume()
|
---|
74 | {
|
---|
75 | }
|
---|
76 |
|
---|
77 | Shape::Shape(const Ref<KeyVal>& keyval):
|
---|
78 | Volume(keyval)
|
---|
79 | {
|
---|
80 | }
|
---|
81 |
|
---|
82 | Shape::~Shape()
|
---|
83 | {
|
---|
84 | }
|
---|
85 |
|
---|
86 | void
|
---|
87 | Shape::compute()
|
---|
88 | {
|
---|
89 | SCVector3 r;
|
---|
90 | get_x(r);
|
---|
91 | if (gradient_needed()) {
|
---|
92 | if (!gradient_implemented()) {
|
---|
93 | ExEnv::errn() << "Shape::compute: gradient not implemented" << endl;
|
---|
94 | abort();
|
---|
95 | }
|
---|
96 | SCVector3 v;
|
---|
97 | set_value(distance_to_surface(r,&v));
|
---|
98 | set_actual_value_accuracy(desired_value_accuracy());
|
---|
99 | set_gradient(v);
|
---|
100 | set_actual_gradient_accuracy(desired_gradient_accuracy());
|
---|
101 | }
|
---|
102 | else if (value_needed()) {
|
---|
103 | set_value(distance_to_surface(r));
|
---|
104 | set_actual_value_accuracy(desired_value_accuracy());
|
---|
105 | }
|
---|
106 | if (hessian_needed()) {
|
---|
107 | ExEnv::errn() << "Shape::compute(): can't do hessian yet" << endl;
|
---|
108 | abort();
|
---|
109 | }
|
---|
110 | }
|
---|
111 |
|
---|
112 | int
|
---|
113 | Shape::is_outside(const SCVector3&r) const
|
---|
114 | {
|
---|
115 | if (distance_to_surface(r)>0.0) return 1;
|
---|
116 | return 0;
|
---|
117 | }
|
---|
118 |
|
---|
119 | // Shape overrides volume's interpolate so it always gets points on
|
---|
120 | // the outside of the shape are always returned.
|
---|
121 |
|
---|
122 | // interpolate using the bisection algorithm
|
---|
123 | void
|
---|
124 | Shape::interpolate(const SCVector3& A,
|
---|
125 | const SCVector3& B,
|
---|
126 | double val,
|
---|
127 | SCVector3& result)
|
---|
128 | {
|
---|
129 | if (val < 0.0) {
|
---|
130 | failure("Shape::interpolate(): val is < 0.0");
|
---|
131 | }
|
---|
132 |
|
---|
133 | set_x(A);
|
---|
134 | double value0 = value() - val;
|
---|
135 |
|
---|
136 | set_x(B);
|
---|
137 | double value1 = value() - val;
|
---|
138 |
|
---|
139 | if (value0*value1 > 0.0) {
|
---|
140 | failure("Shape::interpolate(): values at endpoints don't bracket val");
|
---|
141 | }
|
---|
142 | else if (value0 == 0.0) {
|
---|
143 | result = A;
|
---|
144 | return;
|
---|
145 | }
|
---|
146 | else if (value1 == 0.0) {
|
---|
147 | result = B;
|
---|
148 | return;
|
---|
149 | }
|
---|
150 |
|
---|
151 | SCVector3 BA = B - A;
|
---|
152 |
|
---|
153 | double length = BA.norm();
|
---|
154 | int niter = (int) (log(length/interpolation_accuracy())/M_LN2);
|
---|
155 |
|
---|
156 | double f0 = 0.0;
|
---|
157 | double f1 = 1.0;
|
---|
158 | double fnext = 0.5;
|
---|
159 |
|
---|
160 | SCVector3 X = A + fnext*BA;
|
---|
161 | set_x(X);
|
---|
162 | double valuenext = value() - val;
|
---|
163 |
|
---|
164 | do {
|
---|
165 | for (int i=0; i<niter; i++) {
|
---|
166 | if (valuenext*value0 <= 0.0) {
|
---|
167 | value1 = valuenext;
|
---|
168 | f1 = fnext;
|
---|
169 | fnext = (f0 + fnext)*0.5;
|
---|
170 | }
|
---|
171 | else {
|
---|
172 | value0 = valuenext;
|
---|
173 | f0 = fnext;
|
---|
174 | fnext = (fnext + f1)*0.5;
|
---|
175 | }
|
---|
176 | X = A + fnext*BA;
|
---|
177 | set_x(X);
|
---|
178 | valuenext = value() - val;
|
---|
179 | }
|
---|
180 | niter = 1;
|
---|
181 | } while (valuenext < 0.0);
|
---|
182 |
|
---|
183 | result = X;
|
---|
184 | }
|
---|
185 |
|
---|
186 | int
|
---|
187 | Shape::value_implemented() const
|
---|
188 | {
|
---|
189 | return 1;
|
---|
190 | }
|
---|
191 |
|
---|
192 | //////////////////////////////////////////////////////////////////////
|
---|
193 | // SphereShape
|
---|
194 |
|
---|
195 | static ClassDesc SphereShape_cd(
|
---|
196 | typeid(SphereShape),"SphereShape",1,"public Shape",
|
---|
197 | 0, create<SphereShape>, 0);
|
---|
198 |
|
---|
199 | SphereShape::SphereShape(const SCVector3&o,double r):
|
---|
200 | _origin(o),
|
---|
201 | _radius(r)
|
---|
202 | {
|
---|
203 | }
|
---|
204 |
|
---|
205 | SphereShape::SphereShape(const SphereShape&s):
|
---|
206 | _origin(s._origin),
|
---|
207 | _radius(s._radius)
|
---|
208 | {
|
---|
209 | }
|
---|
210 |
|
---|
211 | SphereShape::SphereShape(const Ref<KeyVal>& keyval):
|
---|
212 | _origin(new PrefixKeyVal(keyval,"origin")),
|
---|
213 | _radius(keyval->doublevalue("radius"))
|
---|
214 | {
|
---|
215 | }
|
---|
216 |
|
---|
217 | SphereShape::~SphereShape()
|
---|
218 | {
|
---|
219 | }
|
---|
220 |
|
---|
221 | double
|
---|
222 | SphereShape::distance_to_surface(const SCVector3&p,SCVector3*grad) const
|
---|
223 | {
|
---|
224 | int i;
|
---|
225 | double r2 = 0.0;
|
---|
226 | for (i=0; i<3; i++) {
|
---|
227 | double tmp = p[i] - _origin[i];
|
---|
228 | r2 += tmp*tmp;
|
---|
229 | }
|
---|
230 | double r = sqrt(r2);
|
---|
231 | double d = r - _radius;
|
---|
232 | if (grad) {
|
---|
233 | SCVector3 pv(p);
|
---|
234 | SCVector3 o(_origin);
|
---|
235 | SCVector3 unit = pv - o;
|
---|
236 | unit.normalize();
|
---|
237 | for (i=0; i<3; i++) grad->elem(i) = unit[i];
|
---|
238 | }
|
---|
239 | return d;
|
---|
240 | }
|
---|
241 |
|
---|
242 | void SphereShape::print(ostream&o) const
|
---|
243 | {
|
---|
244 | o << indent
|
---|
245 | << scprintf("SphereShape: r = %8.4f o = (%8.4f %8.4f %8.4f)",
|
---|
246 | radius(),origin()[0],origin()[1],origin()[2])
|
---|
247 | << endl;
|
---|
248 | }
|
---|
249 |
|
---|
250 | void
|
---|
251 | SphereShape::boundingbox(double valuemin, double valuemax,
|
---|
252 | SCVector3& p1,
|
---|
253 | SCVector3& p2)
|
---|
254 | {
|
---|
255 | if (valuemax < 0.0) valuemax = 0.0;
|
---|
256 |
|
---|
257 | int i;
|
---|
258 | for (i=0; i<3; i++) {
|
---|
259 | p1[i] = _origin[i] - _radius - valuemax;
|
---|
260 | p2[i] = _origin[i] + _radius + valuemax;
|
---|
261 | }
|
---|
262 | }
|
---|
263 |
|
---|
264 | int
|
---|
265 | SphereShape::gradient_implemented() const
|
---|
266 | {
|
---|
267 | return 1;
|
---|
268 | }
|
---|
269 |
|
---|
270 | ////////////////////////////////////////////////////////////////////////
|
---|
271 | // UncappedTorusHoleShape
|
---|
272 |
|
---|
273 | static ClassDesc UncappedTorusHoleShape_cd(
|
---|
274 | typeid(UncappedTorusHoleShape),"UncappedTorusHoleShape",1,"public Shape",
|
---|
275 | 0, 0, 0);
|
---|
276 |
|
---|
277 | UncappedTorusHoleShape::UncappedTorusHoleShape(double r,
|
---|
278 | const SphereShape& s1,
|
---|
279 | const SphereShape& s2):
|
---|
280 | _s1(s1),
|
---|
281 | _s2(s2),
|
---|
282 | _r(r)
|
---|
283 | {
|
---|
284 | }
|
---|
285 |
|
---|
286 | UncappedTorusHoleShape*
|
---|
287 | UncappedTorusHoleShape::newUncappedTorusHoleShape(double r,
|
---|
288 | const SphereShape&s1,
|
---|
289 | const SphereShape&s2)
|
---|
290 | {
|
---|
291 | // if the probe sphere fits between the two spheres, then there
|
---|
292 | // is no need to include this shape
|
---|
293 | SCVector3 A(s1.origin());
|
---|
294 | SCVector3 B(s2.origin());
|
---|
295 | SCVector3 BA = B - A;
|
---|
296 | if (2.0*r < BA.norm() - s1.radius() - s2.radius()) return 0;
|
---|
297 |
|
---|
298 | // check to see if the surface is reentrant
|
---|
299 | double rrs1 = r+s1.radius();
|
---|
300 | double rrs2 = r+s2.radius();
|
---|
301 | SCVector3 R12 = ((SCVector3)s1.origin()) - ((SCVector3)s2.origin());
|
---|
302 | double r12 = sqrt(R12.dot(R12));
|
---|
303 | if (sqrt(rrs1*rrs1-r*r) + sqrt(rrs2*rrs2-r*r) < r12)
|
---|
304 | return new ReentrantUncappedTorusHoleShape(r,s1,s2);
|
---|
305 |
|
---|
306 | // otherwise create an ordinary torus hole
|
---|
307 | return new NonreentrantUncappedTorusHoleShape(r,s1,s2);
|
---|
308 | }
|
---|
309 |
|
---|
310 | // Given a node, finds a sphere in the plane of n and the centers
|
---|
311 | // of _s1 and _s2 that touches the UncappedTorusHole. There are two
|
---|
312 | // candidates, the one closest to n is chosen.
|
---|
313 | void
|
---|
314 | UncappedTorusHoleShape::in_plane_sphere(
|
---|
315 | const SCVector3& n,
|
---|
316 | SCVector3& P) const
|
---|
317 | {
|
---|
318 | // the center of the sphere is given by the vector equation
|
---|
319 | // P = A + a R(AB) + b U(perp),
|
---|
320 | // where
|
---|
321 | // A is the center of _s1
|
---|
322 | // B is the center of _s2
|
---|
323 | // R(AB) is the vector from A to B, R(AB) = B - A
|
---|
324 | // U(perp) is a unit vect perp to R(AB) and lies in the plane of n, A, and B
|
---|
325 | // The unknown scalars, a and b are given by solving the following
|
---|
326 | // equations:
|
---|
327 | // | P - A | = r(A) + _r, and
|
---|
328 | // | P - B | = r(B) + _r,
|
---|
329 | // which give
|
---|
330 | // | a R(AB) + b U(perp) | = r(A) + _r, and
|
---|
331 | // | (a-1) R(AB) + b U(perp) | = r(B) + _r.
|
---|
332 | // These further simplify to
|
---|
333 | // a^2 r(AB)^2 + b^2 = (r(A)+_r)^2, and
|
---|
334 | // (a-1)^2 r(AB)^2 + b^2 = (r(B)+_r)^2.
|
---|
335 | // Thus,
|
---|
336 | // a = (((r(A)+_r)^2 - (r(B)+_r)^2 )/(2 r(AB)^2)) + 1/2
|
---|
337 | // b^2 = (r(A)+r)^2 - a^2 r(AB)^2
|
---|
338 |
|
---|
339 | SCVector3 A = _s1.origin();
|
---|
340 | SCVector3 B = _s2.origin();
|
---|
341 | SCVector3 N = n;
|
---|
342 | SCVector3 R_AB = B - A;
|
---|
343 | SCVector3 R_AN = N - A;
|
---|
344 |
|
---|
345 | // vector projection of R_AN onto R_AB
|
---|
346 | SCVector3 P_AN_AB = R_AB * (R_AN.dot(R_AB)/R_AB.dot(R_AB));
|
---|
347 | // the perpendicular vector
|
---|
348 | SCVector3 U_perp = R_AN - P_AN_AB;
|
---|
349 |
|
---|
350 | // if |U| is tiny, then any vector perp to AB will do
|
---|
351 | double u = U_perp.dot(U_perp);
|
---|
352 | if (u<1.0e-23) {
|
---|
353 | SCVector3 vtry = R_AB;
|
---|
354 | vtry[0] += 1.0;
|
---|
355 | vtry = vtry - R_AB * (vtry.dot(R_AB)/R_AB.dot(R_AB));
|
---|
356 | if (vtry.dot(vtry) < 1.0e-23) {
|
---|
357 | vtry = R_AB;
|
---|
358 | vtry[1] += 1.0;
|
---|
359 | vtry = vtry - R_AB * (vtry.dot(R_AB)/R_AB.dot(R_AB));
|
---|
360 | }
|
---|
361 | U_perp = vtry;
|
---|
362 | }
|
---|
363 |
|
---|
364 | U_perp.normalize();
|
---|
365 | //ExEnv::outn() << "A: "; A.print();
|
---|
366 | //ExEnv::outn() << "U_perp: "; U_perp.print();
|
---|
367 | //ExEnv::outn() << "R_AB: "; R_AB.print();
|
---|
368 |
|
---|
369 | double r_AB = sqrt(R_AB.dot(R_AB));
|
---|
370 | double r_A = _s1.radius();
|
---|
371 | double r_B = _s2.radius();
|
---|
372 |
|
---|
373 | double r_Ar = r_A + _r;
|
---|
374 | double r_Br = r_B + _r;
|
---|
375 | double a = ((r_Ar*r_Ar - r_Br*r_Br)/(2.0*r_AB*r_AB)) + 0.5;
|
---|
376 | double b = sqrt(r_Ar*r_Ar - a*a*r_AB*r_AB);
|
---|
377 |
|
---|
378 | //ExEnv::outn() << scprintf("r_Ar = %f, r_AB = %f\n",r_Ar,r_AB);
|
---|
379 | //ExEnv::outn() << scprintf("a = %f, b = %f\n",a,b);
|
---|
380 |
|
---|
381 | P = A + a * R_AB + b * U_perp;
|
---|
382 | //ExEnv::outn() << "a*R_AB: "; (a*R_AB).print();
|
---|
383 | //ExEnv::outn() << "b*U_perp: "; (b*U_perp).print();
|
---|
384 | }
|
---|
385 |
|
---|
386 | void
|
---|
387 | UncappedTorusHoleShape::print(ostream&o) const
|
---|
388 | {
|
---|
389 | o << indent << "UncappedTorusHoleShape:" << endl;
|
---|
390 | o << incindent;
|
---|
391 | o << indent << "r = " << _r << endl;
|
---|
392 | o << indent << "s1 = ";
|
---|
393 | o << incindent << skipnextindent;
|
---|
394 | _s1.print(o);
|
---|
395 | o << decindent;
|
---|
396 | o << indent << "s2 = ";
|
---|
397 | o << incindent << skipnextindent;
|
---|
398 | _s2.print(o);
|
---|
399 | o << decindent;
|
---|
400 | o << decindent;
|
---|
401 | }
|
---|
402 |
|
---|
403 | void
|
---|
404 | UncappedTorusHoleShape::boundingbox(double valuemin, double valuemax,
|
---|
405 | SCVector3& p1,
|
---|
406 | SCVector3& p2)
|
---|
407 | {
|
---|
408 | SCVector3 p11;
|
---|
409 | SCVector3 p12;
|
---|
410 | SCVector3 p21;
|
---|
411 | SCVector3 p22;
|
---|
412 |
|
---|
413 | _s1.boundingbox(valuemin,valuemax,p11,p12);
|
---|
414 | _s2.boundingbox(valuemin,valuemax,p21,p22);
|
---|
415 |
|
---|
416 | int i;
|
---|
417 | for (i=0; i<3; i++) {
|
---|
418 | if (p11[i] < p21[i]) p1[i] = p11[i];
|
---|
419 | else p1[i] = p21[i];
|
---|
420 | if (p12[i] > p22[i]) p2[i] = p12[i];
|
---|
421 | else p2[i] = p22[i];
|
---|
422 | }
|
---|
423 | }
|
---|
424 |
|
---|
425 | int
|
---|
426 | UncappedTorusHoleShape::gradient_implemented() const
|
---|
427 | {
|
---|
428 | return 1;
|
---|
429 | }
|
---|
430 |
|
---|
431 | /////////////////////////////////////////////////////////////////////
|
---|
432 | // is in triangle
|
---|
433 |
|
---|
434 | static int
|
---|
435 | is_in_unbounded_triangle(const SCVector3&XP,const SCVector3&AP,const SCVector3&BP)
|
---|
436 | {
|
---|
437 | SCVector3 axis = BP.cross(AP);
|
---|
438 |
|
---|
439 | SCVector3 BP_perp = BP; BP_perp.rotate(M_PI_2,axis);
|
---|
440 | double u = BP_perp.dot(XP)/BP_perp.dot(AP);
|
---|
441 | if (u<0.0) return 0;
|
---|
442 |
|
---|
443 | SCVector3 AP_perp = AP; AP_perp.rotate(M_PI_2,axis);
|
---|
444 | double w = AP_perp.dot(XP)/AP_perp.dot(BP);
|
---|
445 | if (w<0.0) return 0;
|
---|
446 |
|
---|
447 | return 1;
|
---|
448 | }
|
---|
449 |
|
---|
450 | /////////////////////////////////////////////////////////////////////
|
---|
451 | // ReentrantUncappedTorusHoleShape
|
---|
452 |
|
---|
453 | static ClassDesc ReentrantUncappedTorusHoleShape_cd(
|
---|
454 | typeid(ReentrantUncappedTorusHoleShape),"ReentrantUncappedTorusHoleShape",1,"public UncappedTorusHoleShape",
|
---|
455 | 0, 0, 0);
|
---|
456 |
|
---|
457 | ReentrantUncappedTorusHoleShape::ReentrantUncappedTorusHoleShape(double r,
|
---|
458 | const SphereShape& s1,
|
---|
459 | const SphereShape& s2):
|
---|
460 | UncappedTorusHoleShape(r,s1,s2)
|
---|
461 | {
|
---|
462 | rAP = r + s1.radius();
|
---|
463 | rBP = r + s2.radius();
|
---|
464 | BA = B() - A();
|
---|
465 |
|
---|
466 | // Find the points at the ends of the two cone-like objects, I[0] and I[1].
|
---|
467 | // they are given by:
|
---|
468 | // I = z BA, where BA = B-A and I is actually IA = I - A
|
---|
469 | // r^2 = PI.PI, where PI = PA-I and P is the center of a probe sphere
|
---|
470 | // this gives
|
---|
471 | // z^2 BA.BA - 2z PA.BA + PA.PA - r^2 = 0
|
---|
472 |
|
---|
473 | SCVector3 arbitrary;
|
---|
474 | arbitrary[0] = arbitrary[1] = arbitrary[2] = 0.0;
|
---|
475 | SCVector3 P;
|
---|
476 | in_plane_sphere(arbitrary,P);
|
---|
477 | SCVector3 PA = P - A();
|
---|
478 |
|
---|
479 | double a = BA.dot(BA);
|
---|
480 | double minus_b = 2.0 * PA.dot(BA);
|
---|
481 | double c = PA.dot(PA) - r*r;
|
---|
482 | double b2m4ac = minus_b*minus_b - 4*a*c;
|
---|
483 | double sb2m4ac;
|
---|
484 | if (b2m4ac >= 0.0) {
|
---|
485 | sb2m4ac = sqrt(b2m4ac);
|
---|
486 | }
|
---|
487 | else if (b2m4ac > -1.0e-10) {
|
---|
488 | sb2m4ac = 0.0;
|
---|
489 | }
|
---|
490 | else {
|
---|
491 | ExEnv::errn() << "ReentrantUncappedTorusHoleShape:: imaginary point" << endl;
|
---|
492 | abort();
|
---|
493 | }
|
---|
494 | double zA = (minus_b - sb2m4ac)/(2.0*a);
|
---|
495 | double zB = (minus_b + sb2m4ac)/(2.0*a);
|
---|
496 | I[0] = BA * zA + A();
|
---|
497 | I[1] = BA * zB + A();
|
---|
498 | }
|
---|
499 | ReentrantUncappedTorusHoleShape::~ReentrantUncappedTorusHoleShape()
|
---|
500 | {
|
---|
501 | }
|
---|
502 | int
|
---|
503 | ReentrantUncappedTorusHoleShape::
|
---|
504 | is_outside(const SCVector3&X) const
|
---|
505 | {
|
---|
506 | SCVector3 Xv(X);
|
---|
507 |
|
---|
508 | SCVector3 P;
|
---|
509 | in_plane_sphere(X,P);
|
---|
510 | SCVector3 XP = Xv - P;
|
---|
511 | double rXP = XP.norm();
|
---|
512 | if (rXP > rAP || rXP > rBP) return 1;
|
---|
513 |
|
---|
514 | SCVector3 AP = A() - P;
|
---|
515 | SCVector3 BP = B() - P;
|
---|
516 |
|
---|
517 | if (!is_in_unbounded_triangle(XP,AP,BP)) return 1;
|
---|
518 |
|
---|
519 | if (rXP < radius()) {
|
---|
520 | return 1;
|
---|
521 | }
|
---|
522 |
|
---|
523 | return 0;
|
---|
524 | }
|
---|
525 | double
|
---|
526 | ReentrantUncappedTorusHoleShape::
|
---|
527 | distance_to_surface(const SCVector3&X,SCVector3*grad) const
|
---|
528 | {
|
---|
529 | SCVector3 Xv(X);
|
---|
530 |
|
---|
531 | SCVector3 P;
|
---|
532 | in_plane_sphere(X,P);
|
---|
533 | SCVector3 XP = Xv - P;
|
---|
534 | double rXP = XP.norm();
|
---|
535 | if (rXP > rAP || rXP > rBP) return shape_infinity;
|
---|
536 |
|
---|
537 | SCVector3 AP = A() - P;
|
---|
538 | SCVector3 BP = B() - P;
|
---|
539 |
|
---|
540 | if (!is_in_unbounded_triangle(XP,AP,BP)) return shape_infinity;
|
---|
541 |
|
---|
542 | SCVector3 I1P = I[0] - P;
|
---|
543 | SCVector3 I2P = I[1] - P;
|
---|
544 |
|
---|
545 | if (!is_in_unbounded_triangle(XP,I1P,I2P)) {
|
---|
546 | if (rXP < radius()) {
|
---|
547 | if (grad) {
|
---|
548 | SCVector3 unit(XP);
|
---|
549 | unit.normalize();
|
---|
550 | *grad = unit;
|
---|
551 | }
|
---|
552 | return radius() - rXP;
|
---|
553 | }
|
---|
554 | else return -1.0;
|
---|
555 | }
|
---|
556 |
|
---|
557 | return closest_distance(Xv,(SCVector3*)I,2,grad);
|
---|
558 | }
|
---|
559 |
|
---|
560 | int
|
---|
561 | ReentrantUncappedTorusHoleShape::gradient_implemented() const
|
---|
562 | {
|
---|
563 | return 1;
|
---|
564 | }
|
---|
565 |
|
---|
566 | /////////////////////////////////////////////////////////////////////
|
---|
567 | // NonreentrantUncappedTorusHoleShape
|
---|
568 |
|
---|
569 | static ClassDesc NonreentrantUncappedTorusHoleShape_cd(
|
---|
570 | typeid(NonreentrantUncappedTorusHoleShape),"NonreentrantUncappedTorusHoleShape",1,"public UncappedTorusHoleShape",
|
---|
571 | 0, 0, 0);
|
---|
572 |
|
---|
573 | NonreentrantUncappedTorusHoleShape::
|
---|
574 | NonreentrantUncappedTorusHoleShape(double r,
|
---|
575 | const SphereShape& s1,
|
---|
576 | const SphereShape& s2):
|
---|
577 | UncappedTorusHoleShape(r,s1,s2)
|
---|
578 | {
|
---|
579 | rAP = r + s1.radius();
|
---|
580 | rBP = r + s2.radius();
|
---|
581 | BA = B() - A();
|
---|
582 | }
|
---|
583 | NonreentrantUncappedTorusHoleShape::~NonreentrantUncappedTorusHoleShape()
|
---|
584 | {
|
---|
585 | }
|
---|
586 | double NonreentrantUncappedTorusHoleShape::
|
---|
587 | distance_to_surface(const SCVector3&X,SCVector3* grad) const
|
---|
588 | {
|
---|
589 | SCVector3 Xv(X);
|
---|
590 |
|
---|
591 | SCVector3 P;
|
---|
592 | in_plane_sphere(X,P);
|
---|
593 | SCVector3 PX = P - Xv;
|
---|
594 | double rPX = PX.norm();
|
---|
595 | if (rPX > rAP || rPX > rBP) return shape_infinity;
|
---|
596 |
|
---|
597 | SCVector3 PA = P - A();
|
---|
598 | SCVector3 XA = Xv - A();
|
---|
599 |
|
---|
600 | SCVector3 axis = BA.cross(PA);
|
---|
601 |
|
---|
602 | SCVector3 BA_perp = BA; BA_perp.rotate(M_PI_2,axis);
|
---|
603 | double u = BA_perp.dot(XA)/BA_perp.dot(PA);
|
---|
604 | if (u<0.0 || u>1.0) return shape_infinity;
|
---|
605 |
|
---|
606 | SCVector3 PA_perp = PA; PA_perp.rotate(M_PI_2,axis);
|
---|
607 | double w = PA_perp.dot(XA)/PA_perp.dot(BA);
|
---|
608 | if (w<0.0 || w>1.0) return shape_infinity;
|
---|
609 |
|
---|
610 | double uw = u+w;
|
---|
611 | if (uw<0.0 || uw>1.0) return shape_infinity;
|
---|
612 |
|
---|
613 | if (rPX < radius()) {
|
---|
614 | if (grad) {
|
---|
615 | SCVector3 unit(PX);
|
---|
616 | unit.normalize();
|
---|
617 | *grad = unit;
|
---|
618 | }
|
---|
619 | return radius() - rPX;
|
---|
620 | }
|
---|
621 |
|
---|
622 | return -1;
|
---|
623 | }
|
---|
624 |
|
---|
625 | int
|
---|
626 | NonreentrantUncappedTorusHoleShape::gradient_implemented() const
|
---|
627 | {
|
---|
628 | return 1;
|
---|
629 | }
|
---|
630 |
|
---|
631 | /////////////////////////////////////////////////////////////////////
|
---|
632 | // Uncapped5SphereExclusionShape
|
---|
633 |
|
---|
634 | static ClassDesc Uncapped5SphereExclusionShape_cd(
|
---|
635 | typeid(Uncapped5SphereExclusionShape),"Uncapped5SphereExclusionShape",1,"public Shape",
|
---|
636 | 0, 0, 0);
|
---|
637 |
|
---|
638 | Uncapped5SphereExclusionShape*
|
---|
639 | Uncapped5SphereExclusionShape::
|
---|
640 | newUncapped5SphereExclusionShape(double r,
|
---|
641 | const SphereShape& s1,
|
---|
642 | const SphereShape& s2,
|
---|
643 | const SphereShape& s3)
|
---|
644 | {
|
---|
645 | Uncapped5SphereExclusionShape* s =
|
---|
646 | new Uncapped5SphereExclusionShape(r,s1,s2,s3);
|
---|
647 | if (s->solution_exists()) {
|
---|
648 | return s;
|
---|
649 | }
|
---|
650 | delete s;
|
---|
651 | return 0;
|
---|
652 | }
|
---|
653 | static int verbose = 0;
|
---|
654 | Uncapped5SphereExclusionShape::
|
---|
655 | Uncapped5SphereExclusionShape(double radius,
|
---|
656 | const SphereShape&s1,
|
---|
657 | const SphereShape&s2,
|
---|
658 | const SphereShape&s3):
|
---|
659 | _s1(s1),
|
---|
660 | _s2(s2),
|
---|
661 | _s3(s3),
|
---|
662 | _r(radius)
|
---|
663 | {
|
---|
664 | double rAr = rA() + r();
|
---|
665 | double rAr2 = rAr*rAr;
|
---|
666 | double rBr = rB() + r();
|
---|
667 | double rBr2 = rBr*rBr;
|
---|
668 | double rCr = rC() + r();
|
---|
669 | double rCr2 = rCr*rCr;
|
---|
670 | double A2 = A().dot(A());
|
---|
671 | double B2 = B().dot(B());
|
---|
672 | double C2 = C().dot(C());
|
---|
673 | SCVector3 BA = B()-A();
|
---|
674 | double DdotBA = 0.5*(rAr2 - rBr2 + B2 - A2);
|
---|
675 | double DAdotBA = DdotBA - A().dot(BA);
|
---|
676 | double BA2 = BA.dot(BA);
|
---|
677 | SCVector3 CA = C() - A();
|
---|
678 | double CAdotBA = CA.dot(BA);
|
---|
679 | SCVector3 CA_perpBA = CA - (CAdotBA/BA2)*BA;
|
---|
680 | double CA_perpBA2 = CA_perpBA.dot(CA_perpBA);
|
---|
681 | if (CA_perpBA2 < 1.0e-23) {
|
---|
682 | _solution_exists = 0;
|
---|
683 | return;
|
---|
684 | }
|
---|
685 | double DdotCA_perpBA = 0.5*(rAr2 - rCr2 + C2 - A2)
|
---|
686 | - CAdotBA*DdotBA/BA2;
|
---|
687 | double DAdotCA_perpBA = DdotCA_perpBA - A().dot(CA_perpBA);
|
---|
688 | double rAt2 = DAdotBA*DAdotBA/BA2 + DAdotCA_perpBA*DAdotCA_perpBA/CA_perpBA2;
|
---|
689 | double h2 = rAr2 - rAt2;
|
---|
690 | if (h2 <= 0.0) {
|
---|
691 | _solution_exists = 0;
|
---|
692 | return;
|
---|
693 | }
|
---|
694 | _solution_exists = 1;
|
---|
695 |
|
---|
696 | double h = sqrt(h2);
|
---|
697 | if (h<r()) {
|
---|
698 | _reentrant = 1;
|
---|
699 | //ExEnv::outn() << "WARNING: throwing out reentrant shape" << endl;
|
---|
700 | //_solution_exists = 0;
|
---|
701 | //return;
|
---|
702 | }
|
---|
703 | else {
|
---|
704 | _reentrant = 0;
|
---|
705 | //ExEnv::outn() << "WARNING: throwing out nonreentrant shape" << endl;
|
---|
706 | //_solution_exists = 0;
|
---|
707 | //return;
|
---|
708 | }
|
---|
709 |
|
---|
710 | // The projection of D into the ABC plane
|
---|
711 | SCVector3 MA = (DAdotBA/BA2)*BA + (DAdotCA_perpBA/CA_perpBA2)*CA_perpBA;
|
---|
712 | M = MA + A();
|
---|
713 | SCVector3 BAxCA = BA.cross(CA);
|
---|
714 | D[0] = M + h * BAxCA * ( 1.0/BAxCA.norm() );
|
---|
715 | D[1] = M - h * BAxCA * ( 1.0/BAxCA.norm() );
|
---|
716 |
|
---|
717 | // The projection of D into the ABC plane, M, does not lie in the
|
---|
718 | // ABC triangle, then this shape must be treated carefully and it
|
---|
719 | // will be designated as folded.
|
---|
720 | SCVector3 MC = M - C();
|
---|
721 | if (!(is_in_unbounded_triangle(MA, BA, CA)
|
---|
722 | &&is_in_unbounded_triangle(MC, B() - C(), A() - C()))) {
|
---|
723 | _folded = 1;
|
---|
724 | SCVector3 MB = M - B();
|
---|
725 | double MA2 = MA.dot(MA);
|
---|
726 | double MB2 = MB.dot(MB);
|
---|
727 | double MC2 = MC.dot(MC);
|
---|
728 | if (MA2 < MB2) {
|
---|
729 | F1 = A();
|
---|
730 | if (MB2 < MC2) F2 = B();
|
---|
731 | else F2 = C();
|
---|
732 | }
|
---|
733 | else {
|
---|
734 | F1 = B();
|
---|
735 | if (MA2 < MC2) F2 = A();
|
---|
736 | else F2 = C();
|
---|
737 | }
|
---|
738 | }
|
---|
739 | else _folded = 0;
|
---|
740 |
|
---|
741 | //ExEnv::outn() << scprintf("r = %14.8f, h = %14.8f\n",r(),h);
|
---|
742 | //M.print();
|
---|
743 | //D[0].print();
|
---|
744 | //D[1].print();
|
---|
745 | //A().print();
|
---|
746 | //B().print();
|
---|
747 | //C().print();
|
---|
748 |
|
---|
749 | int i;
|
---|
750 | for (i=0; i<2; i++) {
|
---|
751 | SCVector3 AD = A() - D[i];
|
---|
752 | SCVector3 BD = B() - D[i];
|
---|
753 | SCVector3 CD = C() - D[i];
|
---|
754 | BDxCD[i] = BD.cross(CD);
|
---|
755 | BDxCDdotAD[i] = BDxCD[i].dot(AD);
|
---|
756 | CDxAD[i] = CD.cross(AD);
|
---|
757 | CDxADdotBD[i] = CDxAD[i].dot(BD);
|
---|
758 | ADxBD[i] = AD.cross(BD);
|
---|
759 | ADxBDdotCD[i] = ADxBD[i].dot(CD);
|
---|
760 | }
|
---|
761 |
|
---|
762 | for (i=0; i<2; i++) MD[i] = M - D[i];
|
---|
763 |
|
---|
764 | // reentrant surfaces need a whole bunch more to be able to compute
|
---|
765 | // the distance to the surface
|
---|
766 | if (_reentrant) {
|
---|
767 | int i;
|
---|
768 | double rMD = MD[0].norm(); // this is the same as rMD[1]
|
---|
769 | theta_intersect = M_PI_2 - asin(rMD/r());
|
---|
770 | r_intersect = r() * sin(theta_intersect);
|
---|
771 |
|
---|
772 | {
|
---|
773 | // Does the circle of intersection intersect with BA?
|
---|
774 | SCVector3 MA = M - A();
|
---|
775 | SCVector3 uBA = B() - A(); uBA.normalize();
|
---|
776 | SCVector3 XA = uBA * MA.dot(uBA);
|
---|
777 | SCVector3 XM = XA - MA;
|
---|
778 | double rXM2 = XM.dot(XM);
|
---|
779 | double d_intersect_from_x2 = r_intersect*r_intersect - rXM2;
|
---|
780 | if (d_intersect_from_x2 > 0.0) {
|
---|
781 | _intersects_AB = 1;
|
---|
782 | double tmp = sqrt(d_intersect_from_x2);
|
---|
783 | double d_intersect_from_x[2];
|
---|
784 | d_intersect_from_x[0] = tmp;
|
---|
785 | d_intersect_from_x[1] = -tmp;
|
---|
786 | for (i=0; i<2; i++) {
|
---|
787 | for (int j=0; j<2; j++) {
|
---|
788 | IABD[i][j] = XM + d_intersect_from_x[j]*uBA + MD[i];
|
---|
789 | }
|
---|
790 | }
|
---|
791 | }
|
---|
792 | else _intersects_AB = 0;
|
---|
793 | }
|
---|
794 |
|
---|
795 | {
|
---|
796 | // Does the circle of intersection intersect with BC?
|
---|
797 | SCVector3 MC = M - C();
|
---|
798 | SCVector3 uBC = B() - C(); uBC.normalize();
|
---|
799 | SCVector3 XC = uBC * MC.dot(uBC);
|
---|
800 | SCVector3 XM = XC - MC;
|
---|
801 | double rXM2 = XM.dot(XM);
|
---|
802 | double d_intersect_from_x2 = r_intersect*r_intersect - rXM2;
|
---|
803 | if (d_intersect_from_x2 > 0.0) {
|
---|
804 | _intersects_BC = 1;
|
---|
805 | double tmp = sqrt(d_intersect_from_x2);
|
---|
806 | double d_intersect_from_x[2];
|
---|
807 | d_intersect_from_x[0] = tmp;
|
---|
808 | d_intersect_from_x[1] = -tmp;
|
---|
809 | for (i=0; i<2; i++) {
|
---|
810 | for (int j=0; j<2; j++) {
|
---|
811 | IBCD[i][j] = XM + d_intersect_from_x[j]*uBC + MD[i];
|
---|
812 | }
|
---|
813 | }
|
---|
814 | }
|
---|
815 | else _intersects_BC = 0;
|
---|
816 | }
|
---|
817 |
|
---|
818 | {
|
---|
819 | // Does the circle of intersection intersect with CA?
|
---|
820 | SCVector3 MA = M - A();
|
---|
821 | SCVector3 uCA = C() - A(); uCA.normalize();
|
---|
822 | SCVector3 XA = uCA * MA.dot(uCA);
|
---|
823 | SCVector3 XM = XA - MA;
|
---|
824 | double rXM2 = XM.dot(XM);
|
---|
825 | double d_intersect_from_x2 = r_intersect*r_intersect - rXM2;
|
---|
826 | if (d_intersect_from_x2 > 0.0) {
|
---|
827 | _intersects_CA = 1;
|
---|
828 | double tmp = sqrt(d_intersect_from_x2);
|
---|
829 | double d_intersect_from_x[2];
|
---|
830 | d_intersect_from_x[0] = tmp;
|
---|
831 | d_intersect_from_x[1] = -tmp;
|
---|
832 | for (i=0; i<2; i++) {
|
---|
833 | for (int j=0; j<2; j++) {
|
---|
834 | ICAD[i][j] = XM + d_intersect_from_x[j]*uCA + MD[i];
|
---|
835 | }
|
---|
836 | }
|
---|
837 | }
|
---|
838 | else _intersects_CA = 0;
|
---|
839 | }
|
---|
840 |
|
---|
841 | }
|
---|
842 |
|
---|
843 | #if 0 // test code
|
---|
844 | ExEnv::outn() << "Uncapped5SphereExclusionShape: running some tests" << endl;
|
---|
845 | verbose = 1;
|
---|
846 |
|
---|
847 | FILE* testout = fopen("testout.vect", "w");
|
---|
848 |
|
---|
849 | const double scalefactor_inc = 0.05;
|
---|
850 | const double start = -10.0;
|
---|
851 | const double end = 10.0;
|
---|
852 |
|
---|
853 | SCVector3 middle = (1.0/3.0)*(A()+B()+C());
|
---|
854 |
|
---|
855 | int nlines = 1;
|
---|
856 | int nvert = (int) ( (end-start) / scalefactor_inc);
|
---|
857 | int ncolor = nvert;
|
---|
858 |
|
---|
859 | fprintf(testout, "VECT\n%d %d %d\n", nlines, nvert, ncolor);
|
---|
860 |
|
---|
861 | fprintf(testout, "%d\n", nvert);
|
---|
862 | fprintf(testout, "%d\n", ncolor);
|
---|
863 |
|
---|
864 | double scalefactor = start;
|
---|
865 | for (int ii = 0; ii<nvert; ii++) {
|
---|
866 | SCVector3 position = (D[0] - middle) * scalefactor + middle;
|
---|
867 | double d = distance_to_surface(position);
|
---|
868 | fprintf(testout, "%f %f %f # value = %f\n",
|
---|
869 | position[0], position[1], position[2], d);
|
---|
870 | scalefactor += scalefactor_inc;
|
---|
871 | }
|
---|
872 | scalefactor = start;
|
---|
873 | for (ii = 0; ii<nvert; ii++) {
|
---|
874 | SCVector3 position = (D[0] - middle) * scalefactor + middle;
|
---|
875 | double d = distance_to_surface(position);
|
---|
876 | ExEnv::outn() << scprintf("d = %f\n", d);
|
---|
877 | if (d<0.0) fprintf(testout,"1.0 0.0 0.0 0.5\n");
|
---|
878 | else fprintf(testout,"0.0 0.0 1.0 0.5\n");
|
---|
879 | scalefactor += scalefactor_inc;
|
---|
880 | }
|
---|
881 |
|
---|
882 | fclose(testout);
|
---|
883 | ExEnv::outn() << "testout.vect written" << endl;
|
---|
884 |
|
---|
885 | verbose = 0;
|
---|
886 | #endif // test code
|
---|
887 |
|
---|
888 | }
|
---|
889 | int
|
---|
890 | Uncapped5SphereExclusionShape::is_outside(const SCVector3&X) const
|
---|
891 | {
|
---|
892 | SCVector3 Xv(X);
|
---|
893 |
|
---|
894 | if (verbose) ExEnv::outn() << scprintf("point %14.8f %14.8f %14.8f\n",X(0),X(1),X(2));
|
---|
895 |
|
---|
896 | // The folded case isn't handled correctly here, so use
|
---|
897 | // the less efficient distance_to_surface routine.
|
---|
898 | if (_folded) {
|
---|
899 | return distance_to_surface(X) >= 0.0;
|
---|
900 | }
|
---|
901 |
|
---|
902 | for (int i=0; i<2; i++) {
|
---|
903 | SCVector3 XD = Xv - D[i];
|
---|
904 | double rXD = XD.norm();
|
---|
905 | if (rXD <= r()) return 1;
|
---|
906 | double u = BDxCD[i].dot(XD)/BDxCDdotAD[i];
|
---|
907 | if (u <= 0.0) return 1;
|
---|
908 | double v = CDxAD[i].dot(XD)/CDxADdotBD[i];
|
---|
909 | if (v <= 0.0) return 1;
|
---|
910 | double w = ADxBD[i].dot(XD)/ADxBDdotCD[i];
|
---|
911 | if (w <= 0.0) return 1;
|
---|
912 | }
|
---|
913 |
|
---|
914 | if (verbose) ExEnv::outn() << "is_inside" << endl;
|
---|
915 |
|
---|
916 | return 0;
|
---|
917 | }
|
---|
918 | static int
|
---|
919 | is_contained_in_unbounded_pyramid(SCVector3 XD,
|
---|
920 | SCVector3 AD,
|
---|
921 | SCVector3 BD,
|
---|
922 | SCVector3 CD)
|
---|
923 | {
|
---|
924 | SCVector3 BDxCD = BD.cross(CD);
|
---|
925 | SCVector3 CDxAD = CD.cross(AD);
|
---|
926 | SCVector3 ADxBD = AD.cross(BD);
|
---|
927 | double u = BDxCD.dot(XD)/BDxCD.dot(AD);
|
---|
928 | if (u <= 0.0) return 0;
|
---|
929 | double v = CDxAD.dot(XD)/CDxAD.dot(BD);
|
---|
930 | if (v <= 0.0) return 0;
|
---|
931 | double w = ADxBD.dot(XD)/ADxBD.dot(CD);
|
---|
932 | if (w <= 0.0) return 0;
|
---|
933 | return 1;
|
---|
934 | }
|
---|
935 | double
|
---|
936 | Uncapped5SphereExclusionShape::
|
---|
937 | distance_to_surface(const SCVector3&X,SCVector3*grad) const
|
---|
938 | {
|
---|
939 | SCVector3 Xv(X);
|
---|
940 |
|
---|
941 | // Find out if I'm on the D[0] side or the D[1] side of the ABC plane.
|
---|
942 | int side;
|
---|
943 | SCVector3 XM = Xv - M;
|
---|
944 | if (MD[0].dot(XM) > 0.0) side = 1;
|
---|
945 | else side = 0;
|
---|
946 |
|
---|
947 | if (verbose) {
|
---|
948 | ExEnv::outn() << scprintf("distance_to_surface: folded = %d, side = %d\n",
|
---|
949 | _folded, side);
|
---|
950 | ExEnv::outn() << "XM = "; XM.print();
|
---|
951 | ExEnv::outn() << "MD[0] = "; MD[0].print();
|
---|
952 | ExEnv::outn() << "MD[0].dot(XM) = " << MD[0].dot(XM) << endl;
|
---|
953 | }
|
---|
954 |
|
---|
955 | SCVector3 XD = Xv - D[side];
|
---|
956 | double u = BDxCD[side].dot(XD)/BDxCDdotAD[side];
|
---|
957 | if (verbose) ExEnv::outn() << scprintf("u = %14.8f\n", u);
|
---|
958 | if (u <= 0.0) return shape_infinity;
|
---|
959 | double v = CDxAD[side].dot(XD)/CDxADdotBD[side];
|
---|
960 | if (verbose) ExEnv::outn() << scprintf("v = %14.8f\n", v);
|
---|
961 | if (v <= 0.0) return shape_infinity;
|
---|
962 | double w = ADxBD[side].dot(XD)/ADxBDdotCD[side];
|
---|
963 | if (verbose) ExEnv::outn() << scprintf("w = %14.8f\n", w);
|
---|
964 | if (w <= 0.0) return shape_infinity;
|
---|
965 | double rXD = XD.norm();
|
---|
966 | if (verbose) ExEnv::outn() << scprintf("r() - rXD = %14.8f\n", r() - rXD);
|
---|
967 | if (rXD <= r()) {
|
---|
968 | if (!_reentrant) return r() - rXD;
|
---|
969 | // this shape is reentrant
|
---|
970 | // make sure that we're on the right side
|
---|
971 | if ((side == 1) || (u + v + w <= 1.0)) {
|
---|
972 | // see if we're outside the cone that intersects
|
---|
973 | // the opposite sphere
|
---|
974 | double angle = acos(fabs(XD.dot(MD[side]))
|
---|
975 | /(XD.norm()*MD[side].norm()));
|
---|
976 | if (angle >= theta_intersect) {
|
---|
977 | if (grad) {
|
---|
978 | *grad = (-1.0/rXD)*XD;
|
---|
979 | }
|
---|
980 | return r() - rXD;
|
---|
981 | }
|
---|
982 | if (_intersects_AB
|
---|
983 | &&is_contained_in_unbounded_pyramid(XD,
|
---|
984 | MD[side],
|
---|
985 | IABD[side][0],
|
---|
986 | IABD[side][1])) {
|
---|
987 | //ExEnv::outn() << scprintf("XD: "); XD.print();
|
---|
988 | //ExEnv::outn() << scprintf("MD[%d]: ",i); MD[i].print();
|
---|
989 | //ExEnv::outn() << scprintf("IABD[%d][0]: ",i); IABD[i][0].print();
|
---|
990 | //ExEnv::outn() << scprintf("IABD[%d][1]: ",i); IABD[i][1].print();
|
---|
991 | return closest_distance(XD,(SCVector3*)IABD[side],2,grad);
|
---|
992 | }
|
---|
993 | if (_intersects_BC
|
---|
994 | &&is_contained_in_unbounded_pyramid(XD,
|
---|
995 | MD[side],
|
---|
996 | IBCD[side][0],
|
---|
997 | IBCD[side][1])) {
|
---|
998 | return closest_distance(XD,(SCVector3*)IBCD[side],2,grad);
|
---|
999 | }
|
---|
1000 | if (_intersects_CA
|
---|
1001 | &&is_contained_in_unbounded_pyramid(XD,
|
---|
1002 | MD[side],
|
---|
1003 | ICAD[side][0],
|
---|
1004 | ICAD[side][1])) {
|
---|
1005 | return closest_distance(XD,(SCVector3*)ICAD[side],2,grad);
|
---|
1006 | }
|
---|
1007 | // at this point we are closest to the ring formed
|
---|
1008 | // by the intersection of the two probe spheres
|
---|
1009 | double distance_to_plane;
|
---|
1010 | double distance_to_ring_in_plane;
|
---|
1011 | double MDnorm = MD[side].norm();
|
---|
1012 | SCVector3 XM = XD - MD[side];
|
---|
1013 | SCVector3 XM_in_plane;
|
---|
1014 | if (MDnorm<1.0e-16) {
|
---|
1015 | distance_to_plane = 0.0;
|
---|
1016 | XM_in_plane = XD;
|
---|
1017 | }
|
---|
1018 | else {
|
---|
1019 | distance_to_plane = XM.dot(MD[side])/MDnorm;
|
---|
1020 | XM_in_plane = XM - (distance_to_plane/MDnorm)*MD[side];
|
---|
1021 | }
|
---|
1022 | if (grad) {
|
---|
1023 | double XM_in_plane_norm = XM_in_plane.norm();
|
---|
1024 | if (XM_in_plane_norm < 1.e-8) {
|
---|
1025 | // the grad points along MD
|
---|
1026 | double scale = - distance_to_plane
|
---|
1027 | /(MDnorm*sqrt(r_intersect*r_intersect
|
---|
1028 | + distance_to_plane*distance_to_plane));
|
---|
1029 | *grad = MD[side] * scale;
|
---|
1030 | }
|
---|
1031 | else {
|
---|
1032 | SCVector3 point_on_ring;
|
---|
1033 | point_on_ring = XM_in_plane
|
---|
1034 | * (r_intersect/XM_in_plane_norm) + M;
|
---|
1035 | SCVector3 gradv = Xv - point_on_ring;
|
---|
1036 | gradv.normalize();
|
---|
1037 | *grad = gradv;
|
---|
1038 | }
|
---|
1039 | }
|
---|
1040 | distance_to_ring_in_plane =
|
---|
1041 | r_intersect - sqrt(XM_in_plane.dot(XM_in_plane));
|
---|
1042 | return sqrt(distance_to_ring_in_plane*distance_to_ring_in_plane
|
---|
1043 | +distance_to_plane*distance_to_plane);
|
---|
1044 | }
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 | if (verbose) ExEnv::outn() << "returning -1.0" << endl;
|
---|
1048 | return -1.0;
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 | void
|
---|
1052 | Uncapped5SphereExclusionShape::boundingbox(double valuemin, double valuemax,
|
---|
1053 | SCVector3& p1,
|
---|
1054 | SCVector3& p2)
|
---|
1055 | {
|
---|
1056 | SCVector3 p11;
|
---|
1057 | SCVector3 p12;
|
---|
1058 | SCVector3 p21;
|
---|
1059 | SCVector3 p22;
|
---|
1060 | SCVector3 p31;
|
---|
1061 | SCVector3 p32;
|
---|
1062 |
|
---|
1063 | _s1.boundingbox(valuemin,valuemax,p11,p12);
|
---|
1064 | _s2.boundingbox(valuemin,valuemax,p21,p22);
|
---|
1065 | _s3.boundingbox(valuemin,valuemax,p31,p32);
|
---|
1066 |
|
---|
1067 | int i;
|
---|
1068 | for (i=0; i<3; i++) {
|
---|
1069 | if (p11[i] < p21[i]) p1[i] = p11[i];
|
---|
1070 | else p1[i] = p21[i];
|
---|
1071 | if (p31[i] < p1[i]) p1[i] = p31[i];
|
---|
1072 | if (p12[i] > p22[i]) p2[i] = p12[i];
|
---|
1073 | else p2[i] = p22[i];
|
---|
1074 | if (p32[i] > p2[i]) p2[i] = p32[i];
|
---|
1075 | }
|
---|
1076 | }
|
---|
1077 |
|
---|
1078 | int
|
---|
1079 | Uncapped5SphereExclusionShape::gradient_implemented() const
|
---|
1080 | {
|
---|
1081 | return 1;
|
---|
1082 | }
|
---|
1083 |
|
---|
1084 | /////////////////////////////////////////////////////////////////////
|
---|
1085 | // Unionshape
|
---|
1086 |
|
---|
1087 | static ClassDesc UnionShape_cd(
|
---|
1088 | typeid(UnionShape),"UnionShape",1,"public Shape",
|
---|
1089 | 0, 0, 0);
|
---|
1090 |
|
---|
1091 | UnionShape::UnionShape()
|
---|
1092 | {
|
---|
1093 | }
|
---|
1094 |
|
---|
1095 | UnionShape::~UnionShape()
|
---|
1096 | {
|
---|
1097 | }
|
---|
1098 |
|
---|
1099 | void
|
---|
1100 | UnionShape::add_shape(Ref<Shape> s)
|
---|
1101 | {
|
---|
1102 | _shapes.insert(s);
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 | // NOTE: this underestimates the distance to the surface when
|
---|
1106 | //inside the surface
|
---|
1107 | double
|
---|
1108 | UnionShape::distance_to_surface(const SCVector3&p,SCVector3* grad) const
|
---|
1109 | {
|
---|
1110 | std::set<Ref<Shape> >::const_iterator imin = _shapes.begin();
|
---|
1111 | if (imin == _shapes.end()) return 0.0;
|
---|
1112 | double min = (*imin)->distance_to_surface(p);
|
---|
1113 | for (std::set<Ref<Shape> >::const_iterator i=imin; i!=_shapes.end(); i++) {
|
---|
1114 | double d = (*i)->distance_to_surface(p);
|
---|
1115 | if (min <= 0.0) {
|
---|
1116 | if (d < 0.0 && d > min) { min = d; imin = i; }
|
---|
1117 | }
|
---|
1118 | else {
|
---|
1119 | if (min > d) { min = d; imin = i; }
|
---|
1120 | }
|
---|
1121 | }
|
---|
1122 |
|
---|
1123 | if (grad) {
|
---|
1124 | (*imin)->distance_to_surface(p,grad);
|
---|
1125 | }
|
---|
1126 | return min;
|
---|
1127 | }
|
---|
1128 |
|
---|
1129 | int
|
---|
1130 | UnionShape::is_outside(const SCVector3&p) const
|
---|
1131 | {
|
---|
1132 | for (std::set<Ref<Shape> >::const_iterator i=_shapes.begin();
|
---|
1133 | i!=_shapes.end(); i++) {
|
---|
1134 | if (!(*i)->is_outside(p)) return 0;
|
---|
1135 | }
|
---|
1136 |
|
---|
1137 | return 1;
|
---|
1138 | }
|
---|
1139 |
|
---|
1140 | void
|
---|
1141 | UnionShape::boundingbox(double valuemin, double valuemax,
|
---|
1142 | SCVector3& p1,
|
---|
1143 | SCVector3& p2)
|
---|
1144 | {
|
---|
1145 | if (_shapes.begin() == _shapes.end()) {
|
---|
1146 | for (int i=0; i<3; i++) p1[i] = p2[i] = 0.0;
|
---|
1147 | return;
|
---|
1148 | }
|
---|
1149 |
|
---|
1150 | SCVector3 pt1;
|
---|
1151 | SCVector3 pt2;
|
---|
1152 |
|
---|
1153 | std::set<Ref<Shape> >::iterator j = _shapes.begin();
|
---|
1154 | int i;
|
---|
1155 | (*j)->boundingbox(valuemin,valuemax,p1,p2);
|
---|
1156 | for (j++; j!=_shapes.end(); j++) {
|
---|
1157 | (*j)->boundingbox(valuemin,valuemax,pt1,pt2);
|
---|
1158 | for (i=0; i<3; i++) {
|
---|
1159 | if (pt1[i] < p1[i]) p1[i] = pt1[i];
|
---|
1160 | if (pt2[i] > p2[i]) p2[i] = pt2[i];
|
---|
1161 | }
|
---|
1162 | }
|
---|
1163 | }
|
---|
1164 |
|
---|
1165 | int
|
---|
1166 | UnionShape::gradient_implemented() const
|
---|
1167 | {
|
---|
1168 | for (std::set<Ref<Shape> >::const_iterator j=_shapes.begin();
|
---|
1169 | j!=_shapes.end(); j++) {
|
---|
1170 | if (!(*j)->gradient_implemented()) return 0;
|
---|
1171 | }
|
---|
1172 | return 1;
|
---|
1173 | }
|
---|
1174 |
|
---|
1175 | /////////////////////////////////////////////////////////////////////////////
|
---|
1176 |
|
---|
1177 | // Local Variables:
|
---|
1178 | // mode: c++
|
---|
1179 | // c-file-style: "CLJ"
|
---|
1180 | // End:
|
---|