[0b990d] | 1 | //
|
---|
| 2 | // shape.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #ifdef __GNUC__
|
---|
| 29 | #pragma implementation
|
---|
| 30 | #endif
|
---|
| 31 |
|
---|
| 32 | #include <stdio.h>
|
---|
| 33 | #include <util/misc/math.h>
|
---|
| 34 |
|
---|
| 35 | #include <util/misc/formio.h>
|
---|
| 36 | #include <util/keyval/keyval.h>
|
---|
| 37 | #include <math/isosurf/shape.h>
|
---|
| 38 |
|
---|
| 39 | using namespace std;
|
---|
| 40 | using namespace sc;
|
---|
| 41 |
|
---|
| 42 | static const double shape_infinity = 1.0e23;
|
---|
| 43 |
|
---|
| 44 | // given a vector X find which of the points in the vector of
|
---|
| 45 | // vectors, A, is closest to it and return the distance
|
---|
| 46 | static double
|
---|
| 47 | closest_distance(SCVector3& X,SCVector3*A,int n,SCVector3*grad)
|
---|
| 48 | {
|
---|
| 49 | SCVector3 T = X-A[0];
|
---|
| 50 | double min = T.dot(T);
|
---|
| 51 | int imin = 0;
|
---|
| 52 | for (int i=1; i<n; i++) {
|
---|
| 53 | T = X-A[i];
|
---|
| 54 | double tmp = T.dot(T);
|
---|
| 55 | if (tmp < min) {min = tmp; imin = i;}
|
---|
| 56 | }
|
---|
| 57 | if (grad) {
|
---|
| 58 | T = X - A[imin];
|
---|
| 59 | T.normalize();
|
---|
| 60 | *grad = T;
|
---|
| 61 | }
|
---|
| 62 | return sqrt(min);
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | //////////////////////////////////////////////////////////////////////
|
---|
| 66 | // Shape
|
---|
| 67 |
|
---|
| 68 | static ClassDesc Shape_cd(
|
---|
| 69 | typeid(Shape),"Shape",1,"public Volume",
|
---|
| 70 | 0, 0, 0);
|
---|
| 71 |
|
---|
| 72 | Shape::Shape():
|
---|
| 73 | Volume()
|
---|
| 74 | {
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | Shape::Shape(const Ref<KeyVal>& keyval):
|
---|
| 78 | Volume(keyval)
|
---|
| 79 | {
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | Shape::~Shape()
|
---|
| 83 | {
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | void
|
---|
| 87 | Shape::compute()
|
---|
| 88 | {
|
---|
| 89 | SCVector3 r;
|
---|
| 90 | get_x(r);
|
---|
| 91 | if (gradient_needed()) {
|
---|
| 92 | if (!gradient_implemented()) {
|
---|
| 93 | ExEnv::errn() << "Shape::compute: gradient not implemented" << endl;
|
---|
| 94 | abort();
|
---|
| 95 | }
|
---|
| 96 | SCVector3 v;
|
---|
| 97 | set_value(distance_to_surface(r,&v));
|
---|
| 98 | set_actual_value_accuracy(desired_value_accuracy());
|
---|
| 99 | set_gradient(v);
|
---|
| 100 | set_actual_gradient_accuracy(desired_gradient_accuracy());
|
---|
| 101 | }
|
---|
| 102 | else if (value_needed()) {
|
---|
| 103 | set_value(distance_to_surface(r));
|
---|
| 104 | set_actual_value_accuracy(desired_value_accuracy());
|
---|
| 105 | }
|
---|
| 106 | if (hessian_needed()) {
|
---|
| 107 | ExEnv::errn() << "Shape::compute(): can't do hessian yet" << endl;
|
---|
| 108 | abort();
|
---|
| 109 | }
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | int
|
---|
| 113 | Shape::is_outside(const SCVector3&r) const
|
---|
| 114 | {
|
---|
| 115 | if (distance_to_surface(r)>0.0) return 1;
|
---|
| 116 | return 0;
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | // Shape overrides volume's interpolate so it always gets points on
|
---|
| 120 | // the outside of the shape are always returned.
|
---|
| 121 |
|
---|
| 122 | // interpolate using the bisection algorithm
|
---|
| 123 | void
|
---|
| 124 | Shape::interpolate(const SCVector3& A,
|
---|
| 125 | const SCVector3& B,
|
---|
| 126 | double val,
|
---|
| 127 | SCVector3& result)
|
---|
| 128 | {
|
---|
| 129 | if (val < 0.0) {
|
---|
| 130 | failure("Shape::interpolate(): val is < 0.0");
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | set_x(A);
|
---|
| 134 | double value0 = value() - val;
|
---|
| 135 |
|
---|
| 136 | set_x(B);
|
---|
| 137 | double value1 = value() - val;
|
---|
| 138 |
|
---|
| 139 | if (value0*value1 > 0.0) {
|
---|
| 140 | failure("Shape::interpolate(): values at endpoints don't bracket val");
|
---|
| 141 | }
|
---|
| 142 | else if (value0 == 0.0) {
|
---|
| 143 | result = A;
|
---|
| 144 | return;
|
---|
| 145 | }
|
---|
| 146 | else if (value1 == 0.0) {
|
---|
| 147 | result = B;
|
---|
| 148 | return;
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | SCVector3 BA = B - A;
|
---|
| 152 |
|
---|
| 153 | double length = BA.norm();
|
---|
| 154 | int niter = (int) (log(length/interpolation_accuracy())/M_LN2);
|
---|
| 155 |
|
---|
| 156 | double f0 = 0.0;
|
---|
| 157 | double f1 = 1.0;
|
---|
| 158 | double fnext = 0.5;
|
---|
| 159 |
|
---|
| 160 | SCVector3 X = A + fnext*BA;
|
---|
| 161 | set_x(X);
|
---|
| 162 | double valuenext = value() - val;
|
---|
| 163 |
|
---|
| 164 | do {
|
---|
| 165 | for (int i=0; i<niter; i++) {
|
---|
| 166 | if (valuenext*value0 <= 0.0) {
|
---|
| 167 | value1 = valuenext;
|
---|
| 168 | f1 = fnext;
|
---|
| 169 | fnext = (f0 + fnext)*0.5;
|
---|
| 170 | }
|
---|
| 171 | else {
|
---|
| 172 | value0 = valuenext;
|
---|
| 173 | f0 = fnext;
|
---|
| 174 | fnext = (fnext + f1)*0.5;
|
---|
| 175 | }
|
---|
| 176 | X = A + fnext*BA;
|
---|
| 177 | set_x(X);
|
---|
| 178 | valuenext = value() - val;
|
---|
| 179 | }
|
---|
| 180 | niter = 1;
|
---|
| 181 | } while (valuenext < 0.0);
|
---|
| 182 |
|
---|
| 183 | result = X;
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | int
|
---|
| 187 | Shape::value_implemented() const
|
---|
| 188 | {
|
---|
| 189 | return 1;
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | //////////////////////////////////////////////////////////////////////
|
---|
| 193 | // SphereShape
|
---|
| 194 |
|
---|
| 195 | static ClassDesc SphereShape_cd(
|
---|
| 196 | typeid(SphereShape),"SphereShape",1,"public Shape",
|
---|
| 197 | 0, create<SphereShape>, 0);
|
---|
| 198 |
|
---|
| 199 | SphereShape::SphereShape(const SCVector3&o,double r):
|
---|
| 200 | _origin(o),
|
---|
| 201 | _radius(r)
|
---|
| 202 | {
|
---|
| 203 | }
|
---|
| 204 |
|
---|
| 205 | SphereShape::SphereShape(const SphereShape&s):
|
---|
| 206 | _origin(s._origin),
|
---|
| 207 | _radius(s._radius)
|
---|
| 208 | {
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | SphereShape::SphereShape(const Ref<KeyVal>& keyval):
|
---|
| 212 | _origin(new PrefixKeyVal(keyval,"origin")),
|
---|
| 213 | _radius(keyval->doublevalue("radius"))
|
---|
| 214 | {
|
---|
| 215 | }
|
---|
| 216 |
|
---|
| 217 | SphereShape::~SphereShape()
|
---|
| 218 | {
|
---|
| 219 | }
|
---|
| 220 |
|
---|
| 221 | double
|
---|
| 222 | SphereShape::distance_to_surface(const SCVector3&p,SCVector3*grad) const
|
---|
| 223 | {
|
---|
| 224 | int i;
|
---|
| 225 | double r2 = 0.0;
|
---|
| 226 | for (i=0; i<3; i++) {
|
---|
| 227 | double tmp = p[i] - _origin[i];
|
---|
| 228 | r2 += tmp*tmp;
|
---|
| 229 | }
|
---|
| 230 | double r = sqrt(r2);
|
---|
| 231 | double d = r - _radius;
|
---|
| 232 | if (grad) {
|
---|
| 233 | SCVector3 pv(p);
|
---|
| 234 | SCVector3 o(_origin);
|
---|
| 235 | SCVector3 unit = pv - o;
|
---|
| 236 | unit.normalize();
|
---|
| 237 | for (i=0; i<3; i++) grad->elem(i) = unit[i];
|
---|
| 238 | }
|
---|
| 239 | return d;
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 | void SphereShape::print(ostream&o) const
|
---|
| 243 | {
|
---|
| 244 | o << indent
|
---|
| 245 | << scprintf("SphereShape: r = %8.4f o = (%8.4f %8.4f %8.4f)",
|
---|
| 246 | radius(),origin()[0],origin()[1],origin()[2])
|
---|
| 247 | << endl;
|
---|
| 248 | }
|
---|
| 249 |
|
---|
| 250 | void
|
---|
| 251 | SphereShape::boundingbox(double valuemin, double valuemax,
|
---|
| 252 | SCVector3& p1,
|
---|
| 253 | SCVector3& p2)
|
---|
| 254 | {
|
---|
| 255 | if (valuemax < 0.0) valuemax = 0.0;
|
---|
| 256 |
|
---|
| 257 | int i;
|
---|
| 258 | for (i=0; i<3; i++) {
|
---|
| 259 | p1[i] = _origin[i] - _radius - valuemax;
|
---|
| 260 | p2[i] = _origin[i] + _radius + valuemax;
|
---|
| 261 | }
|
---|
| 262 | }
|
---|
| 263 |
|
---|
| 264 | int
|
---|
| 265 | SphereShape::gradient_implemented() const
|
---|
| 266 | {
|
---|
| 267 | return 1;
|
---|
| 268 | }
|
---|
| 269 |
|
---|
| 270 | ////////////////////////////////////////////////////////////////////////
|
---|
| 271 | // UncappedTorusHoleShape
|
---|
| 272 |
|
---|
| 273 | static ClassDesc UncappedTorusHoleShape_cd(
|
---|
| 274 | typeid(UncappedTorusHoleShape),"UncappedTorusHoleShape",1,"public Shape",
|
---|
| 275 | 0, 0, 0);
|
---|
| 276 |
|
---|
| 277 | UncappedTorusHoleShape::UncappedTorusHoleShape(double r,
|
---|
| 278 | const SphereShape& s1,
|
---|
| 279 | const SphereShape& s2):
|
---|
| 280 | _s1(s1),
|
---|
| 281 | _s2(s2),
|
---|
| 282 | _r(r)
|
---|
| 283 | {
|
---|
| 284 | }
|
---|
| 285 |
|
---|
| 286 | UncappedTorusHoleShape*
|
---|
| 287 | UncappedTorusHoleShape::newUncappedTorusHoleShape(double r,
|
---|
| 288 | const SphereShape&s1,
|
---|
| 289 | const SphereShape&s2)
|
---|
| 290 | {
|
---|
| 291 | // if the probe sphere fits between the two spheres, then there
|
---|
| 292 | // is no need to include this shape
|
---|
| 293 | SCVector3 A(s1.origin());
|
---|
| 294 | SCVector3 B(s2.origin());
|
---|
| 295 | SCVector3 BA = B - A;
|
---|
| 296 | if (2.0*r < BA.norm() - s1.radius() - s2.radius()) return 0;
|
---|
| 297 |
|
---|
| 298 | // check to see if the surface is reentrant
|
---|
| 299 | double rrs1 = r+s1.radius();
|
---|
| 300 | double rrs2 = r+s2.radius();
|
---|
| 301 | SCVector3 R12 = ((SCVector3)s1.origin()) - ((SCVector3)s2.origin());
|
---|
| 302 | double r12 = sqrt(R12.dot(R12));
|
---|
| 303 | if (sqrt(rrs1*rrs1-r*r) + sqrt(rrs2*rrs2-r*r) < r12)
|
---|
| 304 | return new ReentrantUncappedTorusHoleShape(r,s1,s2);
|
---|
| 305 |
|
---|
| 306 | // otherwise create an ordinary torus hole
|
---|
| 307 | return new NonreentrantUncappedTorusHoleShape(r,s1,s2);
|
---|
| 308 | }
|
---|
| 309 |
|
---|
| 310 | // Given a node, finds a sphere in the plane of n and the centers
|
---|
| 311 | // of _s1 and _s2 that touches the UncappedTorusHole. There are two
|
---|
| 312 | // candidates, the one closest to n is chosen.
|
---|
| 313 | void
|
---|
| 314 | UncappedTorusHoleShape::in_plane_sphere(
|
---|
| 315 | const SCVector3& n,
|
---|
| 316 | SCVector3& P) const
|
---|
| 317 | {
|
---|
| 318 | // the center of the sphere is given by the vector equation
|
---|
| 319 | // P = A + a R(AB) + b U(perp),
|
---|
| 320 | // where
|
---|
| 321 | // A is the center of _s1
|
---|
| 322 | // B is the center of _s2
|
---|
| 323 | // R(AB) is the vector from A to B, R(AB) = B - A
|
---|
| 324 | // U(perp) is a unit vect perp to R(AB) and lies in the plane of n, A, and B
|
---|
| 325 | // The unknown scalars, a and b are given by solving the following
|
---|
| 326 | // equations:
|
---|
| 327 | // | P - A | = r(A) + _r, and
|
---|
| 328 | // | P - B | = r(B) + _r,
|
---|
| 329 | // which give
|
---|
| 330 | // | a R(AB) + b U(perp) | = r(A) + _r, and
|
---|
| 331 | // | (a-1) R(AB) + b U(perp) | = r(B) + _r.
|
---|
| 332 | // These further simplify to
|
---|
| 333 | // a^2 r(AB)^2 + b^2 = (r(A)+_r)^2, and
|
---|
| 334 | // (a-1)^2 r(AB)^2 + b^2 = (r(B)+_r)^2.
|
---|
| 335 | // Thus,
|
---|
| 336 | // a = (((r(A)+_r)^2 - (r(B)+_r)^2 )/(2 r(AB)^2)) + 1/2
|
---|
| 337 | // b^2 = (r(A)+r)^2 - a^2 r(AB)^2
|
---|
| 338 |
|
---|
| 339 | SCVector3 A = _s1.origin();
|
---|
| 340 | SCVector3 B = _s2.origin();
|
---|
| 341 | SCVector3 N = n;
|
---|
| 342 | SCVector3 R_AB = B - A;
|
---|
| 343 | SCVector3 R_AN = N - A;
|
---|
| 344 |
|
---|
| 345 | // vector projection of R_AN onto R_AB
|
---|
| 346 | SCVector3 P_AN_AB = R_AB * (R_AN.dot(R_AB)/R_AB.dot(R_AB));
|
---|
| 347 | // the perpendicular vector
|
---|
| 348 | SCVector3 U_perp = R_AN - P_AN_AB;
|
---|
| 349 |
|
---|
| 350 | // if |U| is tiny, then any vector perp to AB will do
|
---|
| 351 | double u = U_perp.dot(U_perp);
|
---|
| 352 | if (u<1.0e-23) {
|
---|
| 353 | SCVector3 vtry = R_AB;
|
---|
| 354 | vtry[0] += 1.0;
|
---|
| 355 | vtry = vtry - R_AB * (vtry.dot(R_AB)/R_AB.dot(R_AB));
|
---|
| 356 | if (vtry.dot(vtry) < 1.0e-23) {
|
---|
| 357 | vtry = R_AB;
|
---|
| 358 | vtry[1] += 1.0;
|
---|
| 359 | vtry = vtry - R_AB * (vtry.dot(R_AB)/R_AB.dot(R_AB));
|
---|
| 360 | }
|
---|
| 361 | U_perp = vtry;
|
---|
| 362 | }
|
---|
| 363 |
|
---|
| 364 | U_perp.normalize();
|
---|
| 365 | //ExEnv::outn() << "A: "; A.print();
|
---|
| 366 | //ExEnv::outn() << "U_perp: "; U_perp.print();
|
---|
| 367 | //ExEnv::outn() << "R_AB: "; R_AB.print();
|
---|
| 368 |
|
---|
| 369 | double r_AB = sqrt(R_AB.dot(R_AB));
|
---|
| 370 | double r_A = _s1.radius();
|
---|
| 371 | double r_B = _s2.radius();
|
---|
| 372 |
|
---|
| 373 | double r_Ar = r_A + _r;
|
---|
| 374 | double r_Br = r_B + _r;
|
---|
| 375 | double a = ((r_Ar*r_Ar - r_Br*r_Br)/(2.0*r_AB*r_AB)) + 0.5;
|
---|
| 376 | double b = sqrt(r_Ar*r_Ar - a*a*r_AB*r_AB);
|
---|
| 377 |
|
---|
| 378 | //ExEnv::outn() << scprintf("r_Ar = %f, r_AB = %f\n",r_Ar,r_AB);
|
---|
| 379 | //ExEnv::outn() << scprintf("a = %f, b = %f\n",a,b);
|
---|
| 380 |
|
---|
| 381 | P = A + a * R_AB + b * U_perp;
|
---|
| 382 | //ExEnv::outn() << "a*R_AB: "; (a*R_AB).print();
|
---|
| 383 | //ExEnv::outn() << "b*U_perp: "; (b*U_perp).print();
|
---|
| 384 | }
|
---|
| 385 |
|
---|
| 386 | void
|
---|
| 387 | UncappedTorusHoleShape::print(ostream&o) const
|
---|
| 388 | {
|
---|
| 389 | o << indent << "UncappedTorusHoleShape:" << endl;
|
---|
| 390 | o << incindent;
|
---|
| 391 | o << indent << "r = " << _r << endl;
|
---|
| 392 | o << indent << "s1 = ";
|
---|
| 393 | o << incindent << skipnextindent;
|
---|
| 394 | _s1.print(o);
|
---|
| 395 | o << decindent;
|
---|
| 396 | o << indent << "s2 = ";
|
---|
| 397 | o << incindent << skipnextindent;
|
---|
| 398 | _s2.print(o);
|
---|
| 399 | o << decindent;
|
---|
| 400 | o << decindent;
|
---|
| 401 | }
|
---|
| 402 |
|
---|
| 403 | void
|
---|
| 404 | UncappedTorusHoleShape::boundingbox(double valuemin, double valuemax,
|
---|
| 405 | SCVector3& p1,
|
---|
| 406 | SCVector3& p2)
|
---|
| 407 | {
|
---|
| 408 | SCVector3 p11;
|
---|
| 409 | SCVector3 p12;
|
---|
| 410 | SCVector3 p21;
|
---|
| 411 | SCVector3 p22;
|
---|
| 412 |
|
---|
| 413 | _s1.boundingbox(valuemin,valuemax,p11,p12);
|
---|
| 414 | _s2.boundingbox(valuemin,valuemax,p21,p22);
|
---|
| 415 |
|
---|
| 416 | int i;
|
---|
| 417 | for (i=0; i<3; i++) {
|
---|
| 418 | if (p11[i] < p21[i]) p1[i] = p11[i];
|
---|
| 419 | else p1[i] = p21[i];
|
---|
| 420 | if (p12[i] > p22[i]) p2[i] = p12[i];
|
---|
| 421 | else p2[i] = p22[i];
|
---|
| 422 | }
|
---|
| 423 | }
|
---|
| 424 |
|
---|
| 425 | int
|
---|
| 426 | UncappedTorusHoleShape::gradient_implemented() const
|
---|
| 427 | {
|
---|
| 428 | return 1;
|
---|
| 429 | }
|
---|
| 430 |
|
---|
| 431 | /////////////////////////////////////////////////////////////////////
|
---|
| 432 | // is in triangle
|
---|
| 433 |
|
---|
| 434 | static int
|
---|
| 435 | is_in_unbounded_triangle(const SCVector3&XP,const SCVector3&AP,const SCVector3&BP)
|
---|
| 436 | {
|
---|
| 437 | SCVector3 axis = BP.cross(AP);
|
---|
| 438 |
|
---|
| 439 | SCVector3 BP_perp = BP; BP_perp.rotate(M_PI_2,axis);
|
---|
| 440 | double u = BP_perp.dot(XP)/BP_perp.dot(AP);
|
---|
| 441 | if (u<0.0) return 0;
|
---|
| 442 |
|
---|
| 443 | SCVector3 AP_perp = AP; AP_perp.rotate(M_PI_2,axis);
|
---|
| 444 | double w = AP_perp.dot(XP)/AP_perp.dot(BP);
|
---|
| 445 | if (w<0.0) return 0;
|
---|
| 446 |
|
---|
| 447 | return 1;
|
---|
| 448 | }
|
---|
| 449 |
|
---|
| 450 | /////////////////////////////////////////////////////////////////////
|
---|
| 451 | // ReentrantUncappedTorusHoleShape
|
---|
| 452 |
|
---|
| 453 | static ClassDesc ReentrantUncappedTorusHoleShape_cd(
|
---|
| 454 | typeid(ReentrantUncappedTorusHoleShape),"ReentrantUncappedTorusHoleShape",1,"public UncappedTorusHoleShape",
|
---|
| 455 | 0, 0, 0);
|
---|
| 456 |
|
---|
| 457 | ReentrantUncappedTorusHoleShape::ReentrantUncappedTorusHoleShape(double r,
|
---|
| 458 | const SphereShape& s1,
|
---|
| 459 | const SphereShape& s2):
|
---|
| 460 | UncappedTorusHoleShape(r,s1,s2)
|
---|
| 461 | {
|
---|
| 462 | rAP = r + s1.radius();
|
---|
| 463 | rBP = r + s2.radius();
|
---|
| 464 | BA = B() - A();
|
---|
| 465 |
|
---|
| 466 | // Find the points at the ends of the two cone-like objects, I[0] and I[1].
|
---|
| 467 | // they are given by:
|
---|
| 468 | // I = z BA, where BA = B-A and I is actually IA = I - A
|
---|
| 469 | // r^2 = PI.PI, where PI = PA-I and P is the center of a probe sphere
|
---|
| 470 | // this gives
|
---|
| 471 | // z^2 BA.BA - 2z PA.BA + PA.PA - r^2 = 0
|
---|
| 472 |
|
---|
| 473 | SCVector3 arbitrary;
|
---|
| 474 | arbitrary[0] = arbitrary[1] = arbitrary[2] = 0.0;
|
---|
| 475 | SCVector3 P;
|
---|
| 476 | in_plane_sphere(arbitrary,P);
|
---|
| 477 | SCVector3 PA = P - A();
|
---|
| 478 |
|
---|
| 479 | double a = BA.dot(BA);
|
---|
| 480 | double minus_b = 2.0 * PA.dot(BA);
|
---|
| 481 | double c = PA.dot(PA) - r*r;
|
---|
| 482 | double b2m4ac = minus_b*minus_b - 4*a*c;
|
---|
| 483 | double sb2m4ac;
|
---|
| 484 | if (b2m4ac >= 0.0) {
|
---|
| 485 | sb2m4ac = sqrt(b2m4ac);
|
---|
| 486 | }
|
---|
| 487 | else if (b2m4ac > -1.0e-10) {
|
---|
| 488 | sb2m4ac = 0.0;
|
---|
| 489 | }
|
---|
| 490 | else {
|
---|
| 491 | ExEnv::errn() << "ReentrantUncappedTorusHoleShape:: imaginary point" << endl;
|
---|
| 492 | abort();
|
---|
| 493 | }
|
---|
| 494 | double zA = (minus_b - sb2m4ac)/(2.0*a);
|
---|
| 495 | double zB = (minus_b + sb2m4ac)/(2.0*a);
|
---|
| 496 | I[0] = BA * zA + A();
|
---|
| 497 | I[1] = BA * zB + A();
|
---|
| 498 | }
|
---|
| 499 | ReentrantUncappedTorusHoleShape::~ReentrantUncappedTorusHoleShape()
|
---|
| 500 | {
|
---|
| 501 | }
|
---|
| 502 | int
|
---|
| 503 | ReentrantUncappedTorusHoleShape::
|
---|
| 504 | is_outside(const SCVector3&X) const
|
---|
| 505 | {
|
---|
| 506 | SCVector3 Xv(X);
|
---|
| 507 |
|
---|
| 508 | SCVector3 P;
|
---|
| 509 | in_plane_sphere(X,P);
|
---|
| 510 | SCVector3 XP = Xv - P;
|
---|
| 511 | double rXP = XP.norm();
|
---|
| 512 | if (rXP > rAP || rXP > rBP) return 1;
|
---|
| 513 |
|
---|
| 514 | SCVector3 AP = A() - P;
|
---|
| 515 | SCVector3 BP = B() - P;
|
---|
| 516 |
|
---|
| 517 | if (!is_in_unbounded_triangle(XP,AP,BP)) return 1;
|
---|
| 518 |
|
---|
| 519 | if (rXP < radius()) {
|
---|
| 520 | return 1;
|
---|
| 521 | }
|
---|
| 522 |
|
---|
| 523 | return 0;
|
---|
| 524 | }
|
---|
| 525 | double
|
---|
| 526 | ReentrantUncappedTorusHoleShape::
|
---|
| 527 | distance_to_surface(const SCVector3&X,SCVector3*grad) const
|
---|
| 528 | {
|
---|
| 529 | SCVector3 Xv(X);
|
---|
| 530 |
|
---|
| 531 | SCVector3 P;
|
---|
| 532 | in_plane_sphere(X,P);
|
---|
| 533 | SCVector3 XP = Xv - P;
|
---|
| 534 | double rXP = XP.norm();
|
---|
| 535 | if (rXP > rAP || rXP > rBP) return shape_infinity;
|
---|
| 536 |
|
---|
| 537 | SCVector3 AP = A() - P;
|
---|
| 538 | SCVector3 BP = B() - P;
|
---|
| 539 |
|
---|
| 540 | if (!is_in_unbounded_triangle(XP,AP,BP)) return shape_infinity;
|
---|
| 541 |
|
---|
| 542 | SCVector3 I1P = I[0] - P;
|
---|
| 543 | SCVector3 I2P = I[1] - P;
|
---|
| 544 |
|
---|
| 545 | if (!is_in_unbounded_triangle(XP,I1P,I2P)) {
|
---|
| 546 | if (rXP < radius()) {
|
---|
| 547 | if (grad) {
|
---|
| 548 | SCVector3 unit(XP);
|
---|
| 549 | unit.normalize();
|
---|
| 550 | *grad = unit;
|
---|
| 551 | }
|
---|
| 552 | return radius() - rXP;
|
---|
| 553 | }
|
---|
| 554 | else return -1.0;
|
---|
| 555 | }
|
---|
| 556 |
|
---|
| 557 | return closest_distance(Xv,(SCVector3*)I,2,grad);
|
---|
| 558 | }
|
---|
| 559 |
|
---|
| 560 | int
|
---|
| 561 | ReentrantUncappedTorusHoleShape::gradient_implemented() const
|
---|
| 562 | {
|
---|
| 563 | return 1;
|
---|
| 564 | }
|
---|
| 565 |
|
---|
| 566 | /////////////////////////////////////////////////////////////////////
|
---|
| 567 | // NonreentrantUncappedTorusHoleShape
|
---|
| 568 |
|
---|
| 569 | static ClassDesc NonreentrantUncappedTorusHoleShape_cd(
|
---|
| 570 | typeid(NonreentrantUncappedTorusHoleShape),"NonreentrantUncappedTorusHoleShape",1,"public UncappedTorusHoleShape",
|
---|
| 571 | 0, 0, 0);
|
---|
| 572 |
|
---|
| 573 | NonreentrantUncappedTorusHoleShape::
|
---|
| 574 | NonreentrantUncappedTorusHoleShape(double r,
|
---|
| 575 | const SphereShape& s1,
|
---|
| 576 | const SphereShape& s2):
|
---|
| 577 | UncappedTorusHoleShape(r,s1,s2)
|
---|
| 578 | {
|
---|
| 579 | rAP = r + s1.radius();
|
---|
| 580 | rBP = r + s2.radius();
|
---|
| 581 | BA = B() - A();
|
---|
| 582 | }
|
---|
| 583 | NonreentrantUncappedTorusHoleShape::~NonreentrantUncappedTorusHoleShape()
|
---|
| 584 | {
|
---|
| 585 | }
|
---|
| 586 | double NonreentrantUncappedTorusHoleShape::
|
---|
| 587 | distance_to_surface(const SCVector3&X,SCVector3* grad) const
|
---|
| 588 | {
|
---|
| 589 | SCVector3 Xv(X);
|
---|
| 590 |
|
---|
| 591 | SCVector3 P;
|
---|
| 592 | in_plane_sphere(X,P);
|
---|
| 593 | SCVector3 PX = P - Xv;
|
---|
| 594 | double rPX = PX.norm();
|
---|
| 595 | if (rPX > rAP || rPX > rBP) return shape_infinity;
|
---|
| 596 |
|
---|
| 597 | SCVector3 PA = P - A();
|
---|
| 598 | SCVector3 XA = Xv - A();
|
---|
| 599 |
|
---|
| 600 | SCVector3 axis = BA.cross(PA);
|
---|
| 601 |
|
---|
| 602 | SCVector3 BA_perp = BA; BA_perp.rotate(M_PI_2,axis);
|
---|
| 603 | double u = BA_perp.dot(XA)/BA_perp.dot(PA);
|
---|
| 604 | if (u<0.0 || u>1.0) return shape_infinity;
|
---|
| 605 |
|
---|
| 606 | SCVector3 PA_perp = PA; PA_perp.rotate(M_PI_2,axis);
|
---|
| 607 | double w = PA_perp.dot(XA)/PA_perp.dot(BA);
|
---|
| 608 | if (w<0.0 || w>1.0) return shape_infinity;
|
---|
| 609 |
|
---|
| 610 | double uw = u+w;
|
---|
| 611 | if (uw<0.0 || uw>1.0) return shape_infinity;
|
---|
| 612 |
|
---|
| 613 | if (rPX < radius()) {
|
---|
| 614 | if (grad) {
|
---|
| 615 | SCVector3 unit(PX);
|
---|
| 616 | unit.normalize();
|
---|
| 617 | *grad = unit;
|
---|
| 618 | }
|
---|
| 619 | return radius() - rPX;
|
---|
| 620 | }
|
---|
| 621 |
|
---|
| 622 | return -1;
|
---|
| 623 | }
|
---|
| 624 |
|
---|
| 625 | int
|
---|
| 626 | NonreentrantUncappedTorusHoleShape::gradient_implemented() const
|
---|
| 627 | {
|
---|
| 628 | return 1;
|
---|
| 629 | }
|
---|
| 630 |
|
---|
| 631 | /////////////////////////////////////////////////////////////////////
|
---|
| 632 | // Uncapped5SphereExclusionShape
|
---|
| 633 |
|
---|
| 634 | static ClassDesc Uncapped5SphereExclusionShape_cd(
|
---|
| 635 | typeid(Uncapped5SphereExclusionShape),"Uncapped5SphereExclusionShape",1,"public Shape",
|
---|
| 636 | 0, 0, 0);
|
---|
| 637 |
|
---|
| 638 | Uncapped5SphereExclusionShape*
|
---|
| 639 | Uncapped5SphereExclusionShape::
|
---|
| 640 | newUncapped5SphereExclusionShape(double r,
|
---|
| 641 | const SphereShape& s1,
|
---|
| 642 | const SphereShape& s2,
|
---|
| 643 | const SphereShape& s3)
|
---|
| 644 | {
|
---|
| 645 | Uncapped5SphereExclusionShape* s =
|
---|
| 646 | new Uncapped5SphereExclusionShape(r,s1,s2,s3);
|
---|
| 647 | if (s->solution_exists()) {
|
---|
| 648 | return s;
|
---|
| 649 | }
|
---|
| 650 | delete s;
|
---|
| 651 | return 0;
|
---|
| 652 | }
|
---|
| 653 | static int verbose = 0;
|
---|
| 654 | Uncapped5SphereExclusionShape::
|
---|
| 655 | Uncapped5SphereExclusionShape(double radius,
|
---|
| 656 | const SphereShape&s1,
|
---|
| 657 | const SphereShape&s2,
|
---|
| 658 | const SphereShape&s3):
|
---|
| 659 | _s1(s1),
|
---|
| 660 | _s2(s2),
|
---|
| 661 | _s3(s3),
|
---|
| 662 | _r(radius)
|
---|
| 663 | {
|
---|
| 664 | double rAr = rA() + r();
|
---|
| 665 | double rAr2 = rAr*rAr;
|
---|
| 666 | double rBr = rB() + r();
|
---|
| 667 | double rBr2 = rBr*rBr;
|
---|
| 668 | double rCr = rC() + r();
|
---|
| 669 | double rCr2 = rCr*rCr;
|
---|
| 670 | double A2 = A().dot(A());
|
---|
| 671 | double B2 = B().dot(B());
|
---|
| 672 | double C2 = C().dot(C());
|
---|
| 673 | SCVector3 BA = B()-A();
|
---|
| 674 | double DdotBA = 0.5*(rAr2 - rBr2 + B2 - A2);
|
---|
| 675 | double DAdotBA = DdotBA - A().dot(BA);
|
---|
| 676 | double BA2 = BA.dot(BA);
|
---|
| 677 | SCVector3 CA = C() - A();
|
---|
| 678 | double CAdotBA = CA.dot(BA);
|
---|
| 679 | SCVector3 CA_perpBA = CA - (CAdotBA/BA2)*BA;
|
---|
| 680 | double CA_perpBA2 = CA_perpBA.dot(CA_perpBA);
|
---|
| 681 | if (CA_perpBA2 < 1.0e-23) {
|
---|
| 682 | _solution_exists = 0;
|
---|
| 683 | return;
|
---|
| 684 | }
|
---|
| 685 | double DdotCA_perpBA = 0.5*(rAr2 - rCr2 + C2 - A2)
|
---|
| 686 | - CAdotBA*DdotBA/BA2;
|
---|
| 687 | double DAdotCA_perpBA = DdotCA_perpBA - A().dot(CA_perpBA);
|
---|
| 688 | double rAt2 = DAdotBA*DAdotBA/BA2 + DAdotCA_perpBA*DAdotCA_perpBA/CA_perpBA2;
|
---|
| 689 | double h2 = rAr2 - rAt2;
|
---|
| 690 | if (h2 <= 0.0) {
|
---|
| 691 | _solution_exists = 0;
|
---|
| 692 | return;
|
---|
| 693 | }
|
---|
| 694 | _solution_exists = 1;
|
---|
| 695 |
|
---|
| 696 | double h = sqrt(h2);
|
---|
| 697 | if (h<r()) {
|
---|
| 698 | _reentrant = 1;
|
---|
| 699 | //ExEnv::outn() << "WARNING: throwing out reentrant shape" << endl;
|
---|
| 700 | //_solution_exists = 0;
|
---|
| 701 | //return;
|
---|
| 702 | }
|
---|
| 703 | else {
|
---|
| 704 | _reentrant = 0;
|
---|
| 705 | //ExEnv::outn() << "WARNING: throwing out nonreentrant shape" << endl;
|
---|
| 706 | //_solution_exists = 0;
|
---|
| 707 | //return;
|
---|
| 708 | }
|
---|
| 709 |
|
---|
| 710 | // The projection of D into the ABC plane
|
---|
| 711 | SCVector3 MA = (DAdotBA/BA2)*BA + (DAdotCA_perpBA/CA_perpBA2)*CA_perpBA;
|
---|
| 712 | M = MA + A();
|
---|
| 713 | SCVector3 BAxCA = BA.cross(CA);
|
---|
| 714 | D[0] = M + h * BAxCA * ( 1.0/BAxCA.norm() );
|
---|
| 715 | D[1] = M - h * BAxCA * ( 1.0/BAxCA.norm() );
|
---|
| 716 |
|
---|
| 717 | // The projection of D into the ABC plane, M, does not lie in the
|
---|
| 718 | // ABC triangle, then this shape must be treated carefully and it
|
---|
| 719 | // will be designated as folded.
|
---|
| 720 | SCVector3 MC = M - C();
|
---|
| 721 | if (!(is_in_unbounded_triangle(MA, BA, CA)
|
---|
| 722 | &&is_in_unbounded_triangle(MC, B() - C(), A() - C()))) {
|
---|
| 723 | _folded = 1;
|
---|
| 724 | SCVector3 MB = M - B();
|
---|
| 725 | double MA2 = MA.dot(MA);
|
---|
| 726 | double MB2 = MB.dot(MB);
|
---|
| 727 | double MC2 = MC.dot(MC);
|
---|
| 728 | if (MA2 < MB2) {
|
---|
| 729 | F1 = A();
|
---|
| 730 | if (MB2 < MC2) F2 = B();
|
---|
| 731 | else F2 = C();
|
---|
| 732 | }
|
---|
| 733 | else {
|
---|
| 734 | F1 = B();
|
---|
| 735 | if (MA2 < MC2) F2 = A();
|
---|
| 736 | else F2 = C();
|
---|
| 737 | }
|
---|
| 738 | }
|
---|
| 739 | else _folded = 0;
|
---|
| 740 |
|
---|
| 741 | //ExEnv::outn() << scprintf("r = %14.8f, h = %14.8f\n",r(),h);
|
---|
| 742 | //M.print();
|
---|
| 743 | //D[0].print();
|
---|
| 744 | //D[1].print();
|
---|
| 745 | //A().print();
|
---|
| 746 | //B().print();
|
---|
| 747 | //C().print();
|
---|
| 748 |
|
---|
| 749 | int i;
|
---|
| 750 | for (i=0; i<2; i++) {
|
---|
| 751 | SCVector3 AD = A() - D[i];
|
---|
| 752 | SCVector3 BD = B() - D[i];
|
---|
| 753 | SCVector3 CD = C() - D[i];
|
---|
| 754 | BDxCD[i] = BD.cross(CD);
|
---|
| 755 | BDxCDdotAD[i] = BDxCD[i].dot(AD);
|
---|
| 756 | CDxAD[i] = CD.cross(AD);
|
---|
| 757 | CDxADdotBD[i] = CDxAD[i].dot(BD);
|
---|
| 758 | ADxBD[i] = AD.cross(BD);
|
---|
| 759 | ADxBDdotCD[i] = ADxBD[i].dot(CD);
|
---|
| 760 | }
|
---|
| 761 |
|
---|
| 762 | for (i=0; i<2; i++) MD[i] = M - D[i];
|
---|
| 763 |
|
---|
| 764 | // reentrant surfaces need a whole bunch more to be able to compute
|
---|
| 765 | // the distance to the surface
|
---|
| 766 | if (_reentrant) {
|
---|
| 767 | int i;
|
---|
| 768 | double rMD = MD[0].norm(); // this is the same as rMD[1]
|
---|
| 769 | theta_intersect = M_PI_2 - asin(rMD/r());
|
---|
| 770 | r_intersect = r() * sin(theta_intersect);
|
---|
| 771 |
|
---|
| 772 | {
|
---|
| 773 | // Does the circle of intersection intersect with BA?
|
---|
| 774 | SCVector3 MA = M - A();
|
---|
| 775 | SCVector3 uBA = B() - A(); uBA.normalize();
|
---|
| 776 | SCVector3 XA = uBA * MA.dot(uBA);
|
---|
| 777 | SCVector3 XM = XA - MA;
|
---|
| 778 | double rXM2 = XM.dot(XM);
|
---|
| 779 | double d_intersect_from_x2 = r_intersect*r_intersect - rXM2;
|
---|
| 780 | if (d_intersect_from_x2 > 0.0) {
|
---|
| 781 | _intersects_AB = 1;
|
---|
| 782 | double tmp = sqrt(d_intersect_from_x2);
|
---|
| 783 | double d_intersect_from_x[2];
|
---|
| 784 | d_intersect_from_x[0] = tmp;
|
---|
| 785 | d_intersect_from_x[1] = -tmp;
|
---|
| 786 | for (i=0; i<2; i++) {
|
---|
| 787 | for (int j=0; j<2; j++) {
|
---|
| 788 | IABD[i][j] = XM + d_intersect_from_x[j]*uBA + MD[i];
|
---|
| 789 | }
|
---|
| 790 | }
|
---|
| 791 | }
|
---|
| 792 | else _intersects_AB = 0;
|
---|
| 793 | }
|
---|
| 794 |
|
---|
| 795 | {
|
---|
| 796 | // Does the circle of intersection intersect with BC?
|
---|
| 797 | SCVector3 MC = M - C();
|
---|
| 798 | SCVector3 uBC = B() - C(); uBC.normalize();
|
---|
| 799 | SCVector3 XC = uBC * MC.dot(uBC);
|
---|
| 800 | SCVector3 XM = XC - MC;
|
---|
| 801 | double rXM2 = XM.dot(XM);
|
---|
| 802 | double d_intersect_from_x2 = r_intersect*r_intersect - rXM2;
|
---|
| 803 | if (d_intersect_from_x2 > 0.0) {
|
---|
| 804 | _intersects_BC = 1;
|
---|
| 805 | double tmp = sqrt(d_intersect_from_x2);
|
---|
| 806 | double d_intersect_from_x[2];
|
---|
| 807 | d_intersect_from_x[0] = tmp;
|
---|
| 808 | d_intersect_from_x[1] = -tmp;
|
---|
| 809 | for (i=0; i<2; i++) {
|
---|
| 810 | for (int j=0; j<2; j++) {
|
---|
| 811 | IBCD[i][j] = XM + d_intersect_from_x[j]*uBC + MD[i];
|
---|
| 812 | }
|
---|
| 813 | }
|
---|
| 814 | }
|
---|
| 815 | else _intersects_BC = 0;
|
---|
| 816 | }
|
---|
| 817 |
|
---|
| 818 | {
|
---|
| 819 | // Does the circle of intersection intersect with CA?
|
---|
| 820 | SCVector3 MA = M - A();
|
---|
| 821 | SCVector3 uCA = C() - A(); uCA.normalize();
|
---|
| 822 | SCVector3 XA = uCA * MA.dot(uCA);
|
---|
| 823 | SCVector3 XM = XA - MA;
|
---|
| 824 | double rXM2 = XM.dot(XM);
|
---|
| 825 | double d_intersect_from_x2 = r_intersect*r_intersect - rXM2;
|
---|
| 826 | if (d_intersect_from_x2 > 0.0) {
|
---|
| 827 | _intersects_CA = 1;
|
---|
| 828 | double tmp = sqrt(d_intersect_from_x2);
|
---|
| 829 | double d_intersect_from_x[2];
|
---|
| 830 | d_intersect_from_x[0] = tmp;
|
---|
| 831 | d_intersect_from_x[1] = -tmp;
|
---|
| 832 | for (i=0; i<2; i++) {
|
---|
| 833 | for (int j=0; j<2; j++) {
|
---|
| 834 | ICAD[i][j] = XM + d_intersect_from_x[j]*uCA + MD[i];
|
---|
| 835 | }
|
---|
| 836 | }
|
---|
| 837 | }
|
---|
| 838 | else _intersects_CA = 0;
|
---|
| 839 | }
|
---|
| 840 |
|
---|
| 841 | }
|
---|
| 842 |
|
---|
| 843 | #if 0 // test code
|
---|
| 844 | ExEnv::outn() << "Uncapped5SphereExclusionShape: running some tests" << endl;
|
---|
| 845 | verbose = 1;
|
---|
| 846 |
|
---|
| 847 | FILE* testout = fopen("testout.vect", "w");
|
---|
| 848 |
|
---|
| 849 | const double scalefactor_inc = 0.05;
|
---|
| 850 | const double start = -10.0;
|
---|
| 851 | const double end = 10.0;
|
---|
| 852 |
|
---|
| 853 | SCVector3 middle = (1.0/3.0)*(A()+B()+C());
|
---|
| 854 |
|
---|
| 855 | int nlines = 1;
|
---|
| 856 | int nvert = (int) ( (end-start) / scalefactor_inc);
|
---|
| 857 | int ncolor = nvert;
|
---|
| 858 |
|
---|
| 859 | fprintf(testout, "VECT\n%d %d %d\n", nlines, nvert, ncolor);
|
---|
| 860 |
|
---|
| 861 | fprintf(testout, "%d\n", nvert);
|
---|
| 862 | fprintf(testout, "%d\n", ncolor);
|
---|
| 863 |
|
---|
| 864 | double scalefactor = start;
|
---|
| 865 | for (int ii = 0; ii<nvert; ii++) {
|
---|
| 866 | SCVector3 position = (D[0] - middle) * scalefactor + middle;
|
---|
| 867 | double d = distance_to_surface(position);
|
---|
| 868 | fprintf(testout, "%f %f %f # value = %f\n",
|
---|
| 869 | position[0], position[1], position[2], d);
|
---|
| 870 | scalefactor += scalefactor_inc;
|
---|
| 871 | }
|
---|
| 872 | scalefactor = start;
|
---|
| 873 | for (ii = 0; ii<nvert; ii++) {
|
---|
| 874 | SCVector3 position = (D[0] - middle) * scalefactor + middle;
|
---|
| 875 | double d = distance_to_surface(position);
|
---|
| 876 | ExEnv::outn() << scprintf("d = %f\n", d);
|
---|
| 877 | if (d<0.0) fprintf(testout,"1.0 0.0 0.0 0.5\n");
|
---|
| 878 | else fprintf(testout,"0.0 0.0 1.0 0.5\n");
|
---|
| 879 | scalefactor += scalefactor_inc;
|
---|
| 880 | }
|
---|
| 881 |
|
---|
| 882 | fclose(testout);
|
---|
| 883 | ExEnv::outn() << "testout.vect written" << endl;
|
---|
| 884 |
|
---|
| 885 | verbose = 0;
|
---|
| 886 | #endif // test code
|
---|
| 887 |
|
---|
| 888 | }
|
---|
| 889 | int
|
---|
| 890 | Uncapped5SphereExclusionShape::is_outside(const SCVector3&X) const
|
---|
| 891 | {
|
---|
| 892 | SCVector3 Xv(X);
|
---|
| 893 |
|
---|
| 894 | if (verbose) ExEnv::outn() << scprintf("point %14.8f %14.8f %14.8f\n",X(0),X(1),X(2));
|
---|
| 895 |
|
---|
| 896 | // The folded case isn't handled correctly here, so use
|
---|
| 897 | // the less efficient distance_to_surface routine.
|
---|
| 898 | if (_folded) {
|
---|
| 899 | return distance_to_surface(X) >= 0.0;
|
---|
| 900 | }
|
---|
| 901 |
|
---|
| 902 | for (int i=0; i<2; i++) {
|
---|
| 903 | SCVector3 XD = Xv - D[i];
|
---|
| 904 | double rXD = XD.norm();
|
---|
| 905 | if (rXD <= r()) return 1;
|
---|
| 906 | double u = BDxCD[i].dot(XD)/BDxCDdotAD[i];
|
---|
| 907 | if (u <= 0.0) return 1;
|
---|
| 908 | double v = CDxAD[i].dot(XD)/CDxADdotBD[i];
|
---|
| 909 | if (v <= 0.0) return 1;
|
---|
| 910 | double w = ADxBD[i].dot(XD)/ADxBDdotCD[i];
|
---|
| 911 | if (w <= 0.0) return 1;
|
---|
| 912 | }
|
---|
| 913 |
|
---|
| 914 | if (verbose) ExEnv::outn() << "is_inside" << endl;
|
---|
| 915 |
|
---|
| 916 | return 0;
|
---|
| 917 | }
|
---|
| 918 | static int
|
---|
| 919 | is_contained_in_unbounded_pyramid(SCVector3 XD,
|
---|
| 920 | SCVector3 AD,
|
---|
| 921 | SCVector3 BD,
|
---|
| 922 | SCVector3 CD)
|
---|
| 923 | {
|
---|
| 924 | SCVector3 BDxCD = BD.cross(CD);
|
---|
| 925 | SCVector3 CDxAD = CD.cross(AD);
|
---|
| 926 | SCVector3 ADxBD = AD.cross(BD);
|
---|
| 927 | double u = BDxCD.dot(XD)/BDxCD.dot(AD);
|
---|
| 928 | if (u <= 0.0) return 0;
|
---|
| 929 | double v = CDxAD.dot(XD)/CDxAD.dot(BD);
|
---|
| 930 | if (v <= 0.0) return 0;
|
---|
| 931 | double w = ADxBD.dot(XD)/ADxBD.dot(CD);
|
---|
| 932 | if (w <= 0.0) return 0;
|
---|
| 933 | return 1;
|
---|
| 934 | }
|
---|
| 935 | double
|
---|
| 936 | Uncapped5SphereExclusionShape::
|
---|
| 937 | distance_to_surface(const SCVector3&X,SCVector3*grad) const
|
---|
| 938 | {
|
---|
| 939 | SCVector3 Xv(X);
|
---|
| 940 |
|
---|
| 941 | // Find out if I'm on the D[0] side or the D[1] side of the ABC plane.
|
---|
| 942 | int side;
|
---|
| 943 | SCVector3 XM = Xv - M;
|
---|
| 944 | if (MD[0].dot(XM) > 0.0) side = 1;
|
---|
| 945 | else side = 0;
|
---|
| 946 |
|
---|
| 947 | if (verbose) {
|
---|
| 948 | ExEnv::outn() << scprintf("distance_to_surface: folded = %d, side = %d\n",
|
---|
| 949 | _folded, side);
|
---|
| 950 | ExEnv::outn() << "XM = "; XM.print();
|
---|
| 951 | ExEnv::outn() << "MD[0] = "; MD[0].print();
|
---|
| 952 | ExEnv::outn() << "MD[0].dot(XM) = " << MD[0].dot(XM) << endl;
|
---|
| 953 | }
|
---|
| 954 |
|
---|
| 955 | SCVector3 XD = Xv - D[side];
|
---|
| 956 | double u = BDxCD[side].dot(XD)/BDxCDdotAD[side];
|
---|
| 957 | if (verbose) ExEnv::outn() << scprintf("u = %14.8f\n", u);
|
---|
| 958 | if (u <= 0.0) return shape_infinity;
|
---|
| 959 | double v = CDxAD[side].dot(XD)/CDxADdotBD[side];
|
---|
| 960 | if (verbose) ExEnv::outn() << scprintf("v = %14.8f\n", v);
|
---|
| 961 | if (v <= 0.0) return shape_infinity;
|
---|
| 962 | double w = ADxBD[side].dot(XD)/ADxBDdotCD[side];
|
---|
| 963 | if (verbose) ExEnv::outn() << scprintf("w = %14.8f\n", w);
|
---|
| 964 | if (w <= 0.0) return shape_infinity;
|
---|
| 965 | double rXD = XD.norm();
|
---|
| 966 | if (verbose) ExEnv::outn() << scprintf("r() - rXD = %14.8f\n", r() - rXD);
|
---|
| 967 | if (rXD <= r()) {
|
---|
| 968 | if (!_reentrant) return r() - rXD;
|
---|
| 969 | // this shape is reentrant
|
---|
| 970 | // make sure that we're on the right side
|
---|
| 971 | if ((side == 1) || (u + v + w <= 1.0)) {
|
---|
| 972 | // see if we're outside the cone that intersects
|
---|
| 973 | // the opposite sphere
|
---|
| 974 | double angle = acos(fabs(XD.dot(MD[side]))
|
---|
| 975 | /(XD.norm()*MD[side].norm()));
|
---|
| 976 | if (angle >= theta_intersect) {
|
---|
| 977 | if (grad) {
|
---|
| 978 | *grad = (-1.0/rXD)*XD;
|
---|
| 979 | }
|
---|
| 980 | return r() - rXD;
|
---|
| 981 | }
|
---|
| 982 | if (_intersects_AB
|
---|
| 983 | &&is_contained_in_unbounded_pyramid(XD,
|
---|
| 984 | MD[side],
|
---|
| 985 | IABD[side][0],
|
---|
| 986 | IABD[side][1])) {
|
---|
| 987 | //ExEnv::outn() << scprintf("XD: "); XD.print();
|
---|
| 988 | //ExEnv::outn() << scprintf("MD[%d]: ",i); MD[i].print();
|
---|
| 989 | //ExEnv::outn() << scprintf("IABD[%d][0]: ",i); IABD[i][0].print();
|
---|
| 990 | //ExEnv::outn() << scprintf("IABD[%d][1]: ",i); IABD[i][1].print();
|
---|
| 991 | return closest_distance(XD,(SCVector3*)IABD[side],2,grad);
|
---|
| 992 | }
|
---|
| 993 | if (_intersects_BC
|
---|
| 994 | &&is_contained_in_unbounded_pyramid(XD,
|
---|
| 995 | MD[side],
|
---|
| 996 | IBCD[side][0],
|
---|
| 997 | IBCD[side][1])) {
|
---|
| 998 | return closest_distance(XD,(SCVector3*)IBCD[side],2,grad);
|
---|
| 999 | }
|
---|
| 1000 | if (_intersects_CA
|
---|
| 1001 | &&is_contained_in_unbounded_pyramid(XD,
|
---|
| 1002 | MD[side],
|
---|
| 1003 | ICAD[side][0],
|
---|
| 1004 | ICAD[side][1])) {
|
---|
| 1005 | return closest_distance(XD,(SCVector3*)ICAD[side],2,grad);
|
---|
| 1006 | }
|
---|
| 1007 | // at this point we are closest to the ring formed
|
---|
| 1008 | // by the intersection of the two probe spheres
|
---|
| 1009 | double distance_to_plane;
|
---|
| 1010 | double distance_to_ring_in_plane;
|
---|
| 1011 | double MDnorm = MD[side].norm();
|
---|
| 1012 | SCVector3 XM = XD - MD[side];
|
---|
| 1013 | SCVector3 XM_in_plane;
|
---|
| 1014 | if (MDnorm<1.0e-16) {
|
---|
| 1015 | distance_to_plane = 0.0;
|
---|
| 1016 | XM_in_plane = XD;
|
---|
| 1017 | }
|
---|
| 1018 | else {
|
---|
| 1019 | distance_to_plane = XM.dot(MD[side])/MDnorm;
|
---|
| 1020 | XM_in_plane = XM - (distance_to_plane/MDnorm)*MD[side];
|
---|
| 1021 | }
|
---|
| 1022 | if (grad) {
|
---|
| 1023 | double XM_in_plane_norm = XM_in_plane.norm();
|
---|
| 1024 | if (XM_in_plane_norm < 1.e-8) {
|
---|
| 1025 | // the grad points along MD
|
---|
| 1026 | double scale = - distance_to_plane
|
---|
| 1027 | /(MDnorm*sqrt(r_intersect*r_intersect
|
---|
| 1028 | + distance_to_plane*distance_to_plane));
|
---|
| 1029 | *grad = MD[side] * scale;
|
---|
| 1030 | }
|
---|
| 1031 | else {
|
---|
| 1032 | SCVector3 point_on_ring;
|
---|
| 1033 | point_on_ring = XM_in_plane
|
---|
| 1034 | * (r_intersect/XM_in_plane_norm) + M;
|
---|
| 1035 | SCVector3 gradv = Xv - point_on_ring;
|
---|
| 1036 | gradv.normalize();
|
---|
| 1037 | *grad = gradv;
|
---|
| 1038 | }
|
---|
| 1039 | }
|
---|
| 1040 | distance_to_ring_in_plane =
|
---|
| 1041 | r_intersect - sqrt(XM_in_plane.dot(XM_in_plane));
|
---|
| 1042 | return sqrt(distance_to_ring_in_plane*distance_to_ring_in_plane
|
---|
| 1043 | +distance_to_plane*distance_to_plane);
|
---|
| 1044 | }
|
---|
| 1045 | }
|
---|
| 1046 |
|
---|
| 1047 | if (verbose) ExEnv::outn() << "returning -1.0" << endl;
|
---|
| 1048 | return -1.0;
|
---|
| 1049 | }
|
---|
| 1050 |
|
---|
| 1051 | void
|
---|
| 1052 | Uncapped5SphereExclusionShape::boundingbox(double valuemin, double valuemax,
|
---|
| 1053 | SCVector3& p1,
|
---|
| 1054 | SCVector3& p2)
|
---|
| 1055 | {
|
---|
| 1056 | SCVector3 p11;
|
---|
| 1057 | SCVector3 p12;
|
---|
| 1058 | SCVector3 p21;
|
---|
| 1059 | SCVector3 p22;
|
---|
| 1060 | SCVector3 p31;
|
---|
| 1061 | SCVector3 p32;
|
---|
| 1062 |
|
---|
| 1063 | _s1.boundingbox(valuemin,valuemax,p11,p12);
|
---|
| 1064 | _s2.boundingbox(valuemin,valuemax,p21,p22);
|
---|
| 1065 | _s3.boundingbox(valuemin,valuemax,p31,p32);
|
---|
| 1066 |
|
---|
| 1067 | int i;
|
---|
| 1068 | for (i=0; i<3; i++) {
|
---|
| 1069 | if (p11[i] < p21[i]) p1[i] = p11[i];
|
---|
| 1070 | else p1[i] = p21[i];
|
---|
| 1071 | if (p31[i] < p1[i]) p1[i] = p31[i];
|
---|
| 1072 | if (p12[i] > p22[i]) p2[i] = p12[i];
|
---|
| 1073 | else p2[i] = p22[i];
|
---|
| 1074 | if (p32[i] > p2[i]) p2[i] = p32[i];
|
---|
| 1075 | }
|
---|
| 1076 | }
|
---|
| 1077 |
|
---|
| 1078 | int
|
---|
| 1079 | Uncapped5SphereExclusionShape::gradient_implemented() const
|
---|
| 1080 | {
|
---|
| 1081 | return 1;
|
---|
| 1082 | }
|
---|
| 1083 |
|
---|
| 1084 | /////////////////////////////////////////////////////////////////////
|
---|
| 1085 | // Unionshape
|
---|
| 1086 |
|
---|
| 1087 | static ClassDesc UnionShape_cd(
|
---|
| 1088 | typeid(UnionShape),"UnionShape",1,"public Shape",
|
---|
| 1089 | 0, 0, 0);
|
---|
| 1090 |
|
---|
| 1091 | UnionShape::UnionShape()
|
---|
| 1092 | {
|
---|
| 1093 | }
|
---|
| 1094 |
|
---|
| 1095 | UnionShape::~UnionShape()
|
---|
| 1096 | {
|
---|
| 1097 | }
|
---|
| 1098 |
|
---|
| 1099 | void
|
---|
| 1100 | UnionShape::add_shape(Ref<Shape> s)
|
---|
| 1101 | {
|
---|
| 1102 | _shapes.insert(s);
|
---|
| 1103 | }
|
---|
| 1104 |
|
---|
| 1105 | // NOTE: this underestimates the distance to the surface when
|
---|
| 1106 | //inside the surface
|
---|
| 1107 | double
|
---|
| 1108 | UnionShape::distance_to_surface(const SCVector3&p,SCVector3* grad) const
|
---|
| 1109 | {
|
---|
| 1110 | std::set<Ref<Shape> >::const_iterator imin = _shapes.begin();
|
---|
| 1111 | if (imin == _shapes.end()) return 0.0;
|
---|
| 1112 | double min = (*imin)->distance_to_surface(p);
|
---|
| 1113 | for (std::set<Ref<Shape> >::const_iterator i=imin; i!=_shapes.end(); i++) {
|
---|
| 1114 | double d = (*i)->distance_to_surface(p);
|
---|
| 1115 | if (min <= 0.0) {
|
---|
| 1116 | if (d < 0.0 && d > min) { min = d; imin = i; }
|
---|
| 1117 | }
|
---|
| 1118 | else {
|
---|
| 1119 | if (min > d) { min = d; imin = i; }
|
---|
| 1120 | }
|
---|
| 1121 | }
|
---|
| 1122 |
|
---|
| 1123 | if (grad) {
|
---|
| 1124 | (*imin)->distance_to_surface(p,grad);
|
---|
| 1125 | }
|
---|
| 1126 | return min;
|
---|
| 1127 | }
|
---|
| 1128 |
|
---|
| 1129 | int
|
---|
| 1130 | UnionShape::is_outside(const SCVector3&p) const
|
---|
| 1131 | {
|
---|
| 1132 | for (std::set<Ref<Shape> >::const_iterator i=_shapes.begin();
|
---|
| 1133 | i!=_shapes.end(); i++) {
|
---|
| 1134 | if (!(*i)->is_outside(p)) return 0;
|
---|
| 1135 | }
|
---|
| 1136 |
|
---|
| 1137 | return 1;
|
---|
| 1138 | }
|
---|
| 1139 |
|
---|
| 1140 | void
|
---|
| 1141 | UnionShape::boundingbox(double valuemin, double valuemax,
|
---|
| 1142 | SCVector3& p1,
|
---|
| 1143 | SCVector3& p2)
|
---|
| 1144 | {
|
---|
| 1145 | if (_shapes.begin() == _shapes.end()) {
|
---|
| 1146 | for (int i=0; i<3; i++) p1[i] = p2[i] = 0.0;
|
---|
| 1147 | return;
|
---|
| 1148 | }
|
---|
| 1149 |
|
---|
| 1150 | SCVector3 pt1;
|
---|
| 1151 | SCVector3 pt2;
|
---|
| 1152 |
|
---|
| 1153 | std::set<Ref<Shape> >::iterator j = _shapes.begin();
|
---|
| 1154 | int i;
|
---|
| 1155 | (*j)->boundingbox(valuemin,valuemax,p1,p2);
|
---|
| 1156 | for (j++; j!=_shapes.end(); j++) {
|
---|
| 1157 | (*j)->boundingbox(valuemin,valuemax,pt1,pt2);
|
---|
| 1158 | for (i=0; i<3; i++) {
|
---|
| 1159 | if (pt1[i] < p1[i]) p1[i] = pt1[i];
|
---|
| 1160 | if (pt2[i] > p2[i]) p2[i] = pt2[i];
|
---|
| 1161 | }
|
---|
| 1162 | }
|
---|
| 1163 | }
|
---|
| 1164 |
|
---|
| 1165 | int
|
---|
| 1166 | UnionShape::gradient_implemented() const
|
---|
| 1167 | {
|
---|
| 1168 | for (std::set<Ref<Shape> >::const_iterator j=_shapes.begin();
|
---|
| 1169 | j!=_shapes.end(); j++) {
|
---|
| 1170 | if (!(*j)->gradient_implemented()) return 0;
|
---|
| 1171 | }
|
---|
| 1172 | return 1;
|
---|
| 1173 | }
|
---|
| 1174 |
|
---|
| 1175 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 1176 |
|
---|
| 1177 | // Local Variables:
|
---|
| 1178 | // mode: c++
|
---|
| 1179 | // c-file-style: "CLJ"
|
---|
| 1180 | // End:
|
---|