1 | /*
|
---|
2 | * C code from the article
|
---|
3 | * "An Implicit Surface Polygonizer"
|
---|
4 | * by Jules Bloomenthal, jbloom@beauty.gmu.edu
|
---|
5 | * in "Graphics Gems IV", Academic Press, 1994
|
---|
6 | */
|
---|
7 |
|
---|
8 | /* Modified by Curtis Janssen:
|
---|
9 | * 1. Eliminate memory leaks.
|
---|
10 | * 2. Make main routine optional (-DMAIN to compile a main routine).
|
---|
11 | */
|
---|
12 |
|
---|
13 | /* implicit.c
|
---|
14 | * an implicit surface polygonizer, translated from Mesa
|
---|
15 | * applications should call polygonize()
|
---|
16 | *
|
---|
17 | * to compile a test program for ASCII output:
|
---|
18 | * cc -DMAIN implicit.c -o implicit -lm
|
---|
19 | *
|
---|
20 | * to compile a test program for display on an SGI workstation:
|
---|
21 | * cc -DMAIN -DSGIGFX implicit.c -o implicit -lgl_s -lm
|
---|
22 | *
|
---|
23 | * Authored by Jules Bloomenthal, Xerox PARC.
|
---|
24 | * Copyright (c) Xerox Corporation, 1991. All rights reserved.
|
---|
25 | * Permission is granted to reproduce, use and distribute this code for
|
---|
26 | * any and all purposes, provided that this notice appears in all copies. */
|
---|
27 |
|
---|
28 | #include <stdlib.h>
|
---|
29 | #include <string.h>
|
---|
30 | #include <math.h>
|
---|
31 | #include <stdio.h>
|
---|
32 | #include <sys/types.h>
|
---|
33 |
|
---|
34 | #define TET 0 /* use tetrahedral decomposition */
|
---|
35 | #define NOTET 1 /* no tetrahedral decomposition */
|
---|
36 |
|
---|
37 | #define RES 10 /* # converge iterations */
|
---|
38 |
|
---|
39 | #define L 0 /* left direction: -x, -i */
|
---|
40 | #define R 1 /* right direction: +x, +i */
|
---|
41 | #define B 2 /* bottom direction: -y, -j */
|
---|
42 | #define T 3 /* top direction: +y, +j */
|
---|
43 | #define N 4 /* near direction: -z, -k */
|
---|
44 | #define F 5 /* far direction: +z, +k */
|
---|
45 | #define LBN 0 /* left bottom near corner */
|
---|
46 | #define LBF 1 /* left bottom far corner */
|
---|
47 | #define LTN 2 /* left top near corner */
|
---|
48 | #define LTF 3 /* left top far corner */
|
---|
49 | #define RBN 4 /* right bottom near corner */
|
---|
50 | #define RBF 5 /* right bottom far corner */
|
---|
51 | #define RTN 6 /* right top near corner */
|
---|
52 | #define RTF 7 /* right top far corner */
|
---|
53 |
|
---|
54 | /* the LBN corner of cube (i, j, k), corresponds with location
|
---|
55 | * (start.x+(i-.5)*size, start.y+(j-.5)*size, start.z+(k-.5)*size) */
|
---|
56 |
|
---|
57 | #define RAND() ((rand()&32767)/32767.) /* random number between 0 and 1 */
|
---|
58 | #define HASHBIT (5)
|
---|
59 | #define HASHSIZE (size_t)(1<<(3*HASHBIT)) /* hash table size (32768) */
|
---|
60 | #define MASK ((1<<HASHBIT)-1)
|
---|
61 | #define HASH(i,j,k) ((((((i)&MASK)<<HASHBIT)|((j)&MASK))<<HASHBIT)|((k)&MASK))
|
---|
62 | #define BIT(i, bit) (((i)>>(bit))&1)
|
---|
63 | #define FLIP(i,bit) ((i)^1<<(bit)) /* flip the given bit of i */
|
---|
64 |
|
---|
65 | typedef struct point { /* a three-dimensional point */
|
---|
66 | double x, y, z; /* its coordinates */
|
---|
67 | } POINT;
|
---|
68 |
|
---|
69 | typedef struct test { /* test the function for a signed value */
|
---|
70 | POINT p; /* location of test */
|
---|
71 | double value; /* function value at p */
|
---|
72 | int ok; /* if value is of correct sign */
|
---|
73 | } TEST;
|
---|
74 |
|
---|
75 | typedef struct vertex { /* surface vertex */
|
---|
76 | POINT position, normal; /* position and surface normal */
|
---|
77 | } VERTEX;
|
---|
78 |
|
---|
79 | typedef struct vertices { /* list of vertices in polygonization */
|
---|
80 | int count, max; /* # vertices, max # allowed */
|
---|
81 | VERTEX *ptr; /* dynamically allocated */
|
---|
82 | } VERTICES;
|
---|
83 |
|
---|
84 | typedef struct corner { /* corner of a cube */
|
---|
85 | int i, j, k; /* (i, j, k) is index within lattice */
|
---|
86 | double x, y, z, value; /* location and function value */
|
---|
87 | } CORNER;
|
---|
88 |
|
---|
89 | typedef struct cube { /* partitioning cell (cube) */
|
---|
90 | int i, j, k; /* lattice location of cube */
|
---|
91 | CORNER *corners[8]; /* eight corners */
|
---|
92 | } CUBE;
|
---|
93 |
|
---|
94 | typedef struct cubes { /* linked list of cubes acting as stack */
|
---|
95 | CUBE cube; /* a single cube */
|
---|
96 | struct cubes *next; /* remaining elements */
|
---|
97 | } CUBES;
|
---|
98 |
|
---|
99 | typedef struct centerlist { /* list of cube locations */
|
---|
100 | int i, j, k; /* cube location */
|
---|
101 | struct centerlist *next; /* remaining elements */
|
---|
102 | } CENTERLIST;
|
---|
103 |
|
---|
104 | typedef struct cornerlist { /* list of corners */
|
---|
105 | int i, j, k; /* corner id */
|
---|
106 | double value; /* corner value */
|
---|
107 | struct cornerlist *next; /* remaining elements */
|
---|
108 | } CORNERLIST;
|
---|
109 |
|
---|
110 | typedef struct edgelist { /* list of edges */
|
---|
111 | int i1, j1, k1, i2, j2, k2; /* edge corner ids */
|
---|
112 | int vid; /* vertex id */
|
---|
113 | struct edgelist *next; /* remaining elements */
|
---|
114 | } EDGELIST;
|
---|
115 |
|
---|
116 | typedef struct intlist { /* list of integers */
|
---|
117 | int i; /* an integer */
|
---|
118 | struct intlist *next; /* remaining elements */
|
---|
119 | } INTLIST;
|
---|
120 |
|
---|
121 | typedef struct intlists { /* list of list of integers */
|
---|
122 | INTLIST *list; /* a list of integers */
|
---|
123 | struct intlists *next; /* remaining elements */
|
---|
124 | } INTLISTS;
|
---|
125 |
|
---|
126 | typedef struct process { /* parameters, function, storage */
|
---|
127 | double (*function)(); /* implicit surface function */
|
---|
128 | int (*triproc)(); /* triangle output function */
|
---|
129 | double size, delta; /* cube size, normal delta */
|
---|
130 | int bounds; /* cube range within lattice */
|
---|
131 | POINT start; /* start point on surface */
|
---|
132 | CUBES *cubes; /* active cubes */
|
---|
133 | VERTICES vertices; /* surface vertices */
|
---|
134 | CENTERLIST **centers; /* cube center hash table */
|
---|
135 | CORNERLIST **corners; /* corner value hash table */
|
---|
136 | EDGELIST **edges; /* edge and vertex id hash table */
|
---|
137 | } PROCESS;
|
---|
138 |
|
---|
139 | void *calloc();
|
---|
140 |
|
---|
141 | #define mycalloc(n,nbyte) _mycalloc(n,nbyte,__LINE__)
|
---|
142 | #define myfree(ptr) _myfree(ptr,__LINE__)
|
---|
143 |
|
---|
144 | static void makecubetable ();
|
---|
145 | static void free_cubetable();
|
---|
146 | static void converge(POINT*,POINT*,double,double(*f)(),POINT*);
|
---|
147 | static CORNER *setcorner (PROCESS*, int, int, int);
|
---|
148 | static int setcenter(CENTERLIST *table[], int, int, int);
|
---|
149 | static int dotet (CUBE*, int, int, int, int, PROCESS*);
|
---|
150 | static int docube(CUBE*,PROCESS*);
|
---|
151 | static void testface (int,int,int,CUBE*,int,int,int,int,int,PROCESS*);
|
---|
152 | static TEST find (int,PROCESS*,double,double,double);
|
---|
153 | static void vnormal (POINT*,PROCESS*,POINT*);
|
---|
154 | static void addtovertices (VERTICES*, VERTEX);
|
---|
155 | static int vertid (CORNER*,CORNER*,PROCESS*);
|
---|
156 | static void free_process_data(PROCESS *);
|
---|
157 | static void clean_malloc();
|
---|
158 | static char *_mycalloc (int nitems, int nbytes, int line);
|
---|
159 | static void _myfree(void*ptr, int lineno);
|
---|
160 |
|
---|
161 | #ifdef MAIN
|
---|
162 |
|
---|
163 | /**** A Test Program ****/
|
---|
164 |
|
---|
165 |
|
---|
166 | /* ffunction: a piece of an atomic f function */
|
---|
167 |
|
---|
168 | double ffunction (x, y, z)
|
---|
169 | double x, y, z;
|
---|
170 | {
|
---|
171 | return x*y*z;
|
---|
172 | }
|
---|
173 |
|
---|
174 | /* torus: a torus with major, minor radii = 0.5, 0.1, try size = .05 */
|
---|
175 |
|
---|
176 | double torus (x, y, z)
|
---|
177 | double x, y, z;
|
---|
178 | {
|
---|
179 | double x2 = x*x, y2 = y*y, z2 = z*z;
|
---|
180 | double a = x2+y2+z2+(0.5*0.5)-(0.1*0.1);
|
---|
181 | return a*a-4.0*(0.5*0.5)*(y2+z2);
|
---|
182 | }
|
---|
183 |
|
---|
184 |
|
---|
185 | /* sphere: an inverse square function (always positive) */
|
---|
186 |
|
---|
187 | double sphere (x, y, z)
|
---|
188 | double x, y, z;
|
---|
189 | {
|
---|
190 | double rsq = x*x+y*y+z*z;
|
---|
191 | return 1.0/(rsq < 0.00001? 0.00001 : rsq);
|
---|
192 | }
|
---|
193 |
|
---|
194 |
|
---|
195 | /* blob: a three-pole blend function, try size = .1 */
|
---|
196 |
|
---|
197 | double blob (x, y, z)
|
---|
198 | double x, y, z;
|
---|
199 | {
|
---|
200 | return 4.0-sphere(x+1.0,y,z)-sphere(x,y+1.0,z)-sphere(x,y,z+1.0);
|
---|
201 | }
|
---|
202 |
|
---|
203 | #ifdef SGIGFX /**************************************************************/
|
---|
204 |
|
---|
205 | #include <math/isosurf/gl.h>
|
---|
206 |
|
---|
207 | /* triangle: called by polygonize() for each triangle; set SGI lines */
|
---|
208 |
|
---|
209 | triangle (i1, i2, i3, vertices)
|
---|
210 | int i1, i2, i3;
|
---|
211 | VERTICES vertices;
|
---|
212 | {
|
---|
213 | float v[3];
|
---|
214 | int i, ids[3];
|
---|
215 | ids[0] = i1;
|
---|
216 | ids[1] = i2;
|
---|
217 | ids[2] = i3;
|
---|
218 | bgnclosedline();
|
---|
219 | for (i = 0; i < 3; i++) {
|
---|
220 | POINT *p = &vertices.ptr[ids[i]].position;
|
---|
221 | v[0] = p->x; v[1] = p->y; v[2] = p->z;
|
---|
222 | v3f(v);
|
---|
223 | }
|
---|
224 | endclosedline();
|
---|
225 | return 1;
|
---|
226 | }
|
---|
227 |
|
---|
228 |
|
---|
229 | /* main: call polygonize() with torus function
|
---|
230 | * display lines on SGI */
|
---|
231 |
|
---|
232 | main ()
|
---|
233 | {
|
---|
234 | char *err, *polygonize();
|
---|
235 |
|
---|
236 | keepaspect(1, 1);
|
---|
237 | winopen("implicit");
|
---|
238 | doublebuffer();
|
---|
239 | gconfig();
|
---|
240 | perspective(450, 1.0/1.0, 0.1, 10.0);
|
---|
241 | color(7);
|
---|
242 | clear();
|
---|
243 | swapbuffers();
|
---|
244 | makeobj(1);
|
---|
245 | if ((err = polygonize(torus, .1, 20, 0.,0.,0., triangle, TET)) != NULL) {
|
---|
246 | fprintf(stderr, "%s\n", err);
|
---|
247 | exit(1);
|
---|
248 | }
|
---|
249 | closeobj();
|
---|
250 | translate(0.0, 0.0, -2.0);
|
---|
251 | pushmatrix();
|
---|
252 | while(1) { /* spin the object */
|
---|
253 | reshapeviewport();
|
---|
254 | color(7);
|
---|
255 | clear();
|
---|
256 | color(0);
|
---|
257 | callobj(1);
|
---|
258 | rot(0.8, 'x');
|
---|
259 | rot(0.3, 'y');
|
---|
260 | rot(0.1, 'z');
|
---|
261 | swapbuffers();
|
---|
262 |
|
---|
263 | }
|
---|
264 | }
|
---|
265 |
|
---|
266 | #else /***********************************************************************/
|
---|
267 |
|
---|
268 | int gntris; /* global needed by application */
|
---|
269 | VERTICES gvertices; /* global needed by application */
|
---|
270 |
|
---|
271 |
|
---|
272 | /* triangle: called by polygonize() for each triangle; write to stdout */
|
---|
273 |
|
---|
274 | triangle (i1, i2, i3, vertices)
|
---|
275 | int i1, i2, i3;
|
---|
276 | VERTICES vertices;
|
---|
277 | {
|
---|
278 | gvertices = vertices;
|
---|
279 | gntris++;
|
---|
280 | fprintf(stdout, "%d %d %d\n", i1, i2, i3);
|
---|
281 | return 1;
|
---|
282 | }
|
---|
283 |
|
---|
284 |
|
---|
285 | /* main: call polygonize() with torus function
|
---|
286 | * write points-polygon formatted data to stdout */
|
---|
287 |
|
---|
288 | main ()
|
---|
289 | {
|
---|
290 | int i;
|
---|
291 | char *err, *polygonize();
|
---|
292 | gntris = 0;
|
---|
293 | fprintf(stdout, "triangles\n\n");
|
---|
294 | if ((err = polygonize(torus, .05, 20, 0.,0.,0., triangle, TET)) != NULL) {
|
---|
295 | fprintf(stdout, "%s\n", err);
|
---|
296 | exit(1);
|
---|
297 | }
|
---|
298 | fprintf(stdout, "\n%d triangles, %d vertices\n", gntris, gvertices.count);
|
---|
299 | fprintf(stdout, "\nvertices\n\n");
|
---|
300 | for (i = 0; i < gvertices.count; i++) {
|
---|
301 | VERTEX v;
|
---|
302 | v = gvertices.ptr[i];
|
---|
303 | fprintf(stdout, "%f %f %f\t%f %f %f\n",
|
---|
304 | v.position.x, v.position.y, v.position.z,
|
---|
305 | v.normal.x, v.normal.y, v.normal.z);
|
---|
306 | }
|
---|
307 | fprintf(stderr, "%d triangles, %d vertices\n", gntris, gvertices.count);
|
---|
308 | exit(0);
|
---|
309 | }
|
---|
310 |
|
---|
311 | #endif /**********************************************************************/
|
---|
312 |
|
---|
313 | #endif /* MAIN */
|
---|
314 |
|
---|
315 |
|
---|
316 | /**** An Implicit Surface Polygonizer ****/
|
---|
317 |
|
---|
318 |
|
---|
319 | /* polygonize: polygonize the implicit surface function
|
---|
320 | * arguments are:
|
---|
321 | * double function (x, y, z)
|
---|
322 | * double x, y, z (an arbitrary 3D point)
|
---|
323 | * the implicit surface function
|
---|
324 | * return negative for inside, positive for outside
|
---|
325 | * double size
|
---|
326 | * width of the partitioning cube
|
---|
327 | * int bounds
|
---|
328 | * max. range of cubes (+/- on the three axes) from first cube
|
---|
329 | * double x, y, z
|
---|
330 | * coordinates of a starting point on or near the surface
|
---|
331 | * may be defaulted to 0., 0., 0.
|
---|
332 | * int triproc (i1, i2, i3, vertices)
|
---|
333 | * int i1, i2, i3 (indices into the vertex array)
|
---|
334 | * VERTICES vertices (the vertex array, indexed from 0)
|
---|
335 | * called for each triangle
|
---|
336 | * the triangle coordinates are (for i = i1, i2, i3):
|
---|
337 | * vertices.ptr[i].position.x, .y, and .z
|
---|
338 | * vertices are ccw when viewed from the out (positive) side
|
---|
339 | * in a left-handed coordinate system
|
---|
340 | * vertex normals point outwards
|
---|
341 | * return 1 to continue, 0 to abort
|
---|
342 | * int mode
|
---|
343 | * TET: decompose cube and polygonize six tetrahedra
|
---|
344 | * NOTET: polygonize cube directly
|
---|
345 | * returns error or NULL
|
---|
346 | */
|
---|
347 |
|
---|
348 | char *polygonize (function, size, bounds, x, y, z, triproc, mode)
|
---|
349 | double (*function)(), size, x, y, z;
|
---|
350 | int bounds, (*triproc)(), mode;
|
---|
351 | {
|
---|
352 | PROCESS p;
|
---|
353 | int n, noabort;
|
---|
354 | CORNER *setcorner();
|
---|
355 | TEST in, out, find();
|
---|
356 |
|
---|
357 | p.function = function;
|
---|
358 | p.triproc = triproc;
|
---|
359 | p.size = size;
|
---|
360 | p.bounds = bounds;
|
---|
361 | p.delta = size/(double)(RES*RES);
|
---|
362 |
|
---|
363 | /* allocate hash tables and build cube polygon table: */
|
---|
364 | p.centers = (CENTERLIST **) mycalloc(HASHSIZE,sizeof(CENTERLIST *));
|
---|
365 | p.corners = (CORNERLIST **) mycalloc(HASHSIZE,sizeof(CORNERLIST *));
|
---|
366 | p.edges = (EDGELIST **) mycalloc(2*HASHSIZE,sizeof(EDGELIST *));
|
---|
367 | makecubetable();
|
---|
368 |
|
---|
369 | /* find point on surface, beginning search at (x, y, z): */
|
---|
370 | srand(1);
|
---|
371 | in = find(1, &p, x, y, z);
|
---|
372 | out = find(0, &p, x, y, z);
|
---|
373 | if (!in.ok || !out.ok) {
|
---|
374 | free_cubetable();
|
---|
375 | free_process_data(&p);
|
---|
376 | clean_malloc();
|
---|
377 | return "can't find starting point";
|
---|
378 | }
|
---|
379 | converge(&in.p, &out.p, in.value, p.function, &p.start);
|
---|
380 |
|
---|
381 | /* push initial cube on stack: */
|
---|
382 | p.cubes = (CUBES *) mycalloc(1, sizeof(CUBES)); /* list of 1 */
|
---|
383 | p.cubes->cube.i = p.cubes->cube.j = p.cubes->cube.k = 0;
|
---|
384 | p.cubes->next = NULL;
|
---|
385 |
|
---|
386 | /* set corners of initial cube: */
|
---|
387 | for (n = 0; n < 8; n++)
|
---|
388 | p.cubes->cube.corners[n] = setcorner(&p, BIT(n,2), BIT(n,1), BIT(n,0));
|
---|
389 |
|
---|
390 | p.vertices.count = p.vertices.max = 0; /* no vertices yet */
|
---|
391 | p.vertices.ptr = NULL;
|
---|
392 |
|
---|
393 | setcenter(p.centers, 0, 0, 0);
|
---|
394 |
|
---|
395 | while (p.cubes != NULL) { /* process active cubes till none left */
|
---|
396 | int i;
|
---|
397 | CUBE c;
|
---|
398 | CUBES *temp = p.cubes;
|
---|
399 | c = p.cubes->cube;
|
---|
400 |
|
---|
401 | noabort = mode == TET?
|
---|
402 | /* either decompose into tetrahedra and polygonize: */
|
---|
403 | dotet(&c, LBN, LTN, RBN, LBF, &p) &&
|
---|
404 | dotet(&c, RTN, LTN, LBF, RBN, &p) &&
|
---|
405 | dotet(&c, RTN, LTN, LTF, LBF, &p) &&
|
---|
406 | dotet(&c, RTN, RBN, LBF, RBF, &p) &&
|
---|
407 | dotet(&c, RTN, LBF, LTF, RBF, &p) &&
|
---|
408 | dotet(&c, RTN, LTF, RTF, RBF, &p)
|
---|
409 | :
|
---|
410 | /* or polygonize the cube directly: */
|
---|
411 | docube(&c, &p);
|
---|
412 | if (! noabort) {
|
---|
413 | free_cubetable();
|
---|
414 | free_process_data(&p);
|
---|
415 | clean_malloc();
|
---|
416 | return "aborted";
|
---|
417 | }
|
---|
418 |
|
---|
419 | /* pop current cube from stack */
|
---|
420 | p.cubes = p.cubes->next;
|
---|
421 |
|
---|
422 | /* test six face directions, maybe add to stack: */
|
---|
423 | testface(c.i-1, c.j, c.k, &c, L, LBN, LBF, LTN, LTF, &p);
|
---|
424 | testface(c.i+1, c.j, c.k, &c, R, RBN, RBF, RTN, RTF, &p);
|
---|
425 | testface(c.i, c.j-1, c.k, &c, B, LBN, LBF, RBN, RBF, &p);
|
---|
426 | testface(c.i, c.j+1, c.k, &c, T, LTN, LTF, RTN, RTF, &p);
|
---|
427 | testface(c.i, c.j, c.k-1, &c, N, LBN, LTN, RBN, RTN, &p);
|
---|
428 | testface(c.i, c.j, c.k+1, &c, F, LBF, LTF, RBF, RTF, &p);
|
---|
429 |
|
---|
430 | /* get rid of the current cube */
|
---|
431 | for (i=0; i<8; i++) {
|
---|
432 | myfree(temp->cube.corners[i]);
|
---|
433 | temp->cube.corners[i]=0;
|
---|
434 | }
|
---|
435 | myfree(temp);
|
---|
436 | }
|
---|
437 | free_cubetable();
|
---|
438 | free_process_data(&p);
|
---|
439 | clean_malloc();
|
---|
440 | return NULL;
|
---|
441 | }
|
---|
442 |
|
---|
443 | static void
|
---|
444 | free_process_data(p)
|
---|
445 | PROCESS *p;
|
---|
446 | {
|
---|
447 | int i;
|
---|
448 | CUBES *cubes,*nextcubes;
|
---|
449 |
|
---|
450 | if (p->vertices.ptr) myfree(p->vertices.ptr);
|
---|
451 |
|
---|
452 | for (i=0; i<HASHSIZE; i++) {
|
---|
453 | CENTERLIST *l,*next;
|
---|
454 | for (l=p->centers[i]; l; l=next) {
|
---|
455 | next = l->next;
|
---|
456 | myfree(l);
|
---|
457 | }
|
---|
458 | }
|
---|
459 |
|
---|
460 | for (i=0; i<HASHSIZE; i++) {
|
---|
461 | CORNERLIST *l,*next;
|
---|
462 | for (l=p->corners[i]; l; l=next) {
|
---|
463 | next = l->next;
|
---|
464 | myfree(l);
|
---|
465 | }
|
---|
466 | }
|
---|
467 |
|
---|
468 | for (i=0; i<2*HASHSIZE; i++) {
|
---|
469 | EDGELIST *l,*next;
|
---|
470 | for (l=p->edges[i]; l; l=next) {
|
---|
471 | next = l->next;
|
---|
472 | myfree(l);
|
---|
473 | }
|
---|
474 | }
|
---|
475 |
|
---|
476 | for (cubes=p->cubes; cubes; cubes=nextcubes) {
|
---|
477 | nextcubes = cubes->next;
|
---|
478 | for (i=0; i<8; i++) {
|
---|
479 | myfree(cubes->cube.corners[i]);
|
---|
480 | }
|
---|
481 | myfree(cubes);
|
---|
482 | }
|
---|
483 |
|
---|
484 | myfree(p->centers);
|
---|
485 | myfree(p->corners);
|
---|
486 | myfree(p->edges);
|
---|
487 | }
|
---|
488 |
|
---|
489 |
|
---|
490 | /* testface: given cube at lattice (i, j, k), and four corners of face,
|
---|
491 | * if surface crosses face, compute other four corners of adjacent cube
|
---|
492 | * and add new cube to cube stack */
|
---|
493 |
|
---|
494 | static void
|
---|
495 | testface (i, j, k, old, face, c1, c2, c3, c4, p)
|
---|
496 | CUBE *old;
|
---|
497 | PROCESS *p;
|
---|
498 | int i, j, k, face, c1, c2, c3, c4;
|
---|
499 | {
|
---|
500 | CUBE new;
|
---|
501 | CUBES *oldcubes = p->cubes;
|
---|
502 | CORNER *setcorner();
|
---|
503 | int n, pos = old->corners[c1]->value > 0.0 ? 1 : 0;
|
---|
504 | /* static int facebit[6] = {2, 2, 1, 1, 0, 0}; */
|
---|
505 | /* int bit = facebit[face]; */
|
---|
506 |
|
---|
507 | /* test if no surface crossing, cube out of bounds, or already visited: */
|
---|
508 | if ((old->corners[c2]->value > 0) == pos &&
|
---|
509 | (old->corners[c3]->value > 0) == pos &&
|
---|
510 | (old->corners[c4]->value > 0) == pos) return;
|
---|
511 | if (abs(i) > p->bounds || abs(j) > p->bounds || abs(k) > p->bounds) {
|
---|
512 | static int have_been_warned = 0;
|
---|
513 | if (!have_been_warned) {
|
---|
514 | fprintf(stderr,"WARNING: testface: cube out of bounds\n");
|
---|
515 | have_been_warned = 1;
|
---|
516 | }
|
---|
517 | /* abort(); */
|
---|
518 | return;
|
---|
519 | }
|
---|
520 | if (setcenter(p->centers, i, j, k)) return;
|
---|
521 |
|
---|
522 | /* create new cube: */
|
---|
523 | new.i = i;
|
---|
524 | new.j = j;
|
---|
525 | new.k = k;
|
---|
526 | /* CLJ: changed this to make memory management possible. */
|
---|
527 | /* for (n = 0; n < 8; n++) new.corners[n] = NULL; */
|
---|
528 | /* new.corners[FLIP(c1, bit)] = old->corners[c1]; */
|
---|
529 | /* new.corners[FLIP(c2, bit)] = old->corners[c2]; */
|
---|
530 | /* new.corners[FLIP(c3, bit)] = old->corners[c3]; */
|
---|
531 | /* new.corners[FLIP(c4, bit)] = old->corners[c4]; */
|
---|
532 | /* for (n = 0; n < 8; n++) */
|
---|
533 | /* if (new.corners[n] == NULL) */
|
---|
534 | /* new.corners[n] = setcorner(p, i+BIT(n,2), j+BIT(n,1), k+BIT(n,0)); */
|
---|
535 | for (n = 0; n < 8; n++)
|
---|
536 | new.corners[n] = setcorner(p, i+BIT(n,2), j+BIT(n,1), k+BIT(n,0));
|
---|
537 |
|
---|
538 | /*add cube to top of stack: */
|
---|
539 | p->cubes = (CUBES *) mycalloc(1, sizeof(CUBES));
|
---|
540 | p->cubes->cube = new;
|
---|
541 | p->cubes->next = oldcubes;
|
---|
542 | }
|
---|
543 |
|
---|
544 |
|
---|
545 | /* setcorner: return corner with the given lattice location
|
---|
546 | set (and cache) its function value */
|
---|
547 |
|
---|
548 | static CORNER *setcorner (p, i, j, k)
|
---|
549 | int i, j, k;
|
---|
550 | PROCESS *p;
|
---|
551 | {
|
---|
552 | /* for speed, do corner value caching here */
|
---|
553 | CORNER *c = (CORNER *) mycalloc(1, sizeof(CORNER));
|
---|
554 | int index = HASH(i, j, k);
|
---|
555 | CORNERLIST *l = p->corners[index];
|
---|
556 | c->i = i; c->x = p->start.x+((double)i-.5)*p->size;
|
---|
557 | c->j = j; c->y = p->start.y+((double)j-.5)*p->size;
|
---|
558 | c->k = k; c->z = p->start.z+((double)k-.5)*p->size;
|
---|
559 | for (; l != NULL; l = l->next)
|
---|
560 | if (l->i == i && l->j == j && l->k == k) {
|
---|
561 | c->value = l->value;
|
---|
562 | return c;
|
---|
563 | }
|
---|
564 | l = (CORNERLIST *) mycalloc(1, sizeof(CORNERLIST));
|
---|
565 | l->i = i; l->j = j; l->k = k;
|
---|
566 | l->value = c->value = p->function(c->x, c->y, c->z);
|
---|
567 | if (c->value > 100.0 || c->value < -100.0) {
|
---|
568 | fprintf(stderr,"suspicious\n");
|
---|
569 | abort();
|
---|
570 | }
|
---|
571 | l->next = p->corners[index];
|
---|
572 | p->corners[index] = l;
|
---|
573 | return c;
|
---|
574 | }
|
---|
575 |
|
---|
576 |
|
---|
577 | /* find: search for point with value of given sign (0: neg, 1: pos) */
|
---|
578 |
|
---|
579 | static TEST find (sign, p, x, y, z)
|
---|
580 | int sign;
|
---|
581 | PROCESS *p;
|
---|
582 | double x, y, z;
|
---|
583 | {
|
---|
584 | int i;
|
---|
585 | TEST test;
|
---|
586 | double range = p->size;
|
---|
587 | test.ok = 1;
|
---|
588 | for (i = 0; i < 10000; i++) {
|
---|
589 | test.p.x = x+range*(RAND()-0.5);
|
---|
590 | test.p.y = y+range*(RAND()-0.5);
|
---|
591 | test.p.z = z+range*(RAND()-0.5);
|
---|
592 | test.value = p->function(test.p.x, test.p.y, test.p.z);
|
---|
593 | if (sign == (test.value > 0.0)) return test;
|
---|
594 | range = range*1.0005; /* slowly expand search outwards */
|
---|
595 | }
|
---|
596 | test.ok = 0;
|
---|
597 | return test;
|
---|
598 | }
|
---|
599 |
|
---|
600 |
|
---|
601 | /**** Tetrahedral Polygonization ****/
|
---|
602 |
|
---|
603 |
|
---|
604 | /* dotet: triangulate the tetrahedron
|
---|
605 | * b, c, d should appear clockwise when viewed from a
|
---|
606 | * return 0 if client aborts, 1 otherwise */
|
---|
607 |
|
---|
608 | static int dotet (cube, c1, c2, c3, c4, p)
|
---|
609 | CUBE *cube;
|
---|
610 | int c1, c2, c3, c4;
|
---|
611 | PROCESS *p;
|
---|
612 | {
|
---|
613 | CORNER *a = cube->corners[c1];
|
---|
614 | CORNER *b = cube->corners[c2];
|
---|
615 | CORNER *c = cube->corners[c3];
|
---|
616 | CORNER *d = cube->corners[c4];
|
---|
617 | int index = 0, apos, bpos, cpos, dpos, e1=0, e2=0, e3=0, e4=0, e5=0, e6=0;
|
---|
618 | if ((apos = (a->value > 0.0))) index += 8;
|
---|
619 | if ((bpos = (b->value > 0.0))) index += 4;
|
---|
620 | if ((cpos = (c->value > 0.0))) index += 2;
|
---|
621 | if ((dpos = (d->value > 0.0))) index += 1;
|
---|
622 | /* index is now 4-bit number representing one of the 16 possible cases */
|
---|
623 | if (apos != bpos) e1 = vertid(a, b, p);
|
---|
624 | if (apos != cpos) e2 = vertid(a, c, p);
|
---|
625 | if (apos != dpos) e3 = vertid(a, d, p);
|
---|
626 | if (bpos != cpos) e4 = vertid(b, c, p);
|
---|
627 | if (bpos != dpos) e5 = vertid(b, d, p);
|
---|
628 | if (cpos != dpos) e6 = vertid(c, d, p);
|
---|
629 | /* 14 productive tetrahedral cases (0000 and 1111 do not yield polygons */
|
---|
630 | switch (index) {
|
---|
631 | case 1: return p->triproc(e5, e6, e3, p->vertices);
|
---|
632 | case 2: return p->triproc(e2, e6, e4, p->vertices);
|
---|
633 | case 3: return p->triproc(e3, e5, e4, p->vertices) &&
|
---|
634 | p->triproc(e3, e4, e2, p->vertices);
|
---|
635 | case 4: return p->triproc(e1, e4, e5, p->vertices);
|
---|
636 | case 5: return p->triproc(e3, e1, e4, p->vertices) &&
|
---|
637 | p->triproc(e3, e4, e6, p->vertices);
|
---|
638 | case 6: return p->triproc(e1, e2, e6, p->vertices) &&
|
---|
639 | p->triproc(e1, e6, e5, p->vertices);
|
---|
640 | case 7: return p->triproc(e1, e2, e3, p->vertices);
|
---|
641 | case 8: return p->triproc(e1, e3, e2, p->vertices);
|
---|
642 | case 9: return p->triproc(e1, e5, e6, p->vertices) &&
|
---|
643 | p->triproc(e1, e6, e2, p->vertices);
|
---|
644 | case 10: return p->triproc(e1, e3, e6, p->vertices) &&
|
---|
645 | p->triproc(e1, e6, e4, p->vertices);
|
---|
646 | case 11: return p->triproc(e1, e5, e4, p->vertices);
|
---|
647 | case 12: return p->triproc(e3, e2, e4, p->vertices) &&
|
---|
648 | p->triproc(e3, e4, e5, p->vertices);
|
---|
649 | case 13: return p->triproc(e6, e2, e4, p->vertices);
|
---|
650 | case 14: return p->triproc(e5, e3, e6, p->vertices);
|
---|
651 | }
|
---|
652 | return 1;
|
---|
653 | }
|
---|
654 |
|
---|
655 |
|
---|
656 | /**** Cubical Polygonization (optional) ****/
|
---|
657 |
|
---|
658 |
|
---|
659 | #define LB 0 /* left bottom edge */
|
---|
660 | #define LT 1 /* left top edge */
|
---|
661 | #define LN 2 /* left near edge */
|
---|
662 | #define LF 3 /* left far edge */
|
---|
663 | #define RB 4 /* right bottom edge */
|
---|
664 | #define RT 5 /* right top edge */
|
---|
665 | #define RN 6 /* right near edge */
|
---|
666 | #define RF 7 /* right far edge */
|
---|
667 | #define BN 8 /* bottom near edge */
|
---|
668 | #define BF 9 /* bottom far edge */
|
---|
669 | #define TN 10 /* top near edge */
|
---|
670 | #define TF 11 /* top far edge */
|
---|
671 |
|
---|
672 | static INTLISTS *cubetable[256];
|
---|
673 |
|
---|
674 | /* edge: LB, LT, LN, LF, RB, RT, RN, RF, BN, BF, TN, TF */
|
---|
675 | static int corner1[12] = {LBN,LTN,LBN,LBF,RBN,RTN,RBN,RBF,LBN,LBF,LTN,LTF};
|
---|
676 | static int corner2[12] = {LBF,LTF,LTN,LTF,RBF,RTF,RTN,RTF,RBN,RBF,RTN,RTF};
|
---|
677 | static int leftface[12] = {B, L, L, F, R, T, N, R, N, B, T, F};
|
---|
678 | /* face on left when going corner1 to corner2 */
|
---|
679 | static int rightface[12] = {L, T, N, L, B, R, R, F, B, F, N, T};
|
---|
680 | /* face on right when going corner1 to corner2 */
|
---|
681 |
|
---|
682 |
|
---|
683 | /* docube: triangulate the cube directly, without decomposition */
|
---|
684 |
|
---|
685 | static int docube (cube, p)
|
---|
686 | CUBE *cube;
|
---|
687 | PROCESS *p;
|
---|
688 | {
|
---|
689 | INTLISTS *polys;
|
---|
690 | int i, index = 0;
|
---|
691 | for (i = 0; i < 8; i++) if (cube->corners[i]->value > 0.0) index += (1<<i);
|
---|
692 | for (polys = cubetable[index]; polys; polys = polys->next) {
|
---|
693 | INTLIST *edges;
|
---|
694 | int a = -1, b = -1, count = 0;
|
---|
695 | for (edges = polys->list; edges; edges = edges->next) {
|
---|
696 | CORNER *c1 = cube->corners[corner1[edges->i]];
|
---|
697 | CORNER *c2 = cube->corners[corner2[edges->i]];
|
---|
698 | int c = vertid(c1, c2, p);
|
---|
699 | if (++count > 2 && ! p->triproc(a, b, c, p->vertices)) return 0;
|
---|
700 | if (count < 3) a = b;
|
---|
701 | b = c;
|
---|
702 | }
|
---|
703 | }
|
---|
704 | return 1;
|
---|
705 | }
|
---|
706 |
|
---|
707 |
|
---|
708 | /* nextcwedge: return next clockwise edge from given edge around given face */
|
---|
709 |
|
---|
710 | static int nextcwedge (edge, face)
|
---|
711 | int edge, face;
|
---|
712 | {
|
---|
713 | switch (edge) {
|
---|
714 | case LB: return (face == L)? LF : BN;
|
---|
715 | case LT: return (face == L)? LN : TF;
|
---|
716 | case LN: return (face == L)? LB : TN;
|
---|
717 | case LF: return (face == L)? LT : BF;
|
---|
718 | case RB: return (face == R)? RN : BF;
|
---|
719 | case RT: return (face == R)? RF : TN;
|
---|
720 | case RN: return (face == R)? RT : BN;
|
---|
721 | case RF: return (face == R)? RB : TF;
|
---|
722 | case BN: return (face == B)? RB : LN;
|
---|
723 | case BF: return (face == B)? LB : RF;
|
---|
724 | case TN: return (face == T)? LT : RN;
|
---|
725 | case TF: return (face == T)? RT : LF;
|
---|
726 | }
|
---|
727 |
|
---|
728 | return -1;
|
---|
729 | }
|
---|
730 |
|
---|
731 |
|
---|
732 | /* otherface: return face adjoining edge that is not the given face */
|
---|
733 |
|
---|
734 | static int otherface (edge, face)
|
---|
735 | int edge, face;
|
---|
736 | {
|
---|
737 | int other = leftface[edge];
|
---|
738 | return face == other? rightface[edge] : other;
|
---|
739 | }
|
---|
740 |
|
---|
741 |
|
---|
742 | /* makecubetable: create the 256 entry table for cubical polygonization */
|
---|
743 |
|
---|
744 | static void makecubetable ()
|
---|
745 | {
|
---|
746 | int i, e, c, done[12], pos[8];
|
---|
747 | memset(cubetable, 0, sizeof(cubetable));
|
---|
748 | for (i = 0; i < 256; i++) {
|
---|
749 | for (e = 0; e < 12; e++) done[e] = 0;
|
---|
750 | for (c = 0; c < 8; c++) pos[c] = BIT(i, c);
|
---|
751 | for (e = 0; e < 12; e++)
|
---|
752 | if (!done[e] && (pos[corner1[e]] != pos[corner2[e]])) {
|
---|
753 | INTLIST *ints = 0;
|
---|
754 | INTLISTS *lists = (INTLISTS *) mycalloc(1, sizeof(INTLISTS));
|
---|
755 | int start = e, edge = e;
|
---|
756 | /* get face that is to right of edge from pos to neg corner: */
|
---|
757 | int face = pos[corner1[e]]? rightface[e] : leftface[e];
|
---|
758 | while (1) {
|
---|
759 | edge = nextcwedge(edge, face);
|
---|
760 | done[edge] = 1;
|
---|
761 | if (pos[corner1[edge]] != pos[corner2[edge]]) {
|
---|
762 | INTLIST *tmp = ints;
|
---|
763 | ints = (INTLIST *) mycalloc(1, sizeof(INTLIST));
|
---|
764 | ints->i = edge;
|
---|
765 | ints->next = tmp; /* add edge to head of list */
|
---|
766 | if (edge == start) break;
|
---|
767 | face = otherface(edge, face);
|
---|
768 | }
|
---|
769 | }
|
---|
770 | lists->list = ints; /* add ints to head of table entry */
|
---|
771 | lists->next = cubetable[i];
|
---|
772 | cubetable[i] = lists;
|
---|
773 | }
|
---|
774 | }
|
---|
775 | }
|
---|
776 |
|
---|
777 | static void
|
---|
778 | free_cubetable()
|
---|
779 | {
|
---|
780 | int i;
|
---|
781 | for (i=0; i<256; i++) {
|
---|
782 | INTLISTS *l,*nextl;
|
---|
783 | for (l=cubetable[i]; l; l=nextl) {
|
---|
784 | INTLIST *m, *nextm;
|
---|
785 | for (m=l->list; m; m=nextm) {
|
---|
786 | nextm = m->next;
|
---|
787 | myfree(m);
|
---|
788 | }
|
---|
789 | nextl = l->next;
|
---|
790 | myfree(l);
|
---|
791 | }
|
---|
792 | }
|
---|
793 | }
|
---|
794 |
|
---|
795 | /**** Storage ****/
|
---|
796 |
|
---|
797 | #undef CHECK_MALLOC
|
---|
798 |
|
---|
799 | #ifdef CHECK_MALLOC
|
---|
800 | static char allocwarn[10000];
|
---|
801 | static char delwarn[10000];
|
---|
802 | #endif
|
---|
803 |
|
---|
804 | /* mycalloc: return successful calloc or exit program */
|
---|
805 |
|
---|
806 | typedef struct mallocdata {
|
---|
807 | int lineno;
|
---|
808 | char* ptr;
|
---|
809 | size_t size;
|
---|
810 | struct mallocdata* next;
|
---|
811 | } MALLOCDATA;
|
---|
812 |
|
---|
813 | #ifdef CHECK_MALLOC
|
---|
814 | static MALLOCDATA *malloc_list;
|
---|
815 | static void add_mallocdata(char* ptr, int lineno, size_t size)
|
---|
816 | {
|
---|
817 | MALLOCDATA * old = malloc_list;
|
---|
818 | malloc_list = (MALLOCDATA*) malloc(sizeof(MALLOCDATA));
|
---|
819 | malloc_list->next = old;
|
---|
820 | malloc_list->ptr = ptr;
|
---|
821 | malloc_list->size = size;
|
---|
822 | malloc_list->lineno = lineno;
|
---|
823 | }
|
---|
824 |
|
---|
825 | static size_t del_mallocdata(char* ptr,int lineno)
|
---|
826 | {
|
---|
827 | MALLOCDATA *i, *ilast = 0;
|
---|
828 | int size;
|
---|
829 | for (i=malloc_list; i; ilast=i,i=i->next) {
|
---|
830 | if (i->ptr == ptr) {
|
---|
831 | if (ilast) {
|
---|
832 | MALLOCDATA * tmp = i->next;
|
---|
833 | ilast->next = i->next;
|
---|
834 | }
|
---|
835 | else {
|
---|
836 | malloc_list = i->next;
|
---|
837 | }
|
---|
838 | size = i->size;
|
---|
839 | free(i);
|
---|
840 | return size;
|
---|
841 | }
|
---|
842 | }
|
---|
843 | if (!delwarn[lineno]) {
|
---|
844 | fprintf(stderr,"tried to delete unknown data at line %d\n",lineno);
|
---|
845 | delwarn[lineno] = 1;
|
---|
846 | }
|
---|
847 | return 0;
|
---|
848 | }
|
---|
849 | #endif
|
---|
850 |
|
---|
851 | static void clean_malloc()
|
---|
852 | {
|
---|
853 | #ifdef CHECK_MALLOC
|
---|
854 | MALLOCDATA*i;
|
---|
855 | int count=0;
|
---|
856 | for (i=malloc_list; i; i=i->next) {
|
---|
857 | if (!allocwarn[i->lineno]) {
|
---|
858 | fprintf(stderr,"have memory allocated from line %d\n",i->lineno);
|
---|
859 | allocwarn[i->lineno] = 1;
|
---|
860 | }
|
---|
861 | count++;
|
---|
862 | }
|
---|
863 | fprintf(stderr,"%d allocated pieces of memory remain\n",count);
|
---|
864 | #endif
|
---|
865 | }
|
---|
866 |
|
---|
867 | static char *_mycalloc (nitems, nbytes, line)
|
---|
868 | int nitems, nbytes, line;
|
---|
869 | {
|
---|
870 | char *ptr = calloc(nitems, nbytes);
|
---|
871 | #ifdef CHECK_MALLOC
|
---|
872 | add_mallocdata(ptr,line,nitems*nbytes);
|
---|
873 | #endif
|
---|
874 | if (ptr != NULL) return ptr;
|
---|
875 | fprintf(stderr, "can't calloc %d bytes\n", nitems*nbytes);
|
---|
876 | abort();
|
---|
877 | return 0;
|
---|
878 | }
|
---|
879 |
|
---|
880 | static void _myfree(ptr, lineno)
|
---|
881 | void* ptr;
|
---|
882 | int lineno;
|
---|
883 | {
|
---|
884 | #ifdef CHECK_MALLOC
|
---|
885 | size_t size = del_mallocdata(ptr,lineno);
|
---|
886 | char*tmp = ptr;
|
---|
887 | for (int i=0; i<size; i++) {
|
---|
888 | *tmp++ = 0x00;
|
---|
889 | }
|
---|
890 | #endif
|
---|
891 |
|
---|
892 | free(ptr);
|
---|
893 | }
|
---|
894 |
|
---|
895 |
|
---|
896 | /* setcenter: set (i,j,k) entry of table[]
|
---|
897 | * return 1 if already set; otherwise, set and return 0 */
|
---|
898 |
|
---|
899 | static int setcenter(table, i, j, k)
|
---|
900 | CENTERLIST *table[];
|
---|
901 | int i, j, k;
|
---|
902 | {
|
---|
903 | int index = HASH(i, j, k);
|
---|
904 | CENTERLIST *new, *l, *q = table[index];
|
---|
905 | for (l = q; l != NULL; l = l->next)
|
---|
906 | if (l->i == i && l->j == j && l->k == k) return 1;
|
---|
907 | new = (CENTERLIST *) mycalloc(1, sizeof(CENTERLIST));
|
---|
908 | new->i = i; new->j = j; new->k = k; new->next = q;
|
---|
909 | table[index] = new;
|
---|
910 | return 0;
|
---|
911 | }
|
---|
912 |
|
---|
913 |
|
---|
914 | /* setedge: set vertex id for edge */
|
---|
915 |
|
---|
916 | static void setedge (table, i1, j1, k1, i2, j2, k2, vid)
|
---|
917 | EDGELIST *table[];
|
---|
918 | int i1, j1, k1, i2, j2, k2, vid;
|
---|
919 | {
|
---|
920 | unsigned int index;
|
---|
921 | EDGELIST *new;
|
---|
922 | if (i1>i2 || (i1==i2 && (j1>j2 || (j1==j2 && k1>k2)))) {
|
---|
923 | int t=i1; i1=i2; i2=t; t=j1; j1=j2; j2=t; t=k1; k1=k2; k2=t;
|
---|
924 | }
|
---|
925 | index = HASH(i1, j1, k1) + HASH(i2, j2, k2);
|
---|
926 | new = (EDGELIST *) mycalloc(1, sizeof(EDGELIST));
|
---|
927 | new->i1 = i1; new->j1 = j1; new->k1 = k1;
|
---|
928 | new->i2 = i2; new->j2 = j2; new->k2 = k2;
|
---|
929 | new->vid = vid;
|
---|
930 | new->next = table[index];
|
---|
931 | table[index] = new;
|
---|
932 | }
|
---|
933 |
|
---|
934 |
|
---|
935 | /* getedge: return vertex id for edge; return -1 if not set */
|
---|
936 |
|
---|
937 | static int getedge (table, i1, j1, k1, i2, j2, k2)
|
---|
938 | EDGELIST *table[];
|
---|
939 | int i1, j1, k1, i2, j2, k2;
|
---|
940 | {
|
---|
941 | EDGELIST *q;
|
---|
942 | if (i1>i2 || (i1==i2 && (j1>j2 || (j1==j2 && k1>k2)))) {
|
---|
943 | int t=i1; i1=i2; i2=t; t=j1; j1=j2; j2=t; t=k1; k1=k2; k2=t;
|
---|
944 | };
|
---|
945 | q = table[HASH(i1, j1, k1)+HASH(i2, j2, k2)];
|
---|
946 | for (; q != NULL; q = q->next)
|
---|
947 | if (q->i1 == i1 && q->j1 == j1 && q->k1 == k1 &&
|
---|
948 | q->i2 == i2 && q->j2 == j2 && q->k2 == k2)
|
---|
949 | return q->vid;
|
---|
950 | return -1;
|
---|
951 | }
|
---|
952 |
|
---|
953 |
|
---|
954 | /**** Vertices ****/
|
---|
955 |
|
---|
956 |
|
---|
957 | /* vertid: return index for vertex on edge:
|
---|
958 | * c1->value and c2->value are presumed of different sign
|
---|
959 | * return saved index if any; else compute vertex and save */
|
---|
960 |
|
---|
961 | static int vertid (c1, c2, p)
|
---|
962 | CORNER *c1, *c2;
|
---|
963 | PROCESS *p;
|
---|
964 | {
|
---|
965 | VERTEX v;
|
---|
966 | POINT a, b;
|
---|
967 | int vid = getedge(p->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k);
|
---|
968 | if (vid != -1) return vid; /* previously computed */
|
---|
969 | a.x = c1->x; a.y = c1->y; a.z = c1->z;
|
---|
970 | b.x = c2->x; b.y = c2->y; b.z = c2->z;
|
---|
971 | converge(&a, &b, c1->value, p->function, &v.position); /* position */
|
---|
972 | vnormal(&v.position, p, &v.normal); /* normal */
|
---|
973 | addtovertices(&p->vertices, v); /* save vertex */
|
---|
974 | vid = p->vertices.count-1;
|
---|
975 | setedge(p->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k, vid);
|
---|
976 | return vid;
|
---|
977 | }
|
---|
978 |
|
---|
979 |
|
---|
980 | /* addtovertices: add v to sequence of vertices */
|
---|
981 |
|
---|
982 | static void addtovertices (vertices, v)
|
---|
983 | VERTICES *vertices;
|
---|
984 | VERTEX v;
|
---|
985 | {
|
---|
986 | if (vertices->count == vertices->max) {
|
---|
987 | int i;
|
---|
988 | VERTEX *new;
|
---|
989 | vertices->max = vertices->count == 0 ? 10 : 2*vertices->count;
|
---|
990 | new = (VERTEX *) mycalloc(vertices->max, sizeof(VERTEX));
|
---|
991 | for (i = 0; i < vertices->count; i++) new[i] = vertices->ptr[i];
|
---|
992 | if (vertices->ptr != NULL) myfree(vertices->ptr);
|
---|
993 | vertices->ptr = new;
|
---|
994 | }
|
---|
995 | vertices->ptr[vertices->count++] = v;
|
---|
996 | }
|
---|
997 |
|
---|
998 |
|
---|
999 | /* vnormal: compute unit length surface normal at point */
|
---|
1000 |
|
---|
1001 | static void vnormal (point, p, v)
|
---|
1002 | POINT *point, *v;
|
---|
1003 | PROCESS *p;
|
---|
1004 | {
|
---|
1005 | double f = p->function(point->x, point->y, point->z);
|
---|
1006 | v->x = p->function(point->x+p->delta, point->y, point->z)-f;
|
---|
1007 | v->y = p->function(point->x, point->y+p->delta, point->z)-f;
|
---|
1008 | v->z = p->function(point->x, point->y, point->z+p->delta)-f;
|
---|
1009 | f = sqrt(v->x*v->x + v->y*v->y + v->z*v->z);
|
---|
1010 | if (f != 0.0) {v->x /= f; v->y /= f; v->z /= f;}
|
---|
1011 | }
|
---|
1012 |
|
---|
1013 |
|
---|
1014 | /* converge: from two points of differing sign, converge to zero crossing */
|
---|
1015 |
|
---|
1016 | static void converge (p1, p2, v, function, p)
|
---|
1017 | double v;
|
---|
1018 | double (*function)();
|
---|
1019 | POINT *p1, *p2, *p;
|
---|
1020 | {
|
---|
1021 | int i = 0;
|
---|
1022 | POINT pos, neg;
|
---|
1023 | if (v < 0) {
|
---|
1024 | pos.x = p2->x; pos.y = p2->y; pos.z = p2->z;
|
---|
1025 | neg.x = p1->x; neg.y = p1->y; neg.z = p1->z;
|
---|
1026 | }
|
---|
1027 | else {
|
---|
1028 | pos.x = p1->x; pos.y = p1->y; pos.z = p1->z;
|
---|
1029 | neg.x = p2->x; neg.y = p2->y; neg.z = p2->z;
|
---|
1030 | }
|
---|
1031 | while (1) {
|
---|
1032 | p->x = 0.5*(pos.x + neg.x);
|
---|
1033 | p->y = 0.5*(pos.y + neg.y);
|
---|
1034 | p->z = 0.5*(pos.z + neg.z);
|
---|
1035 | if (i++ == RES) return;
|
---|
1036 | if ((function(p->x, p->y, p->z)) > 0.0)
|
---|
1037 | {pos.x = p->x; pos.y = p->y; pos.z = p->z;}
|
---|
1038 | else {neg.x = p->x; neg.y = p->y; neg.z = p->z;}
|
---|
1039 | }
|
---|
1040 | }
|
---|