1 |
|
---|
2 | #ifdef HAVE_CONFIG_H
|
---|
3 | #include <scconfig.h>
|
---|
4 | #endif
|
---|
5 |
|
---|
6 | #include <fstream>
|
---|
7 |
|
---|
8 | #include <util/keyval/keyval.h>
|
---|
9 | #include <math/isosurf/shape.h>
|
---|
10 | #include <chemistry/qc/wfn/solvent.h>
|
---|
11 | #include <chemistry/molecule/formula.h>
|
---|
12 |
|
---|
13 | #ifdef USING_NAMESPACE_STD
|
---|
14 | using namespace std;
|
---|
15 | #endif
|
---|
16 | using namespace sc;
|
---|
17 |
|
---|
18 | static inline double
|
---|
19 | get_ki(int z)
|
---|
20 | {
|
---|
21 | // The ki values (used in the computation of the dispersion coefficients)
|
---|
22 | // for H, C, and N were taken from Vigne-Maeder and Claverie, JACS 1987, v109, pp24-28
|
---|
23 | // and the value for O from Huron and Claverie, J. Phys. Chem. 1974, v78, p1862
|
---|
24 |
|
---|
25 | double ki;
|
---|
26 |
|
---|
27 | if (z <= 0) {
|
---|
28 | ExEnv::errn() << "Non-positive nuclear charge encountered in computation of"
|
---|
29 | << " dispersion coefficient" << endl;
|
---|
30 | abort();
|
---|
31 | }
|
---|
32 | else if (z == 1) ki = 1.0;
|
---|
33 | else if (z == 6) ki = 1.0;
|
---|
34 | else if (z == 7) ki = 1.18;
|
---|
35 | else if (z == 8) ki = 1.36; // from Huron & Claverie, J.Phys.Chem v78, 1974, p1862
|
---|
36 | else if (z > 1 && z < 6) {
|
---|
37 | ki = 1.0;
|
---|
38 | ExEnv::out0() << "Warning: No d6 dispersion coefficient available for atomic number " <<
|
---|
39 | z << "; using value for carbon instead" << endl;
|
---|
40 | }
|
---|
41 | else {
|
---|
42 | ki = 1.18;
|
---|
43 | ExEnv::out0() << "Warning: No d6 dispersion coefficient available for atomic number " <<
|
---|
44 | z << "; using value for nitrogen instead" << endl;
|
---|
45 | }
|
---|
46 |
|
---|
47 | return ki;
|
---|
48 | }
|
---|
49 |
|
---|
50 | static inline double
|
---|
51 | get_d6ii(int z, double r_vdw)
|
---|
52 | {
|
---|
53 | // The dispersion coefficient d6 for a pair of atoms ij can be computed
|
---|
54 | // from the dispersion coefficient d6ii for atom pair ii and d6jj for
|
---|
55 | // atom pair jj by the formula: d6 = sqrt(d6ii*d6jj).
|
---|
56 | // The dispersion coefficients d8 and d10 can be obtained from d6.
|
---|
57 | // The d6ii values given below were taken from: Vigne-Maeder and Claverie
|
---|
58 | // JACS 1987, v. 109, pp. 24-28.
|
---|
59 |
|
---|
60 | const double a6 = 0.143; // [kcal/mol]
|
---|
61 | double d6ii;
|
---|
62 | double ki;
|
---|
63 |
|
---|
64 | Ref<Units> unit = new Units("kcal/mol");
|
---|
65 |
|
---|
66 | ki = get_ki(z);
|
---|
67 | d6ii = ki*ki*a6*pow(4*r_vdw*r_vdw,3.0); // units of (kcal mol^-1)*bohr^6
|
---|
68 | d6ii *= unit->to_atomic_units(); // convert to atomic units
|
---|
69 | return d6ii;
|
---|
70 | }
|
---|
71 |
|
---|
72 | static inline double
|
---|
73 | get_d8ii(double d6ii, double r_vdw)
|
---|
74 | {
|
---|
75 | // The value of c8 was taken from Vigne-Maeder and Claverie, JACS 1987,
|
---|
76 | // v. 109, pp 24-28 and is here obtained in atomic units by using
|
---|
77 | // atomic units for d6ii and r_vdw
|
---|
78 |
|
---|
79 | double d8ii;
|
---|
80 | const double c8 = 0.26626;
|
---|
81 |
|
---|
82 | d8ii = d6ii*c8*4*pow(r_vdw,2.0);
|
---|
83 |
|
---|
84 | return d8ii;
|
---|
85 | }
|
---|
86 |
|
---|
87 | static inline double
|
---|
88 | get_d10ii(double d6ii, double r_vdw)
|
---|
89 | {
|
---|
90 | // The value of c10 was taken from Vigne-Maeder and Claverie, JACS 1987,
|
---|
91 | // v. 109, pp 24-28 and is here obtained in atomic units by using
|
---|
92 | // atomic units for d6ii and r_vdw
|
---|
93 |
|
---|
94 | double d10ii;
|
---|
95 | const double c10 = 0.095467;
|
---|
96 |
|
---|
97 | d10ii = d6ii*c10*16*pow(r_vdw,4.0);
|
---|
98 |
|
---|
99 | return d10ii;
|
---|
100 | }
|
---|
101 |
|
---|
102 | // For debugging compute 6, 8, and 10 contributions separately
|
---|
103 | static inline double
|
---|
104 | disp6_contrib(double rasnorm, double d6)
|
---|
105 | {
|
---|
106 | double edisp6_contrib;
|
---|
107 |
|
---|
108 | edisp6_contrib = d6/(3*pow(rasnorm,6.0)); // atomic units
|
---|
109 |
|
---|
110 | return edisp6_contrib;
|
---|
111 | }
|
---|
112 |
|
---|
113 | static inline double
|
---|
114 | disp8_contrib(double rasnorm, double d8)
|
---|
115 | {
|
---|
116 | double edisp8_contrib;
|
---|
117 |
|
---|
118 | edisp8_contrib = d8/(5*pow(rasnorm,8.0)); // atomic units
|
---|
119 |
|
---|
120 | return edisp8_contrib;
|
---|
121 | }
|
---|
122 |
|
---|
123 | static inline double
|
---|
124 | disp10_contrib(double rasnorm, double d10)
|
---|
125 | {
|
---|
126 | double edisp10_contrib;
|
---|
127 |
|
---|
128 | edisp10_contrib = d10/(7*pow(rasnorm,10.0)); // atomic units
|
---|
129 |
|
---|
130 | return edisp10_contrib;
|
---|
131 | }
|
---|
132 |
|
---|
133 | static inline double
|
---|
134 | disp_contrib(double rasnorm, double d6, double d8, double d10)
|
---|
135 | {
|
---|
136 | double edisp_contrib;
|
---|
137 |
|
---|
138 | edisp_contrib = d6/(3*pow(rasnorm,6.0)) + d8/(5*pow(rasnorm,8.0))
|
---|
139 | + d10/(7*pow(rasnorm,10.0));
|
---|
140 |
|
---|
141 | return edisp_contrib;
|
---|
142 | }
|
---|
143 |
|
---|
144 | static inline double
|
---|
145 | rep_contrib(double rasnorm, double ri_vdw, double rj_vdw, double ki, double kj,
|
---|
146 | double kcalpermol_to_hartree)
|
---|
147 | {
|
---|
148 | // The expression and the parameters used for the repulsion energy
|
---|
149 | // were taken from Vigne-Maeder and Claverie, JACS 1987, v109, pp24-28
|
---|
150 | // NB: We have omitted the factor Gij
|
---|
151 |
|
---|
152 | const double c = 90000; // [kcal/mol]
|
---|
153 | const double gamma = 12.35;
|
---|
154 | double erep_contrib;
|
---|
155 | double tmp;
|
---|
156 |
|
---|
157 | tmp = gamma*rasnorm/(2.0*sqrt(ri_vdw*rj_vdw));
|
---|
158 |
|
---|
159 | erep_contrib = -ki*kj*c*(1.0/tmp + 2.0/(tmp*tmp) + 2.0/(tmp*tmp*tmp))*exp(-tmp);
|
---|
160 | erep_contrib *= kcalpermol_to_hartree; // convert from kcal/mol to atomic units
|
---|
161 |
|
---|
162 | return erep_contrib;
|
---|
163 | }
|
---|
164 |
|
---|
165 | double
|
---|
166 | BEMSolvent::disprep()
|
---|
167 | {
|
---|
168 | double edisprep = 0.0;
|
---|
169 | double edisprep_contrib;
|
---|
170 | double edisp6_contrib, edisp8_contrib, edisp10_contrib; // for debugging
|
---|
171 | double erep_contrib;
|
---|
172 | double edisp6 = 0.0; // for debugging
|
---|
173 | double edisp8 = 0.0; // for debugging
|
---|
174 | double edisp10 = 0.0; // for debugging
|
---|
175 | double erep = 0.0;
|
---|
176 | double proberadius;
|
---|
177 | double radius;
|
---|
178 | double rasnorm;
|
---|
179 | double weight;
|
---|
180 | double d6, d8, d10; // dispersion coefficients
|
---|
181 | double d6aa, d8aa, d10aa; // dispersion coefficients for atom pair aa
|
---|
182 | double d6ss, d8ss, d10ss; // dispersion coefficients for atom pair ss
|
---|
183 | int i, iloop, isolute;
|
---|
184 | int natomtypes;
|
---|
185 | int z_solvent_atom;
|
---|
186 |
|
---|
187 | Ref<Units> unit = new Units("kcal/mol");
|
---|
188 | double kcalpermol_to_hartree = unit->to_atomic_units();
|
---|
189 |
|
---|
190 | Ref<AtomInfo> atominfo = solute_->atominfo();
|
---|
191 | Ref<AtomInfo> solventatominfo = solvent_->atominfo();
|
---|
192 | MolecularFormula formula(solvent_);
|
---|
193 |
|
---|
194 | // Compute number of different atom types in solvent molecule
|
---|
195 | natomtypes = formula.natomtypes();
|
---|
196 |
|
---|
197 | double *solute_d6ii = new double[solute_->natom()];
|
---|
198 | double *solute_d8ii = new double[solute_->natom()];
|
---|
199 | double *solute_d10ii = new double[solute_->natom()];
|
---|
200 | double *solute_ki = new double[solute_->natom()];
|
---|
201 |
|
---|
202 | for (isolute=0; isolute<solute_->natom(); isolute++) {
|
---|
203 | int Z_solute = solute_->Z(isolute);
|
---|
204 | double radius = atominfo->vdw_radius(Z_solute);
|
---|
205 | solute_d6ii[isolute] = get_d6ii(Z_solute,radius);
|
---|
206 | solute_d8ii[isolute] = get_d8ii(solute_d6ii[isolute],radius);
|
---|
207 | solute_d10ii[isolute] = get_d10ii(solute_d6ii[isolute],radius);
|
---|
208 | solute_ki[isolute] = get_ki(Z_solute);
|
---|
209 | }
|
---|
210 |
|
---|
211 | // Loop over atom types in solvent molecule
|
---|
212 | for (iloop=0; iloop<natomtypes; iloop++) {
|
---|
213 |
|
---|
214 | // define the shape of the surface for current atom type
|
---|
215 | Ref<UnionShape> us = new UnionShape;
|
---|
216 | z_solvent_atom = formula.Z(iloop);
|
---|
217 | proberadius = solventatominfo->vdw_radius(z_solvent_atom);
|
---|
218 | for (i=0; i<solute_->natom(); i++) {
|
---|
219 | us->add_shape(new SphereShape(solute_->r(i),
|
---|
220 | atominfo->vdw_radius(solute_->Z(i))+proberadius));
|
---|
221 | }
|
---|
222 |
|
---|
223 | // triangulate the surface
|
---|
224 | Ref<AssignedKeyVal> keyval = new AssignedKeyVal;
|
---|
225 | keyval->assign("volume", us.pointer());
|
---|
226 | keyval->assign("order", 2);
|
---|
227 | keyval->assign("remove_short_edges", 1);
|
---|
228 | keyval->assign("remove_small_triangles", 1);
|
---|
229 | keyval->assign("remove_slender_triangles", 1);
|
---|
230 | keyval->assign("short_edge_factor", 0.8);
|
---|
231 | keyval->assign("small_triangle_factor", 0.8);
|
---|
232 | keyval->assign("slender_triangle_factor", 0.8);
|
---|
233 | Ref<TriangulatedImplicitSurface> ts = new TriangulatedImplicitSurface(keyval.pointer());
|
---|
234 | ts->init();
|
---|
235 |
|
---|
236 | // Debug print: check the triangulated surface
|
---|
237 | // if (iloop == 0) {
|
---|
238 | // ofstream geomviewfile("geomview.input");
|
---|
239 | // ts->print_geomview_format(geomviewfile);
|
---|
240 | // }
|
---|
241 |
|
---|
242 | ExEnv::out0().setf(ios::scientific,ios::floatfield); // use scientific format
|
---|
243 | ExEnv::out0() << "Area of disp-rep surface generated with atom number "
|
---|
244 | << setw(3) << setfill(' ') << z_solvent_atom
|
---|
245 | << " as probe: " << setprecision(4) << ts->area()
|
---|
246 | << " bohr^2" << endl;
|
---|
247 |
|
---|
248 | edisprep_contrib = 0.0;
|
---|
249 | edisp6_contrib = 0.0; // for debugging
|
---|
250 | edisp8_contrib = 0.0; // for debugging
|
---|
251 | edisp10_contrib = 0.0; // for debugging
|
---|
252 | erep_contrib = 0.0;
|
---|
253 | TriangulatedSurfaceIntegrator triint(ts.pointer());
|
---|
254 |
|
---|
255 | double solvent_ki = get_ki(z_solvent_atom);
|
---|
256 | d6ss = get_d6ii(z_solvent_atom,proberadius);
|
---|
257 | d8ss = get_d8ii(d6ss, proberadius);
|
---|
258 | d10ss = get_d10ii(d6ss, proberadius);
|
---|
259 |
|
---|
260 | // integrate the surface
|
---|
261 | for (triint=0; triint.update(); triint++) {
|
---|
262 | SCVector3 dA = triint.dA();
|
---|
263 | SCVector3 location = triint.current()->point();
|
---|
264 | weight = triint.weight();
|
---|
265 |
|
---|
266 | //Loop over atoms in solute
|
---|
267 | for (isolute=0; isolute<solute_->natom(); isolute++) {
|
---|
268 |
|
---|
269 | SCVector3 atom(solute_->r(isolute));
|
---|
270 | SCVector3 ras = location - atom;
|
---|
271 | rasnorm = ras.norm();
|
---|
272 | radius = atominfo->vdw_radius(solute_->Z(isolute));
|
---|
273 | d6aa = solute_d6ii[isolute];
|
---|
274 | d8aa = solute_d8ii[isolute];
|
---|
275 | d10aa = solute_d10ii[isolute];
|
---|
276 | d6 = sqrt(d6aa*d6ss);
|
---|
277 | d8 = sqrt(d8aa*d8ss);
|
---|
278 | d10 = sqrt(d10aa*d10ss);
|
---|
279 |
|
---|
280 | double f = ras.dot(dA)*weight;
|
---|
281 | double tdisp6 = f*disp6_contrib(rasnorm,d6);
|
---|
282 | double tdisp8 = f*disp8_contrib(rasnorm,d8);
|
---|
283 | double tdisp10 = f*disp10_contrib(rasnorm,d10);
|
---|
284 | double trep = f*rep_contrib(rasnorm,radius,proberadius,
|
---|
285 | solute_ki[isolute],solvent_ki,
|
---|
286 | kcalpermol_to_hartree);
|
---|
287 | double tdisp = tdisp6+tdisp8+tdisp10;
|
---|
288 |
|
---|
289 | // add in contributions to various energies; the minus sign
|
---|
290 | // is there to get the normal pointing into the cavity
|
---|
291 | edisprep_contrib -= tdisp+trep;
|
---|
292 | edisp6_contrib -= tdisp6;
|
---|
293 | edisp8_contrib -= tdisp8;
|
---|
294 | edisp10_contrib -= tdisp10;
|
---|
295 | erep_contrib -= trep;
|
---|
296 |
|
---|
297 | }
|
---|
298 | }
|
---|
299 |
|
---|
300 | edisprep += edisprep_contrib*formula.nZ(iloop);
|
---|
301 | edisp6 += edisp6_contrib*formula.nZ(iloop);
|
---|
302 | edisp8 += edisp8_contrib*formula.nZ(iloop);
|
---|
303 | edisp10 += edisp10_contrib*formula.nZ(iloop);
|
---|
304 | erep += erep_contrib*formula.nZ(iloop);
|
---|
305 | }
|
---|
306 |
|
---|
307 | delete[] solute_d6ii;
|
---|
308 | delete[] solute_d8ii;
|
---|
309 | delete[] solute_d10ii;
|
---|
310 | delete[] solute_ki;
|
---|
311 |
|
---|
312 | // Multiply energies by number density of solvent
|
---|
313 | // Print out individual energy contributions in kcal/mol
|
---|
314 |
|
---|
315 | ExEnv::out0().setf(ios::scientific,ios::floatfield); // use scientific format
|
---|
316 | ExEnv::out0().precision(5);
|
---|
317 | ExEnv::out0() << "Edisp6: " << edisp6*solvent_density_*unit->from_atomic_units()
|
---|
318 | << " kcal/mol" << endl;
|
---|
319 | ExEnv::out0() << "Edisp8: " << edisp8*solvent_density_*unit->from_atomic_units()
|
---|
320 | << " kcal/mol" << endl;
|
---|
321 | ExEnv::out0() << "Edisp10: " << edisp10*solvent_density_*unit->from_atomic_units()
|
---|
322 | << " kcal/mol" << endl;
|
---|
323 |
|
---|
324 |
|
---|
325 | ExEnv::out0() << "Total dispersion energy: "
|
---|
326 | << (edisp6 + edisp8 + edisp10)*solvent_density_*unit->from_atomic_units()
|
---|
327 | << " kcal/mol" << endl;
|
---|
328 | ExEnv::out0() << "Repulsion energy: " << setw(12) << setfill(' ')
|
---|
329 | << erep*solvent_density_*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
330 |
|
---|
331 | return edisprep*solvent_density_; // atomic units
|
---|
332 |
|
---|
333 | }
|
---|
334 |
|
---|
335 |
|
---|