[0b990d] | 1 | //
|
---|
| 2 | // wfn.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #ifdef __GNUC__
|
---|
| 29 | #pragma implementation
|
---|
| 30 | #endif
|
---|
| 31 |
|
---|
| 32 | #include <stdlib.h>
|
---|
| 33 | #include <math.h>
|
---|
| 34 |
|
---|
| 35 | #include <stdexcept>
|
---|
| 36 | #include <iostream>
|
---|
| 37 | #include <iterator>
|
---|
| 38 |
|
---|
| 39 | #include <util/keyval/keyval.h>
|
---|
| 40 | #include <util/misc/timer.h>
|
---|
| 41 | #include <util/misc/formio.h>
|
---|
| 42 | #include <util/misc/autovec.h>
|
---|
| 43 | #include <util/state/stateio.h>
|
---|
| 44 | #include <chemistry/qc/basis/obint.h>
|
---|
| 45 | #include <chemistry/qc/basis/symmint.h>
|
---|
| 46 | #include <chemistry/qc/intv3/intv3.h>
|
---|
| 47 |
|
---|
| 48 | #include <chemistry/qc/wfn/wfn.h>
|
---|
| 49 |
|
---|
| 50 | using namespace std;
|
---|
| 51 | using namespace sc;
|
---|
| 52 |
|
---|
| 53 | #define CHECK_SYMMETRIZED_INTEGRALS 0
|
---|
| 54 |
|
---|
| 55 | /////////////////////////////////////////////////////////////////////////
|
---|
| 56 |
|
---|
| 57 | // This maps a TwoBodyThreeCenterInt into a OneBodyInt
|
---|
| 58 | namespace sc {
|
---|
| 59 | class ChargeDistInt: public OneBodyInt {
|
---|
| 60 | Ref<TwoBodyThreeCenterInt> tbint_;
|
---|
| 61 | Ref<Molecule> mol_;
|
---|
| 62 | Ref<GaussianBasisSet> ebasis0_;
|
---|
| 63 | Ref<GaussianBasisSet> ebasis1_;
|
---|
| 64 | Ref<GaussianBasisSet> atom_basis_;
|
---|
| 65 | std::vector<int> i_cd_;
|
---|
| 66 | const double *coef_;
|
---|
| 67 | public:
|
---|
| 68 | // The electronic basis are bs1 and bs2 in tbint and the
|
---|
| 69 | // nuclear basis is bs3.
|
---|
| 70 | ChargeDistInt(const Ref<TwoBodyThreeCenterInt>& tbint,
|
---|
| 71 | const double *coef);
|
---|
| 72 |
|
---|
| 73 | void compute_shell(int,int);
|
---|
| 74 |
|
---|
| 75 | bool cloneable();
|
---|
| 76 | };
|
---|
| 77 |
|
---|
| 78 | ChargeDistInt::ChargeDistInt(const Ref<TwoBodyThreeCenterInt>& tbint,
|
---|
| 79 | const double *coef):
|
---|
| 80 | OneBodyInt(tbint->integral(),tbint->basis1(),tbint->basis2()),
|
---|
| 81 | tbint_(tbint),
|
---|
| 82 | coef_(coef)
|
---|
| 83 | {
|
---|
| 84 | ebasis0_ = tbint->basis1();
|
---|
| 85 | ebasis1_ = tbint->basis2();
|
---|
| 86 | atom_basis_ = tbint->basis3();
|
---|
| 87 | mol_ = atom_basis_->molecule();
|
---|
| 88 | buffer_ = new double[tbint->basis1()->max_nfunction_in_shell()
|
---|
| 89 | *tbint->basis2()->max_nfunction_in_shell()];
|
---|
| 90 |
|
---|
| 91 | for (int i=0; i<atom_basis_->ncenter(); i++) {
|
---|
| 92 | if (atom_basis_->nshell_on_center(i) > 0) i_cd_.push_back(i);
|
---|
| 93 | }
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | void
|
---|
| 97 | ChargeDistInt::compute_shell(int ish,int jsh)
|
---|
| 98 | {
|
---|
| 99 | // std::cout << "starting " << ish << " " << jsh << std::endl;
|
---|
| 100 | int nijbf
|
---|
| 101 | = ebasis0_->shell(ish).nfunction()
|
---|
| 102 | * ebasis1_->shell(jsh).nfunction();
|
---|
| 103 | memset(buffer_,0,nijbf*sizeof(buffer_[0]));
|
---|
| 104 | const double *tbbuffer = tbint_->buffer();
|
---|
| 105 | int ksh = 0;
|
---|
| 106 | int coef_offset = 0;
|
---|
| 107 | for (int ii=0; ii<i_cd_.size(); ii++) {
|
---|
| 108 | int i = i_cd_[ii];
|
---|
| 109 | int nshell = atom_basis_->nshell_on_center(i);
|
---|
| 110 | for (int j=0; j<nshell; j++, ksh++) {
|
---|
| 111 | std::cout << "computing " << ish << " " << jsh << " " << ksh << std::endl;
|
---|
| 112 | tbint_->compute_shell(ish,jsh,ksh);
|
---|
| 113 | int nbfk = atom_basis_->shell(i).nfunction();
|
---|
| 114 | for (int ijbf=0; ijbf<nijbf; ijbf++) {
|
---|
| 115 | for (int kbf=0; kbf<nbfk; kbf++) {
|
---|
| 116 | buffer_[ijbf]
|
---|
| 117 | -= coef_[coef_offset+kbf] * tbbuffer[ijbf*nbfk + kbf];
|
---|
| 118 | // std::cout << " adding "
|
---|
| 119 | // << coef_[coef_offset+kbf] * tbbuffer[ijbf*nbfk + kbf]
|
---|
| 120 | // << " = "
|
---|
| 121 | // << coef_[coef_offset+kbf]
|
---|
| 122 | // << " * "
|
---|
| 123 | // << tbbuffer[ijbf*nbfk + kbf]
|
---|
| 124 | // << " at location "
|
---|
| 125 | // << ijbf
|
---|
| 126 | // << std::endl;
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 | coef_offset += nshell;
|
---|
| 131 | }
|
---|
| 132 | // std::cout << "done with " << ish << " " << jsh << std::endl;
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | bool
|
---|
| 136 | ChargeDistInt::cloneable()
|
---|
| 137 | {
|
---|
| 138 | // not cloneable because tbint is not cloneable
|
---|
| 139 | return false;
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | /////////////////////////////////////////////////////////////////////////
|
---|
| 145 |
|
---|
| 146 | static ClassDesc Wavefunction_cd(
|
---|
| 147 | typeid(Wavefunction),"Wavefunction",7,"public MolecularEnergy",
|
---|
| 148 | 0, 0, 0);
|
---|
| 149 |
|
---|
| 150 | Wavefunction::Wavefunction(const Ref<KeyVal>&keyval):
|
---|
| 151 | // this will let molecule be retrieved from basis
|
---|
| 152 | // MolecularEnergy(new AggregateKeyVal(keyval,
|
---|
| 153 | // new PrefixKeyVal("basis", keyval))),
|
---|
| 154 | MolecularEnergy(keyval),
|
---|
| 155 | overlap_(this),
|
---|
| 156 | hcore_(this),
|
---|
| 157 | natural_orbitals_(this),
|
---|
| 158 | natural_density_(this),
|
---|
| 159 | bs_values(0),
|
---|
| 160 | bsg_values(0)
|
---|
| 161 | {
|
---|
| 162 | overlap_.compute() = 0;
|
---|
| 163 | hcore_.compute() = 0;
|
---|
| 164 | natural_orbitals_.compute() = 0;
|
---|
| 165 | natural_density_.compute() = 0;
|
---|
| 166 |
|
---|
| 167 | overlap_.computed() = 0;
|
---|
| 168 | hcore_.computed() = 0;
|
---|
| 169 | natural_orbitals_.computed() = 0;
|
---|
| 170 | natural_density_.computed() = 0;
|
---|
| 171 |
|
---|
| 172 | print_nao_ = keyval->booleanvalue("print_nao");
|
---|
| 173 | print_npa_ = keyval->booleanvalue("print_npa");
|
---|
| 174 | KeyValValuedouble lindep_tol_def(1.e-8);
|
---|
| 175 | lindep_tol_ = keyval->doublevalue("lindep_tol", lindep_tol_def);
|
---|
| 176 | if (keyval->exists("symm_orthog")) {
|
---|
| 177 | ExEnv::out0() << indent
|
---|
| 178 | << "WARNING: using obsolete \"symm_orthog\" keyword"
|
---|
| 179 | << endl;
|
---|
| 180 | if (keyval->booleanvalue("symm_orthog")) {
|
---|
| 181 | orthog_method_ = OverlapOrthog::Symmetric;
|
---|
| 182 | }
|
---|
| 183 | else {
|
---|
| 184 | orthog_method_ = OverlapOrthog::Canonical;
|
---|
| 185 | }
|
---|
| 186 | }
|
---|
| 187 | else {
|
---|
| 188 | char *orthog_name = keyval->pcharvalue("orthog_method");
|
---|
| 189 | if (!orthog_name) {
|
---|
| 190 | orthog_method_ = OverlapOrthog::Symmetric;
|
---|
| 191 | }
|
---|
| 192 | else if (::strcmp(orthog_name, "canonical") == 0) {
|
---|
| 193 | orthog_method_ = OverlapOrthog::Canonical;
|
---|
| 194 | }
|
---|
| 195 | else if (::strcmp(orthog_name, "symmetric") == 0) {
|
---|
| 196 | orthog_method_ = OverlapOrthog::Symmetric;
|
---|
| 197 | }
|
---|
| 198 | else if (::strcmp(orthog_name, "gramschmidt") == 0) {
|
---|
| 199 | orthog_method_ = OverlapOrthog::GramSchmidt;
|
---|
| 200 | }
|
---|
| 201 | else {
|
---|
| 202 | ExEnv::errn() << "ERROR: bad orthog_method: \""
|
---|
| 203 | << orthog_name << "\"" << endl;
|
---|
| 204 | abort();
|
---|
| 205 | }
|
---|
| 206 | delete[] orthog_name;
|
---|
| 207 | }
|
---|
| 208 |
|
---|
| 209 | debug_ = keyval->intvalue("debug");
|
---|
| 210 |
|
---|
| 211 | gbs_ = require_dynamic_cast<GaussianBasisSet*>(
|
---|
| 212 | keyval->describedclassvalue("basis").pointer(),
|
---|
| 213 | "Wavefunction::Wavefunction\n"
|
---|
| 214 | );
|
---|
| 215 |
|
---|
| 216 | atom_basis_ << keyval->describedclassvalue("atom_basis");
|
---|
| 217 | if (atom_basis_.nonnull()) {
|
---|
| 218 | atom_basis_coef_ = new double[atom_basis_->nbasis()];
|
---|
| 219 | for (int i=0; i<atom_basis_->nbasis(); i++) {
|
---|
| 220 | atom_basis_coef_[i] = keyval->doublevalue("atom_basis_coef",i);
|
---|
| 221 | }
|
---|
| 222 | scale_atom_basis_coef();
|
---|
| 223 |
|
---|
| 224 | }
|
---|
| 225 | else {
|
---|
| 226 | atom_basis_coef_ = 0;
|
---|
| 227 | }
|
---|
| 228 |
|
---|
| 229 | integral_ << keyval->describedclassvalue("integrals");
|
---|
| 230 | if (integral_.null()) {
|
---|
| 231 | Integral* default_intf = Integral::get_default_integral();
|
---|
| 232 | integral_ = default_intf->clone();
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 | integral_->set_basis(gbs_);
|
---|
| 236 | Ref<PetiteList> pl = integral_->petite_list();
|
---|
| 237 |
|
---|
| 238 | sodim_ = pl->SO_basisdim();
|
---|
| 239 | aodim_ = pl->AO_basisdim();
|
---|
| 240 | basiskit_ = gbs_->so_matrixkit();
|
---|
| 241 | }
|
---|
| 242 |
|
---|
| 243 | Wavefunction::Wavefunction(StateIn&s):
|
---|
| 244 | SavableState(s),
|
---|
| 245 | MolecularEnergy(s),
|
---|
| 246 | overlap_(this),
|
---|
| 247 | hcore_(this),
|
---|
| 248 | natural_orbitals_(this),
|
---|
| 249 | natural_density_(this),
|
---|
| 250 | bs_values(0),
|
---|
| 251 | bsg_values(0)
|
---|
| 252 | {
|
---|
| 253 | debug_ = 0;
|
---|
| 254 |
|
---|
| 255 | overlap_.compute() = 0;
|
---|
| 256 | hcore_.compute() = 0;
|
---|
| 257 | natural_orbitals_.compute() = 0;
|
---|
| 258 | natural_density_.compute() = 0;
|
---|
| 259 |
|
---|
| 260 | overlap_.computed() = 0;
|
---|
| 261 | hcore_.computed() = 0;
|
---|
| 262 | natural_orbitals_.computed() = 0;
|
---|
| 263 | natural_density_.computed() = 0;
|
---|
| 264 |
|
---|
| 265 | if (s.version(::class_desc<Wavefunction>()) >= 2) {
|
---|
| 266 | s.get(print_nao_);
|
---|
| 267 | s.get(print_npa_);
|
---|
| 268 | }
|
---|
| 269 | else {
|
---|
| 270 | print_nao_ = 0;
|
---|
| 271 | print_npa_ = 0;
|
---|
| 272 | }
|
---|
| 273 |
|
---|
| 274 | if (s.version(::class_desc<Wavefunction>()) >= 5) {
|
---|
| 275 | int orthog_enum;
|
---|
| 276 | s.get(orthog_enum);
|
---|
| 277 | orthog_method_ = (OverlapOrthog::OrthogMethod) orthog_enum;
|
---|
| 278 | }
|
---|
| 279 | else if (s.version(::class_desc<Wavefunction>()) >= 3) {
|
---|
| 280 | int symm_orthog;
|
---|
| 281 | s.get(symm_orthog);
|
---|
| 282 | if (symm_orthog) orthog_method_ = OverlapOrthog::Symmetric;
|
---|
| 283 | else orthog_method_ = OverlapOrthog::Canonical;
|
---|
| 284 | }
|
---|
| 285 | else {
|
---|
| 286 | orthog_method_ = OverlapOrthog::Symmetric;
|
---|
| 287 | }
|
---|
| 288 |
|
---|
| 289 | if (s.version(::class_desc<Wavefunction>()) >= 4) {
|
---|
| 290 | s.get(lindep_tol_);
|
---|
| 291 | }
|
---|
| 292 | else {
|
---|
| 293 | lindep_tol_ = 1.e-6;
|
---|
| 294 | }
|
---|
| 295 |
|
---|
| 296 | gbs_ << SavableState::restore_state(s);
|
---|
| 297 | integral_ << SavableState::restore_state(s);
|
---|
| 298 |
|
---|
| 299 | if (s.version(::class_desc<Wavefunction>()) >= 6) {
|
---|
| 300 | Ref<KeyVal> original_override = s.override();
|
---|
| 301 | Ref<AssignedKeyVal> matrixkit_override = new AssignedKeyVal;
|
---|
| 302 | matrixkit_override->assign("matrixkit", gbs_->so_matrixkit().pointer());
|
---|
| 303 | Ref<KeyVal> new_override
|
---|
| 304 | = new AggregateKeyVal(matrixkit_override.pointer(),
|
---|
| 305 | original_override.pointer());
|
---|
| 306 | s.set_override(new_override);
|
---|
| 307 | orthog_ << SavableState::restore_state(s);
|
---|
| 308 | s.set_override(original_override);
|
---|
| 309 | }
|
---|
| 310 |
|
---|
| 311 | if (s.version(::class_desc<Wavefunction>()) >= 7) {
|
---|
| 312 | atom_basis_ << SavableState::restore_state(s);
|
---|
| 313 | if (atom_basis_.nonnull()) {
|
---|
| 314 | s.get_array_double(atom_basis_coef_, atom_basis_->nbasis());
|
---|
| 315 | }
|
---|
| 316 | }
|
---|
| 317 | else {
|
---|
| 318 | atom_basis_coef_ = 0;
|
---|
| 319 | }
|
---|
| 320 |
|
---|
| 321 | integral_->set_basis(gbs_);
|
---|
| 322 | Ref<PetiteList> pl = integral_->petite_list();
|
---|
| 323 |
|
---|
| 324 | sodim_ = pl->SO_basisdim();
|
---|
| 325 | aodim_ = pl->AO_basisdim();
|
---|
| 326 | basiskit_ = gbs_->so_matrixkit();
|
---|
| 327 | }
|
---|
| 328 |
|
---|
| 329 | void
|
---|
| 330 | Wavefunction::symmetry_changed()
|
---|
| 331 | {
|
---|
| 332 | MolecularEnergy::symmetry_changed();
|
---|
| 333 |
|
---|
| 334 | Ref<PetiteList> pl = integral_->petite_list();
|
---|
| 335 | sodim_ = pl->SO_basisdim();
|
---|
| 336 | aodim_ = pl->AO_basisdim();
|
---|
| 337 | overlap_.result_noupdate() = 0;
|
---|
| 338 | basiskit_ = gbs_->so_matrixkit();
|
---|
| 339 |
|
---|
| 340 | orthog_ = 0;
|
---|
| 341 | }
|
---|
| 342 |
|
---|
| 343 | Wavefunction::~Wavefunction()
|
---|
| 344 | {
|
---|
| 345 | if (bs_values) {
|
---|
| 346 | delete[] bs_values;
|
---|
| 347 | bs_values=0;
|
---|
| 348 | }
|
---|
| 349 | if (bsg_values) {
|
---|
| 350 | delete[] bsg_values;
|
---|
| 351 | bsg_values=0;
|
---|
| 352 | }
|
---|
| 353 | }
|
---|
| 354 |
|
---|
| 355 | void
|
---|
| 356 | Wavefunction::save_data_state(StateOut&s)
|
---|
| 357 | {
|
---|
| 358 | MolecularEnergy::save_data_state(s);
|
---|
| 359 |
|
---|
| 360 | // overlap and hcore integrals are cheap so don't store them.
|
---|
| 361 | // same goes for natural orbitals
|
---|
| 362 |
|
---|
| 363 | s.put(print_nao_);
|
---|
| 364 | s.put(print_npa_);
|
---|
| 365 | s.put((int)orthog_method_);
|
---|
| 366 | s.put(lindep_tol_);
|
---|
| 367 |
|
---|
| 368 | SavableState::save_state(gbs_.pointer(),s);
|
---|
| 369 | SavableState::save_state(integral_.pointer(),s);
|
---|
| 370 | SavableState::save_state(orthog_.pointer(),s);
|
---|
| 371 | SavableState::save_state(atom_basis_.pointer(), s);
|
---|
| 372 | if (atom_basis_.nonnull()) {
|
---|
| 373 | s.put_array_double(atom_basis_coef_,atom_basis_->nbasis());
|
---|
| 374 | }
|
---|
| 375 | }
|
---|
| 376 |
|
---|
| 377 | double
|
---|
| 378 | Wavefunction::charge()
|
---|
| 379 | {
|
---|
| 380 | return molecule()->nuclear_charge() - nelectron();
|
---|
| 381 | }
|
---|
| 382 |
|
---|
| 383 | RefSymmSCMatrix
|
---|
| 384 | Wavefunction::ao_density()
|
---|
| 385 | {
|
---|
| 386 | return integral()->petite_list()->to_AO_basis(density());
|
---|
| 387 | }
|
---|
| 388 |
|
---|
| 389 | RefSCMatrix
|
---|
| 390 | Wavefunction::natural_orbitals()
|
---|
| 391 | {
|
---|
| 392 | if (!natural_orbitals_.computed()) {
|
---|
| 393 | RefSymmSCMatrix dens = density();
|
---|
| 394 |
|
---|
| 395 | // transform the density into an orthogonal basis
|
---|
| 396 | RefSCMatrix ortho = so_to_orthog_so();
|
---|
| 397 |
|
---|
| 398 | RefSymmSCMatrix densortho(oso_dimension(), basis_matrixkit());
|
---|
| 399 | densortho.assign(0.0);
|
---|
| 400 | densortho.accumulate_transform(so_to_orthog_so_inverse().t(),dens);
|
---|
| 401 |
|
---|
| 402 | RefSCMatrix natorb(oso_dimension(), oso_dimension(),
|
---|
| 403 | basis_matrixkit());
|
---|
| 404 | RefDiagSCMatrix natden(oso_dimension(), basis_matrixkit());
|
---|
| 405 |
|
---|
| 406 | densortho.diagonalize(natden, natorb);
|
---|
| 407 |
|
---|
| 408 | // natorb is the ortho SO to NO basis transform
|
---|
| 409 | // make natural_orbitals_ the SO to the NO basis transform
|
---|
| 410 | natural_orbitals_ = so_to_orthog_so().t() * natorb;
|
---|
| 411 | natural_density_ = natden;
|
---|
| 412 |
|
---|
| 413 | natural_orbitals_.computed() = 1;
|
---|
| 414 | natural_density_.computed() = 1;
|
---|
| 415 | }
|
---|
| 416 |
|
---|
| 417 | return natural_orbitals_.result_noupdate();
|
---|
| 418 | }
|
---|
| 419 |
|
---|
| 420 | RefDiagSCMatrix
|
---|
| 421 | Wavefunction::natural_density()
|
---|
| 422 | {
|
---|
| 423 | if (!natural_density_.computed()) {
|
---|
| 424 | natural_orbitals();
|
---|
| 425 | }
|
---|
| 426 |
|
---|
| 427 | return natural_density_.result_noupdate();
|
---|
| 428 | }
|
---|
| 429 |
|
---|
| 430 | RefSymmSCMatrix
|
---|
| 431 | Wavefunction::overlap()
|
---|
| 432 | {
|
---|
| 433 | if (!overlap_.computed()) {
|
---|
| 434 | integral()->set_basis(gbs_);
|
---|
| 435 | Ref<PetiteList> pl = integral()->petite_list();
|
---|
| 436 |
|
---|
| 437 | #if ! CHECK_SYMMETRIZED_INTEGRALS
|
---|
| 438 | // first form skeleton s matrix
|
---|
| 439 | RefSymmSCMatrix s(basis()->basisdim(), basis()->matrixkit());
|
---|
| 440 | Ref<SCElementOp> ov =
|
---|
| 441 | new OneBodyIntOp(new SymmOneBodyIntIter(integral()->overlap(), pl));
|
---|
| 442 |
|
---|
| 443 | s.assign(0.0);
|
---|
| 444 | s.element_op(ov);
|
---|
| 445 | ov=0;
|
---|
| 446 |
|
---|
| 447 | if (debug_ > 1) s.print("AO skeleton overlap");
|
---|
| 448 |
|
---|
| 449 | // then symmetrize it
|
---|
| 450 | RefSymmSCMatrix sb(so_dimension(), basis_matrixkit());
|
---|
| 451 | pl->symmetrize(s,sb);
|
---|
| 452 |
|
---|
| 453 | overlap_ = sb;
|
---|
| 454 | #else
|
---|
| 455 | ExEnv::out0() << "Checking symmetrized overlap" << endl;
|
---|
| 456 |
|
---|
| 457 | RefSymmSCMatrix s(basis()->basisdim(), basis()->matrixkit());
|
---|
| 458 | Ref<SCElementOp> ov =
|
---|
| 459 | new OneBodyIntOp(new OneBodyIntIter(integral()->overlap()));
|
---|
| 460 |
|
---|
| 461 | s.assign(0.0);
|
---|
| 462 | s.element_op(ov);
|
---|
| 463 | ov=0;
|
---|
| 464 |
|
---|
| 465 | overlap_ = pl->to_SO_basis(s);
|
---|
| 466 |
|
---|
| 467 | //// use petite list to form saopl
|
---|
| 468 |
|
---|
| 469 | // form skeleton Hcore in AO basis
|
---|
| 470 | RefSymmSCMatrix saopl(basis()->basisdim(), basis()->matrixkit());
|
---|
| 471 | saopl.assign(0.0);
|
---|
| 472 |
|
---|
| 473 | ov = new OneBodyIntOp(new SymmOneBodyIntIter(integral_->overlap(), pl));
|
---|
| 474 | saopl.element_op(ov);
|
---|
| 475 | ov=0;
|
---|
| 476 |
|
---|
| 477 | // also symmetrize using pl->symmetrize():
|
---|
| 478 | RefSymmSCMatrix spl(so_dimension(), basis_matrixkit());
|
---|
| 479 | pl->symmetrize(saopl,spl);
|
---|
| 480 |
|
---|
| 481 | //// compare the answers
|
---|
| 482 |
|
---|
| 483 | int n = overlap_.result_noupdate().dim().n();
|
---|
| 484 | int me = MessageGrp::get_default_messagegrp()->me();
|
---|
| 485 | for (int i=0; i<n; i++) {
|
---|
| 486 | for (int j=0; j<=i; j++) {
|
---|
| 487 | double val1 = overlap_.result_noupdate().get_element(i,j);
|
---|
| 488 | double val2 = spl.get_element(i,j);
|
---|
| 489 | if (me == 0) {
|
---|
| 490 | if (fabs(val1-val2) > 1.0e-6) {
|
---|
| 491 | ExEnv::out0() << "bad overlap vals for " << i << " " << j
|
---|
| 492 | << ": " << val1 << " " << val2 << endl;
|
---|
| 493 | }
|
---|
| 494 | }
|
---|
| 495 | }
|
---|
| 496 | }
|
---|
| 497 | #endif
|
---|
| 498 |
|
---|
| 499 | overlap_.computed() = 1;
|
---|
| 500 | }
|
---|
| 501 |
|
---|
| 502 | return overlap_.result_noupdate();
|
---|
| 503 | }
|
---|
| 504 |
|
---|
| 505 | RefSymmSCMatrix
|
---|
| 506 | Wavefunction::core_hamiltonian()
|
---|
| 507 | {
|
---|
| 508 | if (!hcore_.computed()) {
|
---|
| 509 | integral()->set_basis(gbs_);
|
---|
| 510 | Ref<PetiteList> pl = integral()->petite_list();
|
---|
| 511 |
|
---|
| 512 | #if ! CHECK_SYMMETRIZED_INTEGRALS
|
---|
| 513 | // form skeleton Hcore in AO basis
|
---|
| 514 | RefSymmSCMatrix hao(basis()->basisdim(), basis()->matrixkit());
|
---|
| 515 | hao.assign(0.0);
|
---|
| 516 |
|
---|
| 517 | Ref<SCElementOp> hc =
|
---|
| 518 | new OneBodyIntOp(new SymmOneBodyIntIter(integral_->kinetic(), pl));
|
---|
| 519 | hao.element_op(hc);
|
---|
| 520 | hc=0;
|
---|
| 521 |
|
---|
| 522 | if (atom_basis_.null()) {
|
---|
| 523 | Ref<OneBodyInt> nuc = integral_->nuclear();
|
---|
| 524 | nuc->reinitialize();
|
---|
| 525 | hc = new OneBodyIntOp(new SymmOneBodyIntIter(nuc, pl));
|
---|
| 526 | hao.element_op(hc);
|
---|
| 527 | hc=0;
|
---|
| 528 | }
|
---|
| 529 | else {
|
---|
| 530 | // we have an atom_basis, so some nuclear charges will be computed
|
---|
| 531 | // with the two electron integral code and some will be computed
|
---|
| 532 | // with the point charge code
|
---|
| 533 |
|
---|
| 534 | // find out which atoms are point charges and which ones are charge
|
---|
| 535 | // distributions
|
---|
| 536 | std::vector<int> i_pc; // point charge centers
|
---|
| 537 | for (int i=0; i<atom_basis_->ncenter(); i++) {
|
---|
| 538 | if (atom_basis_->nshell_on_center(i) == 0) i_pc.push_back(i);
|
---|
| 539 | }
|
---|
| 540 | int n_pc = i_pc.size();
|
---|
| 541 |
|
---|
| 542 | // initialize the point charge data
|
---|
| 543 | auto_vec<double> pc_charges(new double[n_pc]);
|
---|
| 544 | auto_vec<double*> pc_xyz(new double*[n_pc]);
|
---|
| 545 | auto_vec<double> pc_xyz0(new double[n_pc*3]);
|
---|
| 546 | pc_xyz[0] = pc_xyz0.get();
|
---|
| 547 | for (int i=1; i<n_pc; i++) pc_xyz[i] = pc_xyz[i-1] + 3;
|
---|
| 548 | for (int i=0; i<n_pc; i++) {
|
---|
| 549 | pc_charges[i] = molecule()->charge(i_pc[i]);
|
---|
| 550 | for (int j=0; j<3; j++) pc_xyz[i][j] = molecule()->r(i_pc[i],j);
|
---|
| 551 | }
|
---|
| 552 | Ref<PointChargeData> pc_data
|
---|
| 553 | = new PointChargeData(n_pc, pc_xyz.get(), pc_charges.get());
|
---|
| 554 |
|
---|
| 555 | // compute the point charge contributions
|
---|
| 556 | Ref<OneBodyInt> pc_int = integral_->point_charge(pc_data);
|
---|
| 557 | hc = new OneBodyIntOp(new SymmOneBodyIntIter(pc_int,pl));
|
---|
| 558 | hao.element_op(hc);
|
---|
| 559 | hc=0;
|
---|
| 560 | pc_int=0;
|
---|
| 561 |
|
---|
| 562 | // compute the charge distribution contributions
|
---|
| 563 | // H_ij += sum_A -q_A sum_k N_A_k (ij|A_k)
|
---|
| 564 | integral()->set_basis(gbs_,gbs_,atom_basis_);
|
---|
| 565 | Ref<TwoBodyThreeCenterInt> cd_tbint
|
---|
| 566 | = integral_->electron_repulsion3();
|
---|
| 567 | Ref<OneBodyInt> cd_int = new ChargeDistInt(cd_tbint, atom_basis_coef_);
|
---|
| 568 | hc = new OneBodyIntOp(new SymmOneBodyIntIter(cd_int,pl));
|
---|
| 569 | hao.element_op(hc);
|
---|
| 570 | integral()->set_basis(gbs_);
|
---|
| 571 | hc=0;
|
---|
| 572 | cd_int=0;
|
---|
| 573 | cd_tbint=0;
|
---|
| 574 | }
|
---|
| 575 |
|
---|
| 576 | // now symmetrize Hso
|
---|
| 577 | RefSymmSCMatrix h(so_dimension(), basis_matrixkit());
|
---|
| 578 | pl->symmetrize(hao,h);
|
---|
| 579 |
|
---|
| 580 | hcore_ = h;
|
---|
| 581 | #else
|
---|
| 582 | ExEnv::out0() << "Checking symmetrized hcore" << endl;
|
---|
| 583 |
|
---|
| 584 | RefSymmSCMatrix hao(basis()->basisdim(), basis()->matrixkit());
|
---|
| 585 | hao.assign(0.0);
|
---|
| 586 |
|
---|
| 587 | Ref<SCElementOp> hc =
|
---|
| 588 | new OneBodyIntOp(new OneBodyIntIter(integral_->kinetic()));
|
---|
| 589 | hao.element_op(hc);
|
---|
| 590 | hc=0;
|
---|
| 591 |
|
---|
| 592 | // std::cout << "null atom_basis" << std::endl;
|
---|
| 593 | Ref<OneBodyInt> nuc = integral_->nuclear();
|
---|
| 594 | nuc->reinitialize();
|
---|
| 595 | hc = new OneBodyIntOp(new OneBodyIntIter(nuc));
|
---|
| 596 | hao.element_op(hc);
|
---|
| 597 | hc=0;
|
---|
| 598 |
|
---|
| 599 | hcore_ = pl->to_SO_basis(hao);
|
---|
| 600 |
|
---|
| 601 | //// use petite list to form haopl
|
---|
| 602 |
|
---|
| 603 | // form skeleton Hcore in AO basis
|
---|
| 604 | RefSymmSCMatrix haopl(basis()->basisdim(), basis()->matrixkit());
|
---|
| 605 | haopl.assign(0.0);
|
---|
| 606 |
|
---|
| 607 | hc = new OneBodyIntOp(new SymmOneBodyIntIter(integral_->kinetic(), pl));
|
---|
| 608 | haopl.element_op(hc);
|
---|
| 609 | hc=0;
|
---|
| 610 |
|
---|
| 611 | nuc = integral_->nuclear();
|
---|
| 612 | nuc->reinitialize();
|
---|
| 613 | hc = new OneBodyIntOp(new SymmOneBodyIntIter(nuc, pl));
|
---|
| 614 | haopl.element_op(hc);
|
---|
| 615 | hc=0;
|
---|
| 616 |
|
---|
| 617 | // also symmetrize using pl->symmetrize():
|
---|
| 618 | RefSymmSCMatrix h(so_dimension(), basis_matrixkit());
|
---|
| 619 | pl->symmetrize(haopl,h);
|
---|
| 620 |
|
---|
| 621 | //// compare the answers
|
---|
| 622 |
|
---|
| 623 | int n = hcore_.result_noupdate().dim().n();
|
---|
| 624 | int me = MessageGrp::get_default_messagegrp()->me();
|
---|
| 625 | for (int i=0; i<n; i++) {
|
---|
| 626 | for (int j=0; j<=i; j++) {
|
---|
| 627 | double val1 = hcore_.result_noupdate().get_element(i,j);
|
---|
| 628 | double val2 = h.get_element(i,j);
|
---|
| 629 | if (me == 0) {
|
---|
| 630 | if (fabs(val1-val2) > 1.0e-6) {
|
---|
| 631 | ExEnv::outn() << "bad hcore vals for " << i << " " << j
|
---|
| 632 | << ": " << val1 << " " << val2 << endl;
|
---|
| 633 | }
|
---|
| 634 | }
|
---|
| 635 | }
|
---|
| 636 | }
|
---|
| 637 | #endif
|
---|
| 638 |
|
---|
| 639 | hcore_.computed() = 1;
|
---|
| 640 | }
|
---|
| 641 |
|
---|
| 642 | return hcore_.result_noupdate();
|
---|
| 643 | }
|
---|
| 644 |
|
---|
| 645 | // Compute lists of centers that are point charges and lists that
|
---|
| 646 | // are charge distributions.
|
---|
| 647 | void
|
---|
| 648 | Wavefunction::set_up_charge_types(
|
---|
| 649 | std::vector<int> &q_pc,
|
---|
| 650 | std::vector<int> &q_cd,
|
---|
| 651 | std::vector<int> &n_pc,
|
---|
| 652 | std::vector<int> &n_cd)
|
---|
| 653 | {
|
---|
| 654 | q_pc.clear();
|
---|
| 655 | q_cd.clear();
|
---|
| 656 | n_pc.clear();
|
---|
| 657 | n_cd.clear();
|
---|
| 658 |
|
---|
| 659 | for (int i=0; i<atom_basis_->ncenter(); i++) {
|
---|
| 660 | bool is_Q = (molecule()->atom_symbol(i) == "Q");
|
---|
| 661 | if (atom_basis_->nshell_on_center(i) > 0) {
|
---|
| 662 | if (is_Q) q_cd.push_back(i);
|
---|
| 663 | else n_cd.push_back(i);
|
---|
| 664 | }
|
---|
| 665 | else {
|
---|
| 666 | if (is_Q) q_pc.push_back(i);
|
---|
| 667 | else n_pc.push_back(i);
|
---|
| 668 | }
|
---|
| 669 | }
|
---|
| 670 | }
|
---|
| 671 |
|
---|
| 672 | double
|
---|
| 673 | Wavefunction::nuclear_repulsion_energy()
|
---|
| 674 | {
|
---|
| 675 | if (atom_basis_.null()) return molecule()->nuclear_repulsion_energy();
|
---|
| 676 |
|
---|
| 677 | double nucrep = 0.0;
|
---|
| 678 |
|
---|
| 679 | std::vector<int> q_pc, q_cd, n_pc, n_cd;
|
---|
| 680 | set_up_charge_types(q_pc,q_cd,n_pc,n_cd);
|
---|
| 681 |
|
---|
| 682 | // compute point charge - point charge contribution
|
---|
| 683 | nucrep += nuc_rep_pc_pc(n_pc, n_pc, true /* i > j */);
|
---|
| 684 | nucrep += nuc_rep_pc_pc(q_pc, n_pc, false /* all i j */);
|
---|
| 685 | if (molecule()->include_qq()) {
|
---|
| 686 | nucrep += nuc_rep_pc_pc(q_pc, q_pc, true /* i > j */);
|
---|
| 687 | }
|
---|
| 688 |
|
---|
| 689 | // compute point charge - charge distribution contribution
|
---|
| 690 | nucrep += nuc_rep_pc_cd(n_pc, n_cd);
|
---|
| 691 | nucrep += nuc_rep_pc_cd(q_pc, n_cd);
|
---|
| 692 | nucrep += nuc_rep_pc_cd(n_pc, q_cd);
|
---|
| 693 | if (molecule()->include_qq()) {
|
---|
| 694 | nucrep += nuc_rep_pc_cd(q_pc, q_cd);
|
---|
| 695 | }
|
---|
| 696 |
|
---|
| 697 | // compute the charge distribution - charge distribution contribution
|
---|
| 698 | nucrep += nuc_rep_cd_cd(n_cd, n_cd, true /* i > j */);
|
---|
| 699 | nucrep += nuc_rep_cd_cd(q_cd, n_cd, false /* all i j */);
|
---|
| 700 | if (molecule()->include_qq()) {
|
---|
| 701 | nucrep += nuc_rep_cd_cd(q_cd, q_cd, true /* i > j */);
|
---|
| 702 | }
|
---|
| 703 |
|
---|
| 704 | return nucrep;
|
---|
| 705 | }
|
---|
| 706 |
|
---|
| 707 | double
|
---|
| 708 | Wavefunction::nuc_rep_pc_pc(const std::vector<int>&c1,
|
---|
| 709 | const std::vector<int>&c2,
|
---|
| 710 | bool uniq)
|
---|
| 711 | {
|
---|
| 712 | double e = 0.0;
|
---|
| 713 |
|
---|
| 714 | if (c1.size() == 0 || c2.size() == 0) return e;
|
---|
| 715 |
|
---|
| 716 | for (int ii=0; ii<c1.size(); ii++) {
|
---|
| 717 | int i = c1[ii];
|
---|
| 718 | SCVector3 ai(molecule()->r(i));
|
---|
| 719 | double Zi = molecule()->charge(i);
|
---|
| 720 | int jfence = (uniq?ii:c2.size());
|
---|
| 721 | for (int jj=0; jj<jfence; jj++) {
|
---|
| 722 | int j = c2[jj];
|
---|
| 723 | SCVector3 aj(molecule()->r(j));
|
---|
| 724 | e += Zi * molecule()->charge(j) / ai.dist(aj);
|
---|
| 725 | }
|
---|
| 726 | }
|
---|
| 727 |
|
---|
| 728 | return e;
|
---|
| 729 | }
|
---|
| 730 |
|
---|
| 731 | double
|
---|
| 732 | Wavefunction::nuc_rep_pc_cd(const std::vector<int>&pc,
|
---|
| 733 | const std::vector<int>&cd)
|
---|
| 734 | {
|
---|
| 735 | double e = 0.0;
|
---|
| 736 |
|
---|
| 737 | if (pc.size() == 0 || cd.size() == 0) return e;
|
---|
| 738 |
|
---|
| 739 | integral()->set_basis(atom_basis());
|
---|
| 740 |
|
---|
| 741 | sc::auto_vec<double> charges(new double[pc.size()]);
|
---|
| 742 | sc::auto_vec<double*> positions(new double*[pc.size()]);
|
---|
| 743 | sc::auto_vec<double> xyz(new double[pc.size()*3]);
|
---|
| 744 | for (int i=0; i<pc.size(); i++) {
|
---|
| 745 | positions.get()[i] = &xyz.get()[i*3];
|
---|
| 746 | }
|
---|
| 747 |
|
---|
| 748 | for (int ii=0; ii<pc.size(); ii++) {
|
---|
| 749 | int i=pc[ii];
|
---|
| 750 | charges.get()[ii] = molecule()->charge(i);
|
---|
| 751 | for (int j=0; j<3; j++) positions.get()[ii][j] = molecule()->r(i,j);
|
---|
| 752 | }
|
---|
| 753 |
|
---|
| 754 | Ref<PointChargeData> pcdata = new PointChargeData(pc.size(),
|
---|
| 755 | positions.get(),
|
---|
| 756 | charges.get());
|
---|
| 757 | Ref<OneBodyOneCenterInt> ob = integral()->point_charge1(pcdata);
|
---|
| 758 |
|
---|
| 759 | const double *buffer = ob->buffer();
|
---|
| 760 |
|
---|
| 761 | for (int ii=0,icoef=0; ii<cd.size(); ii++) {
|
---|
| 762 | int icenter = cd[ii];
|
---|
| 763 | int joff = atom_basis()->shell_on_center(icenter,0);
|
---|
| 764 | for (int j=0; j<atom_basis()->nshell_on_center(icenter); j++) {
|
---|
| 765 | int jsh = j + joff;
|
---|
| 766 | ob->compute_shell(jsh);
|
---|
| 767 | int nfunc = atom_basis()->shell(jsh).nfunction();
|
---|
| 768 | for (int k=0; k<nfunc; k++,icoef++) {
|
---|
| 769 | e -= atom_basis_coef_[icoef] * buffer[k];
|
---|
| 770 | }
|
---|
| 771 | }
|
---|
| 772 | }
|
---|
| 773 |
|
---|
| 774 | integral()->set_basis(basis());
|
---|
| 775 |
|
---|
| 776 | return e;
|
---|
| 777 | }
|
---|
| 778 |
|
---|
| 779 | double
|
---|
| 780 | Wavefunction::nuc_rep_cd_cd(const std::vector<int>&c1,
|
---|
| 781 | const std::vector<int>&c2,
|
---|
| 782 | bool uniq)
|
---|
| 783 | {
|
---|
| 784 | double e = 0.0;
|
---|
| 785 |
|
---|
| 786 | if (c1.size() == 0 || c2.size() == 0) return e;
|
---|
| 787 |
|
---|
| 788 | integral()->set_basis(atom_basis());
|
---|
| 789 |
|
---|
| 790 | Ref<TwoBodyTwoCenterInt> tb = integral()->electron_repulsion2();
|
---|
| 791 |
|
---|
| 792 | const double *buffer = tb->buffer();
|
---|
| 793 |
|
---|
| 794 | for (int ii=0; ii<c1.size(); ii++) {
|
---|
| 795 | int icenter = c1[ii];
|
---|
| 796 | int inshell = atom_basis()->nshell_on_center(icenter);
|
---|
| 797 | int ish = atom_basis()->shell_on_center(icenter,0);
|
---|
| 798 | for (int iish=0; iish<inshell; iish++,ish++) {
|
---|
| 799 | int infunc = atom_basis()->shell(ish).nfunction();
|
---|
| 800 | int ifuncoff = atom_basis()->shell_to_function(ish);
|
---|
| 801 | int jjfence = (uniq?ii:c2.size());
|
---|
| 802 | for (int jj=0; jj<jjfence; jj++) {
|
---|
| 803 | int jcenter = c2[jj];
|
---|
| 804 | int jnshell = atom_basis()->nshell_on_center(jcenter);
|
---|
| 805 | int jsh = atom_basis()->shell_on_center(jcenter,0);
|
---|
| 806 | for (int jjsh=0; jjsh<jnshell; jjsh++,jsh++) {
|
---|
| 807 | int jnfunc = atom_basis()->shell(jsh).nfunction();
|
---|
| 808 | int jfuncoff = atom_basis()->shell_to_function(jsh);
|
---|
| 809 | tb->compute_shell(ish,jsh);
|
---|
| 810 | for (int ifunc=0, ijfunc=0; ifunc<infunc; ifunc++) {
|
---|
| 811 | for (int jfunc=0; jfunc<jnfunc; jfunc++, ijfunc++) {
|
---|
| 812 | e += atom_basis_coef_[ifuncoff+ifunc]
|
---|
| 813 | * atom_basis_coef_[jfuncoff+jfunc]
|
---|
| 814 | * buffer[ijfunc];
|
---|
| 815 | }
|
---|
| 816 | }
|
---|
| 817 | }
|
---|
| 818 | }
|
---|
| 819 | }
|
---|
| 820 | }
|
---|
| 821 |
|
---|
| 822 | integral()->set_basis(basis());
|
---|
| 823 |
|
---|
| 824 | return e;
|
---|
| 825 | }
|
---|
| 826 |
|
---|
| 827 | void
|
---|
| 828 | Wavefunction::nuclear_repulsion_energy_gradient(double *g)
|
---|
| 829 | {
|
---|
| 830 | int natom = molecule()->natom();
|
---|
| 831 | sc::auto_vec<double*> gp(new double*[natom]);
|
---|
| 832 | for (int i=0; i<natom; i++) {
|
---|
| 833 | gp.get()[i] = &g[i*3];
|
---|
| 834 | }
|
---|
| 835 | nuclear_repulsion_energy_gradient(gp.get());
|
---|
| 836 | }
|
---|
| 837 |
|
---|
| 838 | void
|
---|
| 839 | Wavefunction::nuclear_repulsion_energy_gradient(double **g)
|
---|
| 840 | {
|
---|
| 841 | if (atom_basis_.null()) {
|
---|
| 842 | int natom = molecule()->natom();
|
---|
| 843 | for (int i=0; i<natom; i++) {
|
---|
| 844 | molecule()->nuclear_repulsion_1der(i,g[i]);
|
---|
| 845 | }
|
---|
| 846 | return;
|
---|
| 847 | }
|
---|
| 848 |
|
---|
| 849 | // zero the gradient
|
---|
| 850 | for (int i=0; i<molecule()->natom(); i++) {
|
---|
| 851 | for (int j=0; j<3; j++) g[i][j] = 0.0;
|
---|
| 852 | }
|
---|
| 853 |
|
---|
| 854 | // compute charge types
|
---|
| 855 | std::vector<int> q_pc, q_cd, n_pc, n_cd;
|
---|
| 856 | set_up_charge_types(q_pc,q_cd,n_pc,n_cd);
|
---|
| 857 |
|
---|
| 858 | // compute point charge - point charge contribution
|
---|
| 859 | nuc_rep_grad_pc_pc(g, n_pc, n_pc, true /* i > j */);
|
---|
| 860 | nuc_rep_grad_pc_pc(g, q_pc, n_pc, false /* all i j */);
|
---|
| 861 | if (molecule()->include_qq()) {
|
---|
| 862 | nuc_rep_grad_pc_pc(g, q_pc, q_pc, true /* i > j */);
|
---|
| 863 | }
|
---|
| 864 |
|
---|
| 865 | // compute point charge - charge distribution contribution
|
---|
| 866 | nuc_rep_grad_pc_cd(g, n_pc, n_cd);
|
---|
| 867 | nuc_rep_grad_pc_cd(g, q_pc, n_cd);
|
---|
| 868 | nuc_rep_grad_pc_cd(g, n_pc, q_cd);
|
---|
| 869 | if (molecule()->include_qq()) {
|
---|
| 870 | nuc_rep_grad_pc_cd(g, q_pc, q_cd);
|
---|
| 871 | }
|
---|
| 872 |
|
---|
| 873 | // compute the charge distribution - charge distribution contribution
|
---|
| 874 | nuc_rep_grad_cd_cd(g, n_cd, n_cd, true /* i > j */);
|
---|
| 875 | nuc_rep_grad_cd_cd(g, q_cd, n_cd, false /* all i j */);
|
---|
| 876 | if (molecule()->include_qq()) {
|
---|
| 877 | nuc_rep_grad_cd_cd(g, q_cd, q_cd, true /* i > j */);
|
---|
| 878 | }
|
---|
| 879 |
|
---|
| 880 | // note: the electronic terms still need to be done in
|
---|
| 881 | // a new hcore_deriv implemented in Wavefunction.
|
---|
| 882 | throw std::runtime_error("Wavefunction::nuclear_repulsion_energy_gradient: not done");
|
---|
| 883 |
|
---|
| 884 | }
|
---|
| 885 |
|
---|
| 886 | void
|
---|
| 887 | Wavefunction::nuc_rep_grad_pc_pc(double **grad,
|
---|
| 888 | const std::vector<int>&c1,
|
---|
| 889 | const std::vector<int>&c2,
|
---|
| 890 | bool uniq)
|
---|
| 891 | {
|
---|
| 892 | if (c1.size() == 0 || c2.size() == 0) return;
|
---|
| 893 |
|
---|
| 894 | for (int ii=0; ii<c1.size(); ii++) {
|
---|
| 895 | int i = c1[ii];
|
---|
| 896 | SCVector3 ai(molecule()->r(i));
|
---|
| 897 | double Zi = molecule()->charge(i);
|
---|
| 898 | int jfence = (uniq?ii:c2.size());
|
---|
| 899 | for (int jj=0; jj<jfence; jj++) {
|
---|
| 900 | int j = c2[jj];
|
---|
| 901 | SCVector3 aj(molecule()->r(j));
|
---|
| 902 | double Zj = molecule()->charge(j);
|
---|
| 903 | SCVector3 rdiff = ai - aj;
|
---|
| 904 | double r2 = rdiff.dot(rdiff);
|
---|
| 905 | double factor = - Zi * Zj / (r2*sqrt(r2));
|
---|
| 906 | for (int k=0; k<3; k++) {
|
---|
| 907 | grad[i][k] += factor * rdiff[k];
|
---|
| 908 | grad[j][k] -= factor * rdiff[k];
|
---|
| 909 | }
|
---|
| 910 | }
|
---|
| 911 | }
|
---|
| 912 | }
|
---|
| 913 |
|
---|
| 914 | void
|
---|
| 915 | Wavefunction::nuc_rep_grad_pc_cd(double **grad,
|
---|
| 916 | const std::vector<int>&pc,
|
---|
| 917 | const std::vector<int>&cd)
|
---|
| 918 | {
|
---|
| 919 | if (pc.size() == 0 || cd.size() == 0) return;
|
---|
| 920 |
|
---|
| 921 | throw std::runtime_error("Wavefunction::nuclear_repulsion_energy_gradient: not done");
|
---|
| 922 | }
|
---|
| 923 |
|
---|
| 924 | void
|
---|
| 925 | Wavefunction::nuc_rep_grad_cd_cd(double **grad,
|
---|
| 926 | const std::vector<int>&c1,
|
---|
| 927 | const std::vector<int>&c2,
|
---|
| 928 | bool uniq)
|
---|
| 929 | {
|
---|
| 930 | if (c1.size() == 0 || c2.size() == 0) return;
|
---|
| 931 |
|
---|
| 932 | throw std::runtime_error("Wavefunction::nuclear_repulsion_energy_gradient: not done");
|
---|
| 933 | }
|
---|
| 934 |
|
---|
| 935 | // returns the orthogonalization matrix
|
---|
| 936 | RefSCMatrix
|
---|
| 937 | Wavefunction::so_to_orthog_so()
|
---|
| 938 | {
|
---|
| 939 | if (orthog_.null()) init_orthog();
|
---|
| 940 | return orthog_->basis_to_orthog_basis();
|
---|
| 941 | }
|
---|
| 942 |
|
---|
| 943 | RefSCMatrix
|
---|
| 944 | Wavefunction::so_to_orthog_so_inverse()
|
---|
| 945 | {
|
---|
| 946 | if (orthog_.null()) init_orthog();
|
---|
| 947 | return orthog_->basis_to_orthog_basis_inverse();
|
---|
| 948 | }
|
---|
| 949 |
|
---|
| 950 | Ref<GaussianBasisSet>
|
---|
| 951 | Wavefunction::basis() const
|
---|
| 952 | {
|
---|
| 953 | return gbs_;
|
---|
| 954 | }
|
---|
| 955 |
|
---|
| 956 | Ref<Molecule>
|
---|
| 957 | Wavefunction::molecule() const
|
---|
| 958 | {
|
---|
| 959 | return basis()->molecule();
|
---|
| 960 | }
|
---|
| 961 |
|
---|
| 962 | Ref<GaussianBasisSet>
|
---|
| 963 | Wavefunction::atom_basis() const
|
---|
| 964 | {
|
---|
| 965 | return atom_basis_;
|
---|
| 966 | }
|
---|
| 967 |
|
---|
| 968 | const double *
|
---|
| 969 | Wavefunction::atom_basis_coef() const
|
---|
| 970 | {
|
---|
| 971 | return atom_basis_coef_;
|
---|
| 972 | }
|
---|
| 973 |
|
---|
| 974 | Ref<Integral>
|
---|
| 975 | Wavefunction::integral()
|
---|
| 976 | {
|
---|
| 977 | return integral_;
|
---|
| 978 | }
|
---|
| 979 |
|
---|
| 980 | RefSCDimension
|
---|
| 981 | Wavefunction::so_dimension()
|
---|
| 982 | {
|
---|
| 983 | return sodim_;
|
---|
| 984 | }
|
---|
| 985 |
|
---|
| 986 | RefSCDimension
|
---|
| 987 | Wavefunction::ao_dimension()
|
---|
| 988 | {
|
---|
| 989 | return aodim_;
|
---|
| 990 | }
|
---|
| 991 |
|
---|
| 992 | RefSCDimension
|
---|
| 993 | Wavefunction::oso_dimension()
|
---|
| 994 | {
|
---|
| 995 | if (orthog_.null()) init_orthog();
|
---|
| 996 | return orthog_->orthog_dim();
|
---|
| 997 | }
|
---|
| 998 |
|
---|
| 999 | Ref<SCMatrixKit>
|
---|
| 1000 | Wavefunction::basis_matrixkit()
|
---|
| 1001 | {
|
---|
| 1002 | return basiskit_;
|
---|
| 1003 | }
|
---|
| 1004 |
|
---|
| 1005 | void
|
---|
| 1006 | Wavefunction::print(ostream&o) const
|
---|
| 1007 | {
|
---|
| 1008 | MolecularEnergy::print(o);
|
---|
| 1009 | ExEnv::out0() << indent << "Electronic basis:" << std::endl;
|
---|
| 1010 | ExEnv::out0() << incindent;
|
---|
| 1011 | basis()->print_brief(o);
|
---|
| 1012 | ExEnv::out0() << decindent;
|
---|
| 1013 | if (atom_basis_.nonnull()) {
|
---|
| 1014 | ExEnv::out0() << indent << "Nuclear basis:" << std::endl;
|
---|
| 1015 | ExEnv::out0() << incindent;
|
---|
| 1016 | atom_basis_->print_brief(o);
|
---|
| 1017 | ExEnv::out0() << decindent;
|
---|
| 1018 | }
|
---|
| 1019 | // the other stuff is a wee bit too big to print
|
---|
| 1020 | if (print_nao_ || print_npa_) {
|
---|
| 1021 | tim_enter("NAO");
|
---|
| 1022 | RefSCMatrix naos = ((Wavefunction*)this)->nao();
|
---|
| 1023 | tim_exit("NAO");
|
---|
| 1024 | if (print_nao_) naos.print("NAO");
|
---|
| 1025 | }
|
---|
| 1026 | }
|
---|
| 1027 |
|
---|
| 1028 | RefSymmSCMatrix
|
---|
| 1029 | Wavefunction::alpha_density()
|
---|
| 1030 | {
|
---|
| 1031 | if (!spin_polarized()) {
|
---|
| 1032 | RefSymmSCMatrix result = density().copy();
|
---|
| 1033 | result.scale(0.5);
|
---|
| 1034 | return result;
|
---|
| 1035 | }
|
---|
| 1036 | ExEnv::errn() << class_name() << "::alpha_density not implemented" << endl;
|
---|
| 1037 | abort();
|
---|
| 1038 | return 0;
|
---|
| 1039 | }
|
---|
| 1040 |
|
---|
| 1041 | RefSymmSCMatrix
|
---|
| 1042 | Wavefunction::beta_density()
|
---|
| 1043 | {
|
---|
| 1044 | if (!spin_polarized()) {
|
---|
| 1045 | RefSymmSCMatrix result = density().copy();
|
---|
| 1046 | result.scale(0.5);
|
---|
| 1047 | return result;
|
---|
| 1048 | }
|
---|
| 1049 | ExEnv::errn() << class_name() << "::beta_density not implemented" << endl;
|
---|
| 1050 | abort();
|
---|
| 1051 | return 0;
|
---|
| 1052 | }
|
---|
| 1053 |
|
---|
| 1054 | RefSymmSCMatrix
|
---|
| 1055 | Wavefunction::alpha_ao_density()
|
---|
| 1056 | {
|
---|
| 1057 | return integral()->petite_list()->to_AO_basis(alpha_density());
|
---|
| 1058 | }
|
---|
| 1059 |
|
---|
| 1060 | RefSymmSCMatrix
|
---|
| 1061 | Wavefunction::beta_ao_density()
|
---|
| 1062 | {
|
---|
| 1063 | return integral()->petite_list()->to_AO_basis(beta_density());
|
---|
| 1064 | }
|
---|
| 1065 |
|
---|
| 1066 | void
|
---|
| 1067 | Wavefunction::obsolete()
|
---|
| 1068 | {
|
---|
| 1069 | orthog_ = 0;
|
---|
| 1070 |
|
---|
| 1071 | MolecularEnergy::obsolete();
|
---|
| 1072 | }
|
---|
| 1073 |
|
---|
| 1074 | void
|
---|
| 1075 | Wavefunction::copy_orthog_info(const Ref<Wavefunction>&wfn)
|
---|
| 1076 | {
|
---|
| 1077 | if (orthog_.nonnull()) {
|
---|
| 1078 | ExEnv::errn() << "WARNING: Wavefunction: orthogonalization info changing"
|
---|
| 1079 | << endl;
|
---|
| 1080 | }
|
---|
| 1081 | if (wfn->orthog_.null())
|
---|
| 1082 | wfn->init_orthog();
|
---|
| 1083 | orthog_ = wfn->orthog_->copy();
|
---|
| 1084 | }
|
---|
| 1085 |
|
---|
| 1086 | void
|
---|
| 1087 | Wavefunction::init_orthog()
|
---|
| 1088 | {
|
---|
| 1089 | orthog_ = new OverlapOrthog(
|
---|
| 1090 | orthog_method_,
|
---|
| 1091 | overlap(),
|
---|
| 1092 | basis_matrixkit(),
|
---|
| 1093 | lindep_tol_,
|
---|
| 1094 | debug_
|
---|
| 1095 | );
|
---|
| 1096 | }
|
---|
| 1097 |
|
---|
| 1098 | double
|
---|
| 1099 | Wavefunction::min_orthog_res()
|
---|
| 1100 | {
|
---|
| 1101 | return orthog_->min_orthog_res();
|
---|
| 1102 | }
|
---|
| 1103 |
|
---|
| 1104 | double
|
---|
| 1105 | Wavefunction::max_orthog_res()
|
---|
| 1106 | {
|
---|
| 1107 | if (orthog_.null()) init_orthog();
|
---|
| 1108 | return orthog_->max_orthog_res();
|
---|
| 1109 | }
|
---|
| 1110 |
|
---|
| 1111 | OverlapOrthog::OrthogMethod
|
---|
| 1112 | Wavefunction::orthog_method() const
|
---|
| 1113 | {
|
---|
| 1114 | return orthog_method_;
|
---|
| 1115 | }
|
---|
| 1116 |
|
---|
| 1117 | void
|
---|
| 1118 | Wavefunction::set_orthog_method(const OverlapOrthog::OrthogMethod& omethod)
|
---|
| 1119 | {
|
---|
| 1120 | if (orthog_method_ != omethod) {
|
---|
| 1121 | orthog_method_ = omethod;
|
---|
| 1122 | init_orthog();
|
---|
| 1123 | obsolete();
|
---|
| 1124 | }
|
---|
| 1125 | }
|
---|
| 1126 |
|
---|
| 1127 | double
|
---|
| 1128 | Wavefunction::lindep_tol() const
|
---|
| 1129 | {
|
---|
| 1130 | return lindep_tol_;
|
---|
| 1131 | }
|
---|
| 1132 |
|
---|
| 1133 | void
|
---|
| 1134 | Wavefunction::set_lindep_tol(double lindep_tol)
|
---|
| 1135 | {
|
---|
| 1136 | if (lindep_tol_ != lindep_tol) {
|
---|
| 1137 | lindep_tol_ = lindep_tol;
|
---|
| 1138 | init_orthog();
|
---|
| 1139 | obsolete();
|
---|
| 1140 | }
|
---|
| 1141 | }
|
---|
| 1142 |
|
---|
| 1143 | void
|
---|
| 1144 | Wavefunction::scale_atom_basis_coef()
|
---|
| 1145 | {
|
---|
| 1146 | std::vector<int> i_cd;
|
---|
| 1147 | for (int i=0; i<atom_basis_->ncenter(); i++) {
|
---|
| 1148 | if (atom_basis_->nshell_on_center(i) > 0) i_cd.push_back(i);
|
---|
| 1149 | }
|
---|
| 1150 |
|
---|
| 1151 | if (atom_basis_->max_angular_momentum() > 0) {
|
---|
| 1152 | // Only s functions will preserve the full symmetry.
|
---|
| 1153 | // Can only normalize functions that don't integrate to zero.
|
---|
| 1154 | throw std::runtime_error("ChargeDistInt: max am larger than 0");
|
---|
| 1155 | }
|
---|
| 1156 |
|
---|
| 1157 | int coef_offset = 0;
|
---|
| 1158 | int icoef = 0;
|
---|
| 1159 | for (int ii=0; ii<i_cd.size(); ii++) {
|
---|
| 1160 | int i = i_cd[ii];
|
---|
| 1161 | int nshell = atom_basis_->nshell_on_center(i);
|
---|
| 1162 | int nfunc = 0;
|
---|
| 1163 | if (nshell > 0) {
|
---|
| 1164 | double raw_charge = 0.0;
|
---|
| 1165 | for (int jj=0, icoef=coef_offset; jj<nshell; jj++) {
|
---|
| 1166 | int j = atom_basis_->shell_on_center(i,jj);
|
---|
| 1167 | const GaussianShell &shell = atom_basis_->shell(j);
|
---|
| 1168 | // loop over the contractions
|
---|
| 1169 | // the number of functions in each contraction is 1
|
---|
| 1170 | // since only s functions are allowed
|
---|
| 1171 | for (int k=0; k<shell.ncontraction(); k++, icoef++) {
|
---|
| 1172 | for (int l=0; l<shell.nprimitive(); l++) {
|
---|
| 1173 | double alpha = shell.exponent(l);
|
---|
| 1174 | double con_coef = shell.coefficient_unnorm(k,l);
|
---|
| 1175 | // The exponent is halved because the normalization
|
---|
| 1176 | // formula is for the s function squared.
|
---|
| 1177 | double integral = ::pow(M_PI/alpha,1.5);
|
---|
| 1178 | raw_charge += atom_basis_coef_[icoef] * con_coef * integral;
|
---|
| 1179 | // std::cout << "con_coef = " << con_coef
|
---|
| 1180 | // << " integral = " << integral
|
---|
| 1181 | // << std::endl;
|
---|
| 1182 | }
|
---|
| 1183 | }
|
---|
| 1184 | nfunc += shell.ncontraction();
|
---|
| 1185 | }
|
---|
| 1186 | double charge = atom_basis_->molecule()->charge(i);
|
---|
| 1187 | double correction = charge/raw_charge;
|
---|
| 1188 | for (int icoef=coef_offset; icoef<coef_offset+nfunc; icoef++) {
|
---|
| 1189 | atom_basis_coef_[icoef] = correction * atom_basis_coef_[icoef];
|
---|
| 1190 | }
|
---|
| 1191 | }
|
---|
| 1192 | coef_offset += nshell;
|
---|
| 1193 | }
|
---|
| 1194 | }
|
---|
| 1195 |
|
---|
| 1196 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 1197 |
|
---|
| 1198 | // Local Variables:
|
---|
| 1199 | // mode: c++
|
---|
| 1200 | // c-file-style: "ETS"
|
---|
| 1201 | // End:
|
---|