// // obwfn.h // // Copyright (C) 1996 Limit Point Systems, Inc. // // Author: Curtis Janssen // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // #ifndef _chemistry_qc_wfn_obwfn_h #define _chemistry_qc_wfn_obwfn_h #ifdef __GNUC__ #pragma interface #endif #include namespace sc { /**A OneBodyWavefunction is a MolecularEnergy that solves an effective one-body problem. */ class OneBodyWavefunction: public Wavefunction { protected: ResultRefSymmSCMatrix density_; AccResultRefSCMatrix oso_eigenvectors_; AccResultRefDiagSCMatrix eigenvalues_; int nirrep_; int *nvecperirrep_; double *occupations_; double *alpha_occupations_; double *beta_occupations_; void init_sym_info(); // oldocc is converted to newocc using the correlation // table between initial_pg_ and the current point group // returns 1 if successful and 0 otherwise. newocc is // delete[]'ed and new'ed. int form_occupations(int *&newocc, const int *oldocc); public: OneBodyWavefunction(StateIn&); /** The KeyVal constructor.
eigenvector_accuracy
Gives the accuracy to which eigenvectors are initially computed. The default 1.0e-7. Accuracies are usually adjusted as needed anyway, so it should not be necessary to change this.
*/ OneBodyWavefunction(const Ref&); ~OneBodyWavefunction(); void save_data_state(StateOut&); int nelectron(); /** Overload of Function::set_desired_value_accuracy(). Must update accuracy of the eigenvectors and the eigenvalues */ void set_desired_value_accuracy(double eps); // Following is a proposed interface to make the meaning of // the various transformation matrices less confusing. // /** These members give metrics and basis transformations // using the covariant/contravariant tensor notation. */ // //@{ // /** Returns the transformation matrix that converts // a contravariant SO tensor index to a contravariant // MO tensor index. // */ // RefSCMatrix t_mo_so_I_J(); // /** Returns the transformation matrix that converts a covariant SO // tensor index to a covariant MO tensor index. // */ // RefSCMatrix t_mo_so_i_j(); // /** Returns the transformation matrix that converts // a contravariant MO tensor index to a contravariant // SO tensor index. // */ // RefSCMatrix t_mo_so_I_J(); // /** Returns the transformation matrix that converts a covariant MO // tensor index to a covariant SO tensor index. // */ // RefSCMatrix t_mo_so_i_j(); // /** Returns the metric for converting a covariant SO index into // a contravariant one. */ // RefSCMatrix g_so_I_j(); // /** Returns the metric for converting a contravariant SO index into // a covariant one. */ // RefSCMatrix g_so_i_J(); // //@} /// Returns the SO to MO transformation matrix. RefSCMatrix so_to_mo(); /// Returns the orthogonal-SO to MO transformation matrix. RefSCMatrix orthog_so_to_mo(); /// Returns the MO to SO transformation matrix. RefSCMatrix mo_to_so(); /** Returns the MO to orthogonal-SO transformation matrix. This returns the same matrix as oso_eigenvectors(). */ RefSCMatrix mo_to_orthog_so(); /** Deprecated. Use so_to_mo().t() instead. */ RefSCMatrix eigenvectors(); /** Returns the orthogonal MO (columns) to orthogonal-SO (rows) transformation matrix. */ virtual RefSCMatrix oso_eigenvectors() = 0; /** Returns the MO basis eigenvalues. */ virtual RefDiagSCMatrix eigenvalues() = 0; /** Returns the occupation. The irreducible representation and the vector number within that representation are given as arguments. */ virtual double occupation(int irrep, int vectornum) = 0; /** Returns the occupation. The vector number in the MO basis is given as an argument. */ double occupation(int vectornum); /// Return 1 if the alpha orbitals are not equal to the beta orbitals. virtual int spin_unrestricted() = 0; /** Returns the alpha occupation. The irreducible representation and the vector number within that representation are given as arguments. */ virtual double alpha_occupation(int irrep, int vectornum); /** Returns the beta occupation. The irreducible representation and the vector number within that representation are given as arguments. */ virtual double beta_occupation(int irrep, int vectornum); /** Returns the alpha occupation. The vector number in the MO basis is given as an argument. */ double alpha_occupation(int vectornum); /** Returns the beta occupation. The vector number in the MO basis is given as an argument. */ double beta_occupation(int vectornum); // Return alpha and beta electron densities virtual RefSCMatrix oso_alpha_eigenvectors(); virtual RefSCMatrix oso_beta_eigenvectors(); virtual RefSCMatrix alpha_eigenvectors(); virtual RefSCMatrix beta_eigenvectors(); virtual RefDiagSCMatrix alpha_eigenvalues(); virtual RefDiagSCMatrix beta_eigenvalues(); virtual RefDiagSCMatrix projected_eigenvalues(const Ref&, int alp=1); /** Projects the density into the current basis set. Returns an orthogonalized SO to MO transformation with the orbitals. */ virtual RefSCMatrix projected_eigenvectors(const Ref&, int alp=1); /** Return a guess vector. The guess transforms the orthogonal SO basis to the MO basis. */ virtual RefSCMatrix hcore_guess(); /** Return a guess vector and the eigenvalues. The guess ransforms the orthogonal SO basis to the MO basis. Storage for the eigenvalues will be allocated. */ virtual RefSCMatrix hcore_guess(RefDiagSCMatrix &val); void symmetry_changed(); double orbital(const SCVector3& r, int iorb); double orbital_density(const SCVector3& r, int iorb, double* orbval = 0); void print(std::ostream&o=ExEnv::out0()) const; }; // This is useful as an initial guess for other one body wavefunctions class HCoreWfn: public OneBodyWavefunction { private: int nirrep_; int *docc_; int *socc_; int total_charge_; int user_occ_; void fill_occ(const RefDiagSCMatrix &evals, int ndocc, int *docc, int nsocc = 0, int *socc = 0); void compute(); public: HCoreWfn(StateIn&); HCoreWfn(const Ref&); ~HCoreWfn(); void save_data_state(StateOut&); double occupation(int irrep, int vectornum); RefSCMatrix oso_eigenvectors(); RefDiagSCMatrix eigenvalues(); RefSymmSCMatrix density(); int spin_polarized(); int spin_unrestricted(); int value_implemented() const; }; } #endif // Local Variables: // mode: c++ // c-file-style: "ETS" // End: