| [0b990d] | 1 | //
|
|---|
| 2 | // obwfn.cc
|
|---|
| 3 | //
|
|---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
|---|
| 5 | //
|
|---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
|---|
| 7 | // Maintainer: LPS
|
|---|
| 8 | //
|
|---|
| 9 | // This file is part of the SC Toolkit.
|
|---|
| 10 | //
|
|---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
|---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
|---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
|---|
| 14 | // any later version.
|
|---|
| 15 | //
|
|---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
|---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 19 | // GNU Library General Public License for more details.
|
|---|
| 20 | //
|
|---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
|---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
|---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|---|
| 24 | //
|
|---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
|---|
| 26 | //
|
|---|
| 27 |
|
|---|
| 28 | #ifdef __GNUC__
|
|---|
| 29 | #pragma implementation
|
|---|
| 30 | #endif
|
|---|
| 31 |
|
|---|
| 32 | #include <util/state/stateio.h>
|
|---|
| 33 | #include <util/misc/formio.h>
|
|---|
| 34 |
|
|---|
| 35 | #include <math/symmetry/corrtab.h>
|
|---|
| 36 | #include <math/scmat/local.h>
|
|---|
| 37 | #include <math/scmat/blocked.h>
|
|---|
| 38 |
|
|---|
| 39 | #include <chemistry/qc/basis/integral.h>
|
|---|
| 40 | #include <chemistry/qc/basis/obint.h>
|
|---|
| 41 | #include <chemistry/qc/basis/petite.h>
|
|---|
| 42 | #include <chemistry/qc/wfn/obwfn.h>
|
|---|
| 43 |
|
|---|
| 44 | using namespace std;
|
|---|
| 45 | using namespace sc;
|
|---|
| 46 |
|
|---|
| 47 | #define DEBUG 0
|
|---|
| 48 |
|
|---|
| 49 | #ifndef DBL_EPSILON
|
|---|
| 50 | #define DBL_EPSILON 1.0e-15
|
|---|
| 51 | #endif
|
|---|
| 52 |
|
|---|
| 53 | static ClassDesc OneBodyWavefunction_cd(
|
|---|
| 54 | typeid(OneBodyWavefunction),"OneBodyWavefunction",1,"public Wavefunction",
|
|---|
| 55 | 0, 0, 0);
|
|---|
| 56 |
|
|---|
| 57 | OneBodyWavefunction::OneBodyWavefunction(const Ref<KeyVal>&keyval):
|
|---|
| 58 | Wavefunction(keyval),
|
|---|
| 59 | density_(this),
|
|---|
| 60 | oso_eigenvectors_(this),
|
|---|
| 61 | eigenvalues_(this),
|
|---|
| 62 | nirrep_(0),
|
|---|
| 63 | nvecperirrep_(0),
|
|---|
| 64 | occupations_(0),
|
|---|
| 65 | alpha_occupations_(0),
|
|---|
| 66 | beta_occupations_(0)
|
|---|
| 67 | {
|
|---|
| 68 | double acc = keyval->doublevalue("eigenvector_accuracy");
|
|---|
| 69 | if (keyval->error() != KeyVal::OK)
|
|---|
| 70 | acc = value_.desired_accuracy();
|
|---|
| 71 |
|
|---|
| 72 | oso_eigenvectors_.set_desired_accuracy(acc);
|
|---|
| 73 | eigenvalues_.set_desired_accuracy(acc);
|
|---|
| 74 |
|
|---|
| 75 | if (oso_eigenvectors_.desired_accuracy() < DBL_EPSILON) {
|
|---|
| 76 | oso_eigenvectors_.set_desired_accuracy(DBL_EPSILON);
|
|---|
| 77 | eigenvalues_.set_desired_accuracy(DBL_EPSILON);
|
|---|
| 78 | }
|
|---|
| 79 | }
|
|---|
| 80 |
|
|---|
| 81 | OneBodyWavefunction::OneBodyWavefunction(StateIn&s):
|
|---|
| 82 | SavableState(s),
|
|---|
| 83 | Wavefunction(s),
|
|---|
| 84 | density_(this),
|
|---|
| 85 | oso_eigenvectors_(this),
|
|---|
| 86 | eigenvalues_(this),
|
|---|
| 87 | nirrep_(0),
|
|---|
| 88 | nvecperirrep_(0),
|
|---|
| 89 | occupations_(0),
|
|---|
| 90 | alpha_occupations_(0),
|
|---|
| 91 | beta_occupations_(0)
|
|---|
| 92 | {
|
|---|
| 93 | oso_eigenvectors_.result_noupdate() =
|
|---|
| 94 | basis_matrixkit()->matrix(oso_dimension(), oso_dimension());
|
|---|
| 95 | oso_eigenvectors_.restore_state(s);
|
|---|
| 96 | oso_eigenvectors_.result_noupdate().restore(s);
|
|---|
| 97 |
|
|---|
| 98 | eigenvalues_.result_noupdate() =
|
|---|
| 99 | basis_matrixkit()->diagmatrix(oso_dimension());
|
|---|
| 100 | eigenvalues_.restore_state(s);
|
|---|
| 101 | eigenvalues_.result_noupdate().restore(s);
|
|---|
| 102 |
|
|---|
| 103 | density_.result_noupdate() =
|
|---|
| 104 | basis_matrixkit()->symmmatrix(so_dimension());
|
|---|
| 105 | density_.restore_state(s);
|
|---|
| 106 | density_.result_noupdate().restore(s);
|
|---|
| 107 | }
|
|---|
| 108 |
|
|---|
| 109 | OneBodyWavefunction::~OneBodyWavefunction()
|
|---|
| 110 | {
|
|---|
| 111 | if (nvecperirrep_) {
|
|---|
| 112 | delete[] nvecperirrep_;
|
|---|
| 113 | delete[] occupations_;
|
|---|
| 114 | delete[] alpha_occupations_;
|
|---|
| 115 | delete[] beta_occupations_;
|
|---|
| 116 | }
|
|---|
| 117 | nirrep_=0;
|
|---|
| 118 | nvecperirrep_=0;
|
|---|
| 119 | occupations_=0;
|
|---|
| 120 | alpha_occupations_=0;
|
|---|
| 121 | beta_occupations_=0;
|
|---|
| 122 | }
|
|---|
| 123 |
|
|---|
| 124 | void
|
|---|
| 125 | OneBodyWavefunction::save_data_state(StateOut&s)
|
|---|
| 126 | {
|
|---|
| 127 | Wavefunction::save_data_state(s);
|
|---|
| 128 |
|
|---|
| 129 | oso_eigenvectors_.save_data_state(s);
|
|---|
| 130 | oso_eigenvectors_.result_noupdate().save(s);
|
|---|
| 131 |
|
|---|
| 132 | eigenvalues_.save_data_state(s);
|
|---|
| 133 | eigenvalues_.result_noupdate().save(s);
|
|---|
| 134 |
|
|---|
| 135 | density_.save_data_state(s);
|
|---|
| 136 | density_.result_noupdate().save(s);
|
|---|
| 137 | }
|
|---|
| 138 |
|
|---|
| 139 | RefSCMatrix
|
|---|
| 140 | OneBodyWavefunction::projected_eigenvectors(const Ref<OneBodyWavefunction>& owfn,
|
|---|
| 141 | int alp)
|
|---|
| 142 | {
|
|---|
| 143 | //............................................................
|
|---|
| 144 | // first obtain the guess density matrix
|
|---|
| 145 |
|
|---|
| 146 | // The old density in the old SO basis
|
|---|
| 147 | RefSymmSCMatrix oldP_so;
|
|---|
| 148 | if (owfn->spin_unrestricted()) {
|
|---|
| 149 | if (alp) oldP_so = owfn->alpha_density();
|
|---|
| 150 | else oldP_so = owfn->beta_density();
|
|---|
| 151 | }
|
|---|
| 152 | else oldP_so = owfn->density();
|
|---|
| 153 |
|
|---|
| 154 | ExEnv::out0() << endl << indent
|
|---|
| 155 | << "Projecting the guess density.\n"
|
|---|
| 156 | << endl;
|
|---|
| 157 | ExEnv::out0() << incindent;
|
|---|
| 158 |
|
|---|
| 159 | // The old overlap
|
|---|
| 160 | RefSymmSCMatrix oldS = owfn->overlap();
|
|---|
| 161 | ExEnv::out0() << indent
|
|---|
| 162 | << "The number of electrons in the guess density = "
|
|---|
| 163 | << (oldP_so*oldS).trace() << endl;
|
|---|
| 164 |
|
|---|
| 165 | // Transform the old SO overlap into the orthogonal SO basis, oSO
|
|---|
| 166 | RefSCMatrix old_so_to_oso = owfn->so_to_orthog_so();
|
|---|
| 167 | RefSymmSCMatrix oldP_oso(owfn->oso_dimension(), owfn->basis_matrixkit());
|
|---|
| 168 | oldP_oso->assign(0.0);
|
|---|
| 169 | oldP_oso->accumulate_transform(old_so_to_oso, oldP_so);
|
|---|
| 170 |
|
|---|
| 171 | //............................................................
|
|---|
| 172 | // transform the guess density into the current basis
|
|---|
| 173 |
|
|---|
| 174 | // the transformation matrix is the new basis/old basis overlap
|
|---|
| 175 | integral()->set_basis(owfn->basis(), basis());
|
|---|
| 176 | RefSCMatrix old_to_new_ao(owfn->basis()->basisdim(), basis()->basisdim(),
|
|---|
| 177 | basis()->matrixkit());
|
|---|
| 178 | Ref<SCElementOp> op = new OneBodyIntOp(integral()->overlap());
|
|---|
| 179 | old_to_new_ao.assign(0.0);
|
|---|
| 180 | old_to_new_ao.element_op(op);
|
|---|
| 181 | op = 0;
|
|---|
| 182 | integral()->set_basis(basis());
|
|---|
| 183 |
|
|---|
| 184 | // now must transform the transform into the SO basis
|
|---|
| 185 | Ref<PetiteList> pl = integral()->petite_list();
|
|---|
| 186 | Ref<PetiteList> oldpl = owfn->integral()->petite_list();
|
|---|
| 187 | RefSCMatrix blocked_old_to_new_ao(oldpl->AO_basisdim(), pl->AO_basisdim(),
|
|---|
| 188 | basis()->so_matrixkit());
|
|---|
| 189 | blocked_old_to_new_ao->convert(old_to_new_ao);
|
|---|
| 190 | RefSCMatrix old_to_new_so
|
|---|
| 191 | = oldpl->sotoao() * blocked_old_to_new_ao * pl->aotoso();
|
|---|
| 192 |
|
|---|
| 193 | // now must transform the transform into the orthogonal SO basis
|
|---|
| 194 | RefSCMatrix so_to_oso = so_to_orthog_so();
|
|---|
| 195 | RefSCMatrix old_to_new_oso = owfn->so_to_orthog_so_inverse().t()
|
|---|
| 196 | * old_to_new_so
|
|---|
| 197 | * so_to_oso.t();
|
|---|
| 198 | old_so_to_oso = 0;
|
|---|
| 199 | old_to_new_so = 0;
|
|---|
| 200 |
|
|---|
| 201 | // The old density transformed to the new orthogonal SO basis
|
|---|
| 202 | RefSymmSCMatrix newP_oso(oso_dimension(), basis_matrixkit());
|
|---|
| 203 | newP_oso->assign(0.0);
|
|---|
| 204 | newP_oso->accumulate_transform(old_to_new_oso.t(), oldP_oso);
|
|---|
| 205 | old_to_new_oso = 0;
|
|---|
| 206 | oldP_oso = 0;
|
|---|
| 207 | //newP_oso.print("projected orthoSO density");
|
|---|
| 208 |
|
|---|
| 209 | ExEnv::out0() << indent
|
|---|
| 210 | << "The number of electrons in the projected density = "
|
|---|
| 211 | << newP_oso.trace() << endl;
|
|---|
| 212 |
|
|---|
| 213 | //............................................................
|
|---|
| 214 |
|
|---|
| 215 | // reverse the sign of the density so the eigenvectors will
|
|---|
| 216 | // be ordered in the right way
|
|---|
| 217 | newP_oso.scale(-1.0);
|
|---|
| 218 |
|
|---|
| 219 | // use the guess density in the new basis to find the orbitals
|
|---|
| 220 | // (the density should be diagonal in the MO basis--this proceedure
|
|---|
| 221 | // will not give canonical orbitals, but they should at least give
|
|---|
| 222 | // a decent density)
|
|---|
| 223 | RefDiagSCMatrix newP_oso_vals(newP_oso.dim(), basis_matrixkit());
|
|---|
| 224 | RefSCMatrix newP_oso_vecs(newP_oso.dim(), newP_oso.dim(), basis_matrixkit());
|
|---|
| 225 | newP_oso.diagonalize(newP_oso_vals, newP_oso_vecs);
|
|---|
| 226 | //newP_oso_vals.print("eigenvalues of projected density");
|
|---|
| 227 |
|
|---|
| 228 | // Reordering of the vectors isn't needed because of the way
|
|---|
| 229 | // the density was scaled above.
|
|---|
| 230 | RefSCMatrix newvec_oso = newP_oso_vecs;
|
|---|
| 231 |
|
|---|
| 232 | if (debug_ >= 2) {
|
|---|
| 233 | newvec_oso.print("projected ortho SO vector");
|
|---|
| 234 | so_to_oso.print("SO to ortho SO transformation");
|
|---|
| 235 | }
|
|---|
| 236 |
|
|---|
| 237 | ExEnv::out0() << decindent;
|
|---|
| 238 | return newvec_oso;
|
|---|
| 239 | }
|
|---|
| 240 |
|
|---|
| 241 | // this is a hack for big basis sets where the core hamiltonian eigenvalues
|
|---|
| 242 | // are total garbage. Use the old wavefunction's occupied eigenvalues, and
|
|---|
| 243 | // set all others to 99.
|
|---|
| 244 |
|
|---|
| 245 | RefDiagSCMatrix
|
|---|
| 246 | OneBodyWavefunction::projected_eigenvalues(const Ref<OneBodyWavefunction>& owfn,
|
|---|
| 247 | int alp)
|
|---|
| 248 | {
|
|---|
| 249 | // get the old eigenvalues and the new core hamiltonian evals
|
|---|
| 250 | RefDiagSCMatrix oval;
|
|---|
| 251 | if (owfn->spin_unrestricted()) {
|
|---|
| 252 | if (alp)
|
|---|
| 253 | oval = owfn->alpha_eigenvalues();
|
|---|
| 254 | else
|
|---|
| 255 | oval = owfn->beta_eigenvalues();
|
|---|
| 256 | } else
|
|---|
| 257 | oval = owfn->eigenvalues();
|
|---|
| 258 |
|
|---|
| 259 | BlockedDiagSCMatrix *ovalp =
|
|---|
| 260 | require_dynamic_cast<BlockedDiagSCMatrix*>(oval.pointer(),
|
|---|
| 261 | "OneBodyWavefunction::projected_eigenvalues: oval"
|
|---|
| 262 | );
|
|---|
| 263 |
|
|---|
| 264 | // get the core hamiltonian eigenvalues
|
|---|
| 265 | RefDiagSCMatrix val;
|
|---|
| 266 | hcore_guess(val);
|
|---|
| 267 | BlockedDiagSCMatrix *valp =
|
|---|
| 268 | require_dynamic_cast<BlockedDiagSCMatrix*>(val.pointer(),
|
|---|
| 269 | "OneBodyWavefunction::projected_eigenvalues: val"
|
|---|
| 270 | );
|
|---|
| 271 |
|
|---|
| 272 | RefSCDimension oso = oso_dimension();
|
|---|
| 273 | RefSCDimension ooso = owfn->oso_dimension();
|
|---|
| 274 |
|
|---|
| 275 | for (int irrep=0; irrep < valp->nblocks(); irrep++) {
|
|---|
| 276 | // find out how many occupied orbitals there should be
|
|---|
| 277 |
|
|---|
| 278 | int nf = oso->blocks()->size(irrep);
|
|---|
| 279 | int nfo = ooso->blocks()->size(irrep);
|
|---|
| 280 |
|
|---|
| 281 | int nocc = 0;
|
|---|
| 282 | if (owfn->spin_unrestricted()) {
|
|---|
| 283 | if (alp)
|
|---|
| 284 | while (owfn->alpha_occupation(irrep,nocc) &&
|
|---|
| 285 | nocc < nfo) nocc++;
|
|---|
| 286 | else
|
|---|
| 287 | while (owfn->beta_occupation(irrep,nocc) &&
|
|---|
| 288 | nocc < nfo) nocc++;
|
|---|
| 289 | } else
|
|---|
| 290 | while (owfn->occupation(irrep,nocc) &&
|
|---|
| 291 | nocc < nfo) nocc++;
|
|---|
| 292 |
|
|---|
| 293 | if (!nf)
|
|---|
| 294 | continue;
|
|---|
| 295 |
|
|---|
| 296 | double *vals = new double[nf];
|
|---|
| 297 | valp->block(irrep)->convert(vals);
|
|---|
| 298 |
|
|---|
| 299 | int i;
|
|---|
| 300 | if (nfo) {
|
|---|
| 301 | double *ovals = new double[nfo];
|
|---|
| 302 | ovalp->block(irrep)->convert(ovals);
|
|---|
| 303 | for (i=0; i < nocc; i++) vals[i] = ovals[i];
|
|---|
| 304 | delete[] ovals;
|
|---|
| 305 | }
|
|---|
| 306 |
|
|---|
| 307 | for (i=nocc; i < nf; i++)
|
|---|
| 308 | vals[i] = 99.0;
|
|---|
| 309 |
|
|---|
| 310 | valp->block(irrep)->assign(vals);
|
|---|
| 311 |
|
|---|
| 312 | delete[] vals;
|
|---|
| 313 | }
|
|---|
| 314 |
|
|---|
| 315 | #if DEBUG
|
|---|
| 316 | val.print("projected values");
|
|---|
| 317 | #endif
|
|---|
| 318 |
|
|---|
| 319 | return val;
|
|---|
| 320 | }
|
|---|
| 321 |
|
|---|
| 322 | RefSCMatrix
|
|---|
| 323 | OneBodyWavefunction::so_to_mo()
|
|---|
| 324 | {
|
|---|
| 325 | // works for transforming H, S, etc (covariant)
|
|---|
| 326 | return orthog_so_to_mo() * so_to_orthog_so();
|
|---|
| 327 | // works for transforming the Density (contravariant)
|
|---|
| 328 | //return orthog_so_to_mo() * so_to_orthog_so_inverse().t();
|
|---|
| 329 | }
|
|---|
| 330 |
|
|---|
| 331 | RefSCMatrix
|
|---|
| 332 | OneBodyWavefunction::orthog_so_to_mo()
|
|---|
| 333 | {
|
|---|
| 334 | return oso_eigenvectors().t();
|
|---|
| 335 | }
|
|---|
| 336 |
|
|---|
| 337 | RefSCMatrix
|
|---|
| 338 | OneBodyWavefunction::mo_to_so()
|
|---|
| 339 | {
|
|---|
| 340 | // works for transforming H, S, etc (covariant)
|
|---|
| 341 | return so_to_orthog_so_inverse() * mo_to_orthog_so();
|
|---|
| 342 | // works for transforming the Density (contravariant)
|
|---|
| 343 | //return so_to_orthog_so().t() * mo_to_orthog_so();
|
|---|
| 344 | }
|
|---|
| 345 |
|
|---|
| 346 | RefSCMatrix
|
|---|
| 347 | OneBodyWavefunction::mo_to_orthog_so()
|
|---|
| 348 | {
|
|---|
| 349 | return oso_eigenvectors();
|
|---|
| 350 | }
|
|---|
| 351 |
|
|---|
| 352 | RefSCMatrix
|
|---|
| 353 | OneBodyWavefunction::eigenvectors()
|
|---|
| 354 | {
|
|---|
| 355 | return so_to_orthog_so().t() * oso_eigenvectors();
|
|---|
| 356 | }
|
|---|
| 357 |
|
|---|
| 358 | RefSCMatrix
|
|---|
| 359 | OneBodyWavefunction::hcore_guess()
|
|---|
| 360 | {
|
|---|
| 361 | RefDiagSCMatrix val;
|
|---|
| 362 | return hcore_guess(val);
|
|---|
| 363 | }
|
|---|
| 364 |
|
|---|
| 365 | RefSCMatrix
|
|---|
| 366 | OneBodyWavefunction::hcore_guess(RefDiagSCMatrix &val)
|
|---|
| 367 | {
|
|---|
| 368 | RefSCMatrix vec(oso_dimension(), oso_dimension(), basis_matrixkit());
|
|---|
| 369 | val = basis_matrixkit()->diagmatrix(oso_dimension());
|
|---|
| 370 |
|
|---|
| 371 | // I'm about to do something strange, but it will only work
|
|---|
| 372 | // if the SO and orthogonal SO dimensions are equivalent. This
|
|---|
| 373 | // is not the case for canonical orthogonalization when there
|
|---|
| 374 | // are linear dependencies.
|
|---|
| 375 | if (so_dimension()->equiv(oso_dimension())) {
|
|---|
| 376 | // Yes, this is diagonalizing Hcore in a nonorthogonal basis
|
|---|
| 377 | // and does not really make any sense--except it seems to
|
|---|
| 378 | // always give a better initial guess. I don't understand
|
|---|
| 379 | // why it works better.
|
|---|
| 380 | core_hamiltonian().diagonalize(val,vec);
|
|---|
| 381 | }
|
|---|
| 382 | else {
|
|---|
| 383 | RefSymmSCMatrix hcore_oso(oso_dimension(), basis_matrixkit());
|
|---|
| 384 | hcore_oso->assign(0.0);
|
|---|
| 385 | hcore_oso->accumulate_transform(so_to_orthog_so(), core_hamiltonian());
|
|---|
| 386 |
|
|---|
| 387 | if (debug_ > 1) {
|
|---|
| 388 | hcore_oso.print("hcore in ortho SO basis");
|
|---|
| 389 | }
|
|---|
| 390 |
|
|---|
| 391 | hcore_oso.diagonalize(val,vec);
|
|---|
| 392 |
|
|---|
| 393 | if (debug_ > 1) {
|
|---|
| 394 | val.print("hcore eigenvalues in ortho SO basis");
|
|---|
| 395 | vec.print("hcore eigenvectors in ortho SO basis");
|
|---|
| 396 | }
|
|---|
| 397 | }
|
|---|
| 398 |
|
|---|
| 399 | return vec;
|
|---|
| 400 | }
|
|---|
| 401 |
|
|---|
| 402 | // Function for returning an orbital value at a point
|
|---|
| 403 | double
|
|---|
| 404 | OneBodyWavefunction::orbital(const SCVector3& r, int iorb)
|
|---|
| 405 | {
|
|---|
| 406 | return Wavefunction::orbital(r,iorb,eigenvectors());
|
|---|
| 407 | }
|
|---|
| 408 |
|
|---|
| 409 | // Function for returning an orbital value at a point
|
|---|
| 410 | double
|
|---|
| 411 | OneBodyWavefunction::orbital_density(const SCVector3& r,
|
|---|
| 412 | int iorb,
|
|---|
| 413 | double* orbval)
|
|---|
| 414 | {
|
|---|
| 415 | return Wavefunction::orbital_density(r,iorb,eigenvectors(),orbval);
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | void
|
|---|
| 419 | OneBodyWavefunction::print(ostream&o) const
|
|---|
| 420 | {
|
|---|
| 421 | Wavefunction::print(o);
|
|---|
| 422 | }
|
|---|
| 423 |
|
|---|
| 424 | void
|
|---|
| 425 | OneBodyWavefunction::init_sym_info()
|
|---|
| 426 | {
|
|---|
| 427 | RefSCDimension d = oso_dimension();
|
|---|
| 428 | nirrep_ = d->blocks()->nblock();
|
|---|
| 429 | nvecperirrep_ = new int[nirrep_];
|
|---|
| 430 | occupations_ = new double[d->n()];
|
|---|
| 431 | alpha_occupations_ = new double[d->n()];
|
|---|
| 432 | beta_occupations_ = new double[d->n()];
|
|---|
| 433 |
|
|---|
| 434 | int ij=0;
|
|---|
| 435 | for (int i=0; i < nirrep_; i++) {
|
|---|
| 436 | nvecperirrep_[i] = d->blocks()->size(i);
|
|---|
| 437 |
|
|---|
| 438 | for (int j=0; j < nvecperirrep_[i]; j++, ij++) {
|
|---|
| 439 | if (!spin_unrestricted()) occupations_[ij] = occupation(i,j);
|
|---|
| 440 | else occupations_[ij] = 0.0;
|
|---|
| 441 | alpha_occupations_[ij] = alpha_occupation(i,j);
|
|---|
| 442 | beta_occupations_[ij] = beta_occupation(i,j);
|
|---|
| 443 | }
|
|---|
| 444 | }
|
|---|
| 445 | }
|
|---|
| 446 |
|
|---|
| 447 | double
|
|---|
| 448 | OneBodyWavefunction::occupation(int vectornum)
|
|---|
| 449 | {
|
|---|
| 450 | if (spin_unrestricted()) {
|
|---|
| 451 | ExEnv::errn() << "OneBodyWavefunction::occupation: called for USCF case"
|
|---|
| 452 | << endl;
|
|---|
| 453 | abort();
|
|---|
| 454 | }
|
|---|
| 455 | if (!nirrep_) init_sym_info();
|
|---|
| 456 | return occupations_[vectornum];
|
|---|
| 457 | }
|
|---|
| 458 |
|
|---|
| 459 | double
|
|---|
| 460 | OneBodyWavefunction::alpha_occupation(int vectornum)
|
|---|
| 461 | {
|
|---|
| 462 | if (!nirrep_) init_sym_info();
|
|---|
| 463 | return alpha_occupations_[vectornum];
|
|---|
| 464 | }
|
|---|
| 465 |
|
|---|
| 466 | double
|
|---|
| 467 | OneBodyWavefunction::beta_occupation(int vectornum)
|
|---|
| 468 | {
|
|---|
| 469 | if (!nirrep_) init_sym_info();
|
|---|
| 470 | return beta_occupations_[vectornum];
|
|---|
| 471 | }
|
|---|
| 472 |
|
|---|
| 473 | double
|
|---|
| 474 | OneBodyWavefunction::alpha_occupation(int irrep, int vectornum)
|
|---|
| 475 | {
|
|---|
| 476 | if (!spin_polarized())
|
|---|
| 477 | return 0.5*occupation(irrep, vectornum);
|
|---|
| 478 |
|
|---|
| 479 | ExEnv::errn() << class_name() << "::alpha_occupation not implemented" << endl;
|
|---|
| 480 | abort();
|
|---|
| 481 | return 0;
|
|---|
| 482 | }
|
|---|
| 483 |
|
|---|
| 484 | double
|
|---|
| 485 | OneBodyWavefunction::beta_occupation(int irrep, int vectornum)
|
|---|
| 486 | {
|
|---|
| 487 | if (!spin_polarized())
|
|---|
| 488 | return 0.5*occupation(irrep, vectornum);
|
|---|
| 489 |
|
|---|
| 490 | ExEnv::errn() << class_name() << "::beta_occupation not implemented" << endl;
|
|---|
| 491 | abort();
|
|---|
| 492 | return 0;
|
|---|
| 493 | }
|
|---|
| 494 |
|
|---|
| 495 | RefSCMatrix
|
|---|
| 496 | OneBodyWavefunction::oso_alpha_eigenvectors()
|
|---|
| 497 | {
|
|---|
| 498 | if (!spin_unrestricted())
|
|---|
| 499 | return oso_eigenvectors().copy();
|
|---|
| 500 |
|
|---|
| 501 | ExEnv::errn() << class_name() << "::oso_alpha_eigenvectors not implemented" << endl;
|
|---|
| 502 | abort();
|
|---|
| 503 | return 0;
|
|---|
| 504 | }
|
|---|
| 505 |
|
|---|
| 506 | RefSCMatrix
|
|---|
| 507 | OneBodyWavefunction::oso_beta_eigenvectors()
|
|---|
| 508 | {
|
|---|
| 509 | if (!spin_unrestricted())
|
|---|
| 510 | return oso_eigenvectors().copy();
|
|---|
| 511 |
|
|---|
| 512 | ExEnv::errn() << class_name() << "::oso_beta_eigenvectors not implemented" << endl;
|
|---|
| 513 | abort();
|
|---|
| 514 | return 0;
|
|---|
| 515 | }
|
|---|
| 516 |
|
|---|
| 517 | RefSCMatrix
|
|---|
| 518 | OneBodyWavefunction::alpha_eigenvectors()
|
|---|
| 519 | {
|
|---|
| 520 | if (!spin_unrestricted())
|
|---|
| 521 | return eigenvectors().copy();
|
|---|
| 522 |
|
|---|
| 523 | ExEnv::errn() << class_name() << "::alpha_eigenvectors not implemented" << endl;
|
|---|
| 524 | abort();
|
|---|
| 525 | return 0;
|
|---|
| 526 | }
|
|---|
| 527 |
|
|---|
| 528 | RefSCMatrix
|
|---|
| 529 | OneBodyWavefunction::beta_eigenvectors()
|
|---|
| 530 | {
|
|---|
| 531 | if (!spin_unrestricted())
|
|---|
| 532 | return eigenvectors().copy();
|
|---|
| 533 |
|
|---|
| 534 | ExEnv::errn() << class_name() << "::beta_eigenvectors not implemented" << endl;
|
|---|
| 535 | abort();
|
|---|
| 536 | return 0;
|
|---|
| 537 | }
|
|---|
| 538 |
|
|---|
| 539 | RefDiagSCMatrix
|
|---|
| 540 | OneBodyWavefunction::alpha_eigenvalues()
|
|---|
| 541 | {
|
|---|
| 542 | if (!spin_unrestricted())
|
|---|
| 543 | return eigenvalues().copy();
|
|---|
| 544 |
|
|---|
| 545 | ExEnv::errn() << class_name() << "::alpha_eigenvalues not implemented" << endl;
|
|---|
| 546 | abort();
|
|---|
| 547 | return 0;
|
|---|
| 548 | }
|
|---|
| 549 |
|
|---|
| 550 | RefDiagSCMatrix
|
|---|
| 551 | OneBodyWavefunction::beta_eigenvalues()
|
|---|
| 552 | {
|
|---|
| 553 | if (!spin_unrestricted())
|
|---|
| 554 | return eigenvalues().copy();
|
|---|
| 555 |
|
|---|
| 556 | ExEnv::errn() << class_name() << "::beta_eigenvalues not implemented" << endl;
|
|---|
| 557 | abort();
|
|---|
| 558 | return 0;
|
|---|
| 559 | }
|
|---|
| 560 |
|
|---|
| 561 | int
|
|---|
| 562 | OneBodyWavefunction::nelectron()
|
|---|
| 563 | {
|
|---|
| 564 | int noso = oso_dimension()->n();
|
|---|
| 565 | double tocc = 0.0;
|
|---|
| 566 | if (!spin_polarized()) {
|
|---|
| 567 | for (int i=0; i<noso; i++) {
|
|---|
| 568 | tocc += occupation(i);
|
|---|
| 569 | }
|
|---|
| 570 | }
|
|---|
| 571 | else {
|
|---|
| 572 | for (int i=0; i<noso; i++) {
|
|---|
| 573 | tocc += alpha_occupation(i) + beta_occupation(i);
|
|---|
| 574 | }
|
|---|
| 575 | }
|
|---|
| 576 | return int(tocc+0.5);
|
|---|
| 577 | }
|
|---|
| 578 |
|
|---|
| 579 | void
|
|---|
| 580 | OneBodyWavefunction::symmetry_changed()
|
|---|
| 581 | {
|
|---|
| 582 | Wavefunction::symmetry_changed();
|
|---|
| 583 |
|
|---|
| 584 | // junk the old occupation information
|
|---|
| 585 | delete[] nvecperirrep_;
|
|---|
| 586 | delete[] occupations_;
|
|---|
| 587 | delete[] alpha_occupations_;
|
|---|
| 588 | delete[] beta_occupations_;
|
|---|
| 589 | nirrep_ = 0;
|
|---|
| 590 | nvecperirrep_=0;
|
|---|
| 591 | occupations_=0;
|
|---|
| 592 | alpha_occupations_=0;
|
|---|
| 593 | beta_occupations_=0;
|
|---|
| 594 |
|
|---|
| 595 | // for now, delete old eigenvectors...later we'll transform to new
|
|---|
| 596 | // pointgroup
|
|---|
| 597 | oso_eigenvectors_.result_noupdate() = 0;
|
|---|
| 598 | }
|
|---|
| 599 |
|
|---|
| 600 | int
|
|---|
| 601 | OneBodyWavefunction::form_occupations(int *&newocc, const int *oldocc)
|
|---|
| 602 | {
|
|---|
| 603 | delete[] newocc;
|
|---|
| 604 | newocc = 0;
|
|---|
| 605 |
|
|---|
| 606 | CorrelationTable corrtab;
|
|---|
| 607 | if (corrtab.initialize_table(initial_pg_, molecule()->point_group()))
|
|---|
| 608 | return 0;
|
|---|
| 609 |
|
|---|
| 610 | newocc = new int[corrtab.subn()];
|
|---|
| 611 | memset(newocc,0,sizeof(int)*corrtab.subn());
|
|---|
| 612 |
|
|---|
| 613 | for (int i=0; i<corrtab.n(); i++) {
|
|---|
| 614 | for (int j=0; j<corrtab.ngamma(i); j++) {
|
|---|
| 615 | int gam = corrtab.gamma(i,j);
|
|---|
| 616 | newocc[gam] += (corrtab.subdegen(gam)*oldocc[i])/corrtab.degen(i);
|
|---|
| 617 | }
|
|---|
| 618 | }
|
|---|
| 619 |
|
|---|
| 620 | return 1;
|
|---|
| 621 | }
|
|---|
| 622 |
|
|---|
| 623 | void
|
|---|
| 624 | OneBodyWavefunction::set_desired_value_accuracy(double eps)
|
|---|
| 625 | {
|
|---|
| 626 | Function::set_desired_value_accuracy(eps);
|
|---|
| 627 | oso_eigenvectors_.set_desired_accuracy(eps);
|
|---|
| 628 | eigenvalues_.set_desired_accuracy(eps);
|
|---|
| 629 | }
|
|---|
| 630 |
|
|---|
| 631 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 632 |
|
|---|
| 633 | // Local Variables:
|
|---|
| 634 | // mode: c++
|
|---|
| 635 | // c-file-style: "ETS"
|
|---|
| 636 | // End:
|
|---|