[0b990d] | 1 | //
|
---|
| 2 | // nao.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1997 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #include <util/misc/formio.h>
|
---|
| 29 | #include <chemistry/qc/wfn/wfn.h>
|
---|
| 30 | #include <chemistry/qc/basis/petite.h>
|
---|
| 31 | #include <chemistry/qc/basis/transform.h>
|
---|
| 32 |
|
---|
| 33 | using namespace std;
|
---|
| 34 | using namespace sc;
|
---|
| 35 |
|
---|
| 36 | #undef DEBUG
|
---|
| 37 |
|
---|
| 38 | namespace sc {
|
---|
| 39 | static RefSCMatrix
|
---|
| 40 | operator *(const RefDiagSCMatrix &d, const RefSymmSCMatrix &s)
|
---|
| 41 | {
|
---|
| 42 | RefSCMatrix ret(s.dim(), s.dim(), s.kit());
|
---|
| 43 | int n = s.dim()->n();
|
---|
| 44 | for (int i=0; i<n; i++) {
|
---|
| 45 | for (int j=0; j<n; j++) {
|
---|
| 46 | ret.set_element(i,j, d.get_element(i)*s.get_element(i,j));
|
---|
| 47 | }
|
---|
| 48 | }
|
---|
| 49 | return ret;
|
---|
| 50 | }
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | static RefSymmSCMatrix
|
---|
| 54 | weight_matrix(const RefDiagSCMatrix &d, const RefSymmSCMatrix &s)
|
---|
| 55 | {
|
---|
| 56 | RefSymmSCMatrix ret = s.clone();
|
---|
| 57 | int n = s.dim()->n();
|
---|
| 58 | for (int i=0; i<n; i++) {
|
---|
| 59 | for (int j=0; j<=i; j++) {
|
---|
| 60 | ret.set_element(i,j, s.get_element(i,j)
|
---|
| 61 | *d.get_element(i)*d.get_element(j));
|
---|
| 62 | }
|
---|
| 63 | }
|
---|
| 64 | return ret;
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | static int
|
---|
| 68 | nnmb_atom(int z, int l)
|
---|
| 69 | {
|
---|
| 70 | if (l==0) {
|
---|
| 71 | if (z <= 2) return 1;
|
---|
| 72 | else if (z <= 10) return 2;
|
---|
| 73 | else if (z <= 18) return 3;
|
---|
| 74 | }
|
---|
| 75 | else if (l==1) {
|
---|
| 76 | if (z <= 4) return 0;
|
---|
| 77 | else if (z <= 12) return 1;
|
---|
| 78 | else if (z <= 20) return 2;
|
---|
| 79 | }
|
---|
| 80 | else if (l==2) {
|
---|
| 81 | if (z <= 20) return 0;
|
---|
| 82 | }
|
---|
| 83 | else if (l==3) {
|
---|
| 84 | if (z <= 56) return 0;
|
---|
| 85 | }
|
---|
| 86 | else {
|
---|
| 87 | return 0;
|
---|
| 88 | }
|
---|
| 89 | ExEnv::errn() << "NAO: z too big" << endl;
|
---|
| 90 | abort();
|
---|
| 91 | return 0;
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | static int
|
---|
| 95 | nnmb_all_atom(int z, int maxl)
|
---|
| 96 | {
|
---|
| 97 | int ret = 0;
|
---|
| 98 | for (int i=0; i<=maxl; i++) {
|
---|
| 99 | ret += nnmb_atom(z,i) * (2*i+1);
|
---|
| 100 | }
|
---|
| 101 | return ret;
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | static RefSymmSCMatrix
|
---|
| 105 | mhalf(const RefSymmSCMatrix &S)
|
---|
| 106 | {
|
---|
| 107 | RefSCDimension tdim = S.dim();
|
---|
| 108 | Ref<SCMatrixKit> kit = S.kit();
|
---|
| 109 |
|
---|
| 110 | // find a symmetric orthogonalization transform
|
---|
| 111 | RefSCMatrix trans(tdim,tdim,kit);
|
---|
| 112 | RefDiagSCMatrix eigval(tdim,kit);
|
---|
| 113 |
|
---|
| 114 | S.diagonalize(eigval,trans);
|
---|
| 115 |
|
---|
| 116 | Ref<SCElementOp> squareroot = new SCElementSquareRoot;
|
---|
| 117 | eigval.element_op(squareroot);
|
---|
| 118 |
|
---|
| 119 | Ref<SCElementOp> invert = new SCElementInvert(1.0e-12);
|
---|
| 120 | eigval.element_op(invert);
|
---|
| 121 |
|
---|
| 122 | RefSymmSCMatrix OL(tdim,kit);
|
---|
| 123 | OL.assign(0.0);
|
---|
| 124 | // OL = trans * eigval * trans.t();
|
---|
| 125 | OL.accumulate_transform(trans, eigval);
|
---|
| 126 | return OL;
|
---|
| 127 | }
|
---|
| 128 |
|
---|
| 129 | static void
|
---|
| 130 | delete_partition_info(int natom, int *maxam_on_atom,
|
---|
| 131 | int **nam_on_atom, int ***amoff_on_atom)
|
---|
| 132 | {
|
---|
| 133 | int i, j;
|
---|
| 134 | for (i=0; i<natom; i++) {
|
---|
| 135 | for (j=0; j<=maxam_on_atom[i]; j++) {
|
---|
| 136 | delete[] amoff_on_atom[i][j];
|
---|
| 137 | }
|
---|
| 138 | delete[] nam_on_atom[i];
|
---|
| 139 | delete[] amoff_on_atom[i];
|
---|
| 140 | }
|
---|
| 141 | delete[] maxam_on_atom;
|
---|
| 142 | delete[] nam_on_atom;
|
---|
| 143 | delete[] amoff_on_atom;
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | #ifdef DEBUG
|
---|
| 147 | static double
|
---|
| 148 | ttrace(const RefSCMatrix &N,
|
---|
| 149 | const RefSymmSCMatrix &P,
|
---|
| 150 | const RefSymmSCMatrix &S)
|
---|
| 151 | {
|
---|
| 152 | RefSCMatrix Nt = N.t();
|
---|
| 153 | RefSymmSCMatrix Pt = P.clone();
|
---|
| 154 | Pt.assign(0.0);
|
---|
| 155 | Pt.accumulate_transform(Nt, P);
|
---|
| 156 | RefSymmSCMatrix St = S.clone();
|
---|
| 157 | St.assign(0.0);
|
---|
| 158 | St.accumulate_transform(Nt, S);
|
---|
| 159 | return (mhalf(St)*Pt*mhalf(St)).trace();
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | // for N giving an orthonormal basis
|
---|
| 163 | static double
|
---|
| 164 | ttrace(const RefSCMatrix &N,
|
---|
| 165 | const RefSymmSCMatrix &P)
|
---|
| 166 | {
|
---|
| 167 | RefSCMatrix Nt = N.t();
|
---|
| 168 | RefSymmSCMatrix Pt = P.clone();
|
---|
| 169 | Pt.assign(0.0);
|
---|
| 170 | Pt.accumulate_transform(Nt, P);
|
---|
| 171 | return Pt.trace();
|
---|
| 172 | }
|
---|
| 173 | #endif
|
---|
| 174 |
|
---|
| 175 | static RefSCMatrix
|
---|
| 176 | assemble(const RefSCDimension dim,
|
---|
| 177 | const RefSCMatrix &Nm, int *Nm_map,
|
---|
| 178 | const RefSCMatrix &Nr1, int *Nr1_map,
|
---|
| 179 | const RefSCMatrix &Nr2 = 0, int *Nr2_map = 0)
|
---|
| 180 | {
|
---|
| 181 | int nnmb = Nm.ncol();
|
---|
| 182 | int nr1 = Nr1.ncol();
|
---|
| 183 | int nr2 = (Nr2.null()?0:Nr2.ncol());
|
---|
| 184 | int nb = dim.n();
|
---|
| 185 | if (nb != nnmb + nr1 + nr2) {
|
---|
| 186 | ExEnv::errn() << "assemble: dim mismatch" << endl;
|
---|
| 187 | abort();
|
---|
| 188 | }
|
---|
| 189 | RefSCMatrix N(Nm.rowdim(), Nm.rowdim(), Nm.kit());
|
---|
| 190 | // collect Nm, Nr1, and Nr2 back into N
|
---|
| 191 | int i;
|
---|
| 192 | for (i=0; i<nnmb; i++) {
|
---|
| 193 | if (Nm_map[i] < 0 || Nm_map[i] >= nb) {
|
---|
| 194 | ExEnv::errn() << "assemble: bad Nm_map" << endl;
|
---|
| 195 | abort();
|
---|
| 196 | }
|
---|
| 197 | N.assign_column(Nm.get_column(i), Nm_map[i]);
|
---|
| 198 | }
|
---|
| 199 | for (i=0; i<nr1; i++) {
|
---|
| 200 | if (Nr1_map[i] < 0 || Nr1_map[i] >= nb) {
|
---|
| 201 | ExEnv::errn() << "assemble: bad Nr1_map" << endl;
|
---|
| 202 | abort();
|
---|
| 203 | }
|
---|
| 204 | N.assign_column(Nr1.get_column(i), Nr1_map[i]);
|
---|
| 205 | }
|
---|
| 206 | for (i=0; i<nr2; i++) {
|
---|
| 207 | if (Nr2_map[i] < 0 || Nr2_map[i] >= nb) {
|
---|
| 208 | ExEnv::errn() << "assemble: bad Nr2_map" << endl;
|
---|
| 209 | abort();
|
---|
| 210 | }
|
---|
| 211 | N.assign_column(Nr2.get_column(i), Nr2_map[i]);
|
---|
| 212 | }
|
---|
| 213 | return N;
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 | // form symmetry average NAO for each atom
|
---|
| 217 | static void
|
---|
| 218 | form_nao(const RefSymmSCMatrix &P, const RefSymmSCMatrix &S,
|
---|
| 219 | const RefSCMatrix &N, const RefDiagSCMatrix &W, int natom,
|
---|
| 220 | int *maxam_on_atom, int **nam_on_atom, int ***amoff_on_atom,
|
---|
| 221 | const Ref<SCMatrixKit>& kit)
|
---|
| 222 | {
|
---|
| 223 | int i,j,k,l,m;
|
---|
| 224 |
|
---|
| 225 | N.assign(0.0);
|
---|
| 226 | W.assign(0.0);
|
---|
| 227 |
|
---|
| 228 | for (i=0; i<natom; i++) {
|
---|
| 229 | for (j=0; j<=maxam_on_atom[i]; j++) {
|
---|
| 230 | int nfunc = 2*j + 1;
|
---|
| 231 | double oonfunc = 1.0/nfunc;
|
---|
| 232 | int nt = nam_on_atom[i][j];
|
---|
| 233 | RefSCDimension tdim(new SCDimension(nt));
|
---|
| 234 | RefSymmSCMatrix Pt(tdim, kit);
|
---|
| 235 | RefSymmSCMatrix St(tdim, kit);
|
---|
| 236 | Pt.assign(0.0);
|
---|
| 237 | St.assign(0.0);
|
---|
| 238 | for (k=0; k<nt; k++) {
|
---|
| 239 | for (l=0; l<nt; l++) {
|
---|
| 240 | double Stmp = 0.0;
|
---|
| 241 | double Ptmp = 0.0;
|
---|
| 242 | for (m=0; m<nfunc; m++) {
|
---|
| 243 | int ii = amoff_on_atom[i][j][k] + m;
|
---|
| 244 | int jj = amoff_on_atom[i][j][l] + m;
|
---|
| 245 | Stmp += S.get_element(ii,jj);
|
---|
| 246 | Ptmp += P.get_element(ii,jj);
|
---|
| 247 | }
|
---|
| 248 | St.set_element(k,l,Stmp*oonfunc);
|
---|
| 249 | Pt.set_element(k,l,Ptmp*oonfunc);
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
| 252 | // find a symmetric orthogonalization transform
|
---|
| 253 | RefSymmSCMatrix OL = mhalf(St);
|
---|
| 254 |
|
---|
| 255 | // transform Pt to the orthogonal basis
|
---|
| 256 | RefSymmSCMatrix PtL(tdim,kit);
|
---|
| 257 | PtL.assign(0.0);
|
---|
| 258 | PtL.accumulate_transform(OL, Pt);
|
---|
| 259 |
|
---|
| 260 | // diagonalize PtL
|
---|
| 261 | RefSCMatrix trans(tdim,tdim,kit);
|
---|
| 262 | RefDiagSCMatrix eigval(tdim,kit);
|
---|
| 263 | PtL.diagonalize(eigval, trans);
|
---|
| 264 |
|
---|
| 265 | // transform trans to the nonortho basis
|
---|
| 266 | trans = OL * trans;
|
---|
| 267 |
|
---|
| 268 | # ifdef DEBUG
|
---|
| 269 | eigval.print("eigval");
|
---|
| 270 | # endif
|
---|
| 271 | // fill in the elements of W
|
---|
| 272 | for (k=0; k<nt; k++) {
|
---|
| 273 | // the eigenvalues come out backwards: reverse them
|
---|
| 274 | int krev = nt-k-1;
|
---|
| 275 | double elem = eigval.get_element(krev);
|
---|
| 276 | for (m=0; m<nfunc; m++) {
|
---|
| 277 | int ii = amoff_on_atom[i][j][k] + m;
|
---|
| 278 | # ifdef DEBUG
|
---|
| 279 | ExEnv::outn().form("W(%2d) = %12.8f\n", ii, elem);
|
---|
| 280 | # endif
|
---|
| 281 | W.set_element(ii, elem);
|
---|
| 282 | }
|
---|
| 283 | }
|
---|
| 284 |
|
---|
| 285 | // fill in the elements of N
|
---|
| 286 | for (k=0; k<nt; k++) {
|
---|
| 287 | for (l=0; l<nt; l++) {
|
---|
| 288 | // the eigenvalues come out backwards: reverse them
|
---|
| 289 | int lrev = nt-l-1;
|
---|
| 290 | double elem = trans.get_element(k,lrev);
|
---|
| 291 | for (m=0; m<nfunc; m++) {
|
---|
| 292 | int ii = amoff_on_atom[i][j][k] + m;
|
---|
| 293 | int jj = amoff_on_atom[i][j][l] + m;
|
---|
| 294 | N.set_element(ii,jj, elem);
|
---|
| 295 | }
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
| 298 | }
|
---|
| 299 | }
|
---|
| 300 | }
|
---|
| 301 |
|
---|
| 302 | // From "Natural Population Analysis", Alan E. Reed, Robert B. Weinstock,
|
---|
| 303 | // Frank Weinhold, JCP, 83 (1985), p 735.
|
---|
| 304 | RefSCMatrix
|
---|
| 305 | Wavefunction::nao(double *atom_charges)
|
---|
| 306 | {
|
---|
| 307 |
|
---|
| 308 | Ref<GaussianBasisSet> b = basis();
|
---|
| 309 | Ref<PetiteList> pl = integral()->petite_list();
|
---|
| 310 |
|
---|
| 311 | // compute S, the ao basis overlap
|
---|
| 312 | RefSymmSCMatrix blockedS = pl->to_AO_basis(overlap());
|
---|
| 313 | RefSymmSCMatrix S
|
---|
| 314 | = dynamic_cast<BlockedSymmSCMatrix*>(blockedS.pointer())->block(0);
|
---|
| 315 | blockedS = 0;
|
---|
| 316 | # ifdef DEBUG
|
---|
| 317 | S.print("S");
|
---|
| 318 | # endif
|
---|
| 319 |
|
---|
| 320 | // compute P, the ao basis density
|
---|
| 321 | RefSymmSCMatrix P
|
---|
| 322 | = dynamic_cast<BlockedSymmSCMatrix*>(ao_density().pointer())->block(0);
|
---|
| 323 |
|
---|
| 324 | // why? good question.
|
---|
| 325 | RefSymmSCMatrix Ptmp = P->clone();
|
---|
| 326 | Ptmp.assign(0.0);
|
---|
| 327 | Ptmp->accumulate_transform(S, P);
|
---|
| 328 | # ifdef DEBUG
|
---|
| 329 | P.print("P");
|
---|
| 330 | ExEnv::out0() << "nelec = " << (mhalf(S) * Ptmp * mhalf(S)).trace() << endl;
|
---|
| 331 | ExEnv::out0() << "nelec(2) = " << (P * S).trace() << endl;
|
---|
| 332 | # endif
|
---|
| 333 | P = Ptmp;
|
---|
| 334 | Ptmp = 0;
|
---|
| 335 |
|
---|
| 336 | int i,j,k,l;
|
---|
| 337 | int nb = b->nbasis();
|
---|
| 338 | int nsh = b->nshell();
|
---|
| 339 | int natom = molecule()->natom();
|
---|
| 340 |
|
---|
| 341 | # ifdef DEBUG
|
---|
| 342 | ExEnv::out0() << "nb = " << nb << endl;
|
---|
| 343 | ExEnv::out0() << "nsh = " << nsh << endl;
|
---|
| 344 | ExEnv::out0() << "natom = " << natom << endl;
|
---|
| 345 | # endif
|
---|
| 346 |
|
---|
| 347 | // Step 2a. Transform to solid harmonics.
|
---|
| 348 | // -- for now program will abort if basis does not use only S.H and cart d.
|
---|
| 349 | RefSCDimension aodim = P.dim();
|
---|
| 350 | RefSCMatrix Tdfg(aodim, aodim, matrixkit());
|
---|
| 351 | Tdfg->unit();
|
---|
| 352 | for (i=0; i<nsh; i++) {
|
---|
| 353 | const GaussianShell &shell = b->shell(i);
|
---|
| 354 | int off = b->shell_to_function(i);
|
---|
| 355 | for (j=0; j<shell.ncontraction(); j++) {
|
---|
| 356 | if (shell.am(j) == 2 && ! shell.is_pure(j)) {
|
---|
| 357 | for (k=0; k<6; k++) {
|
---|
| 358 | for (l=0; l<6; l++) {
|
---|
| 359 | Tdfg.set_element(off+k,off+l,0.0);
|
---|
| 360 | }
|
---|
| 361 | }
|
---|
| 362 | // this will put the s function first and the d second
|
---|
| 363 | // first grab the s function
|
---|
| 364 | SphericalTransformIter *sti;
|
---|
| 365 | sti = integral()->new_spherical_transform_iter(2,0,0);
|
---|
| 366 | for (sti->begin(); sti->ready(); sti->next()) {
|
---|
| 367 | Tdfg->set_element(off + sti->pureindex(),
|
---|
| 368 | off + sti->cartindex(),
|
---|
| 369 | sti->coef());
|
---|
| 370 | }
|
---|
| 371 | delete sti;
|
---|
| 372 | // now for the pure d part of the cartesian d shell
|
---|
| 373 | sti = integral()->new_spherical_transform_iter(2,0,2);
|
---|
| 374 | for (sti->begin(); sti->ready(); sti->next()) {
|
---|
| 375 | Tdfg->set_element(off + sti->pureindex() + 1,
|
---|
| 376 | off + sti->cartindex(),
|
---|
| 377 | sti->coef());
|
---|
| 378 | }
|
---|
| 379 | delete sti;
|
---|
| 380 | }
|
---|
| 381 | else if (shell.am(j) > 2 && ! shell.is_pure(j)) {
|
---|
| 382 | ExEnv::errn() << "NAOs can only be computed for puream if am > 2" << endl;
|
---|
| 383 | abort();
|
---|
| 384 | }
|
---|
| 385 | off += shell.nfunction(j);
|
---|
| 386 | }
|
---|
| 387 | }
|
---|
| 388 |
|
---|
| 389 | // Tdfg should already be orthogonal, normalize them
|
---|
| 390 | // RefSCMatrix Tdfgo = Tdfg*Tdfg.t();
|
---|
| 391 | // RefDiagSCMatrix Tdfg_norm(Tdfg.rowdim(), matrixkit());
|
---|
| 392 | // for (i=0; i<nb; i++) {
|
---|
| 393 | // double o = Tdfgo.get_element(i,i);
|
---|
| 394 | // Tdfg_norm.set_element(i,1.0/sqrt(o));
|
---|
| 395 | // }
|
---|
| 396 | // Tdfgo = 0;
|
---|
| 397 | // Tdfg = Tdfg_norm * Tdfg;
|
---|
| 398 |
|
---|
| 399 | # ifdef DEBUG
|
---|
| 400 | Tdfg.print("Tdfg");
|
---|
| 401 | (Tdfg.t() * Tdfg).print("Tdfg.t() * Tdfg");
|
---|
| 402 | (Tdfg * Tdfg.t()).print("Tdfg * Tdfg.t()");
|
---|
| 403 | # endif
|
---|
| 404 |
|
---|
| 405 | RefSymmSCMatrix Pdfg(aodim, matrixkit());
|
---|
| 406 | // Pdfp = Tdfp.t() * P * Tdfp
|
---|
| 407 | Pdfg.assign(0.0); Pdfg.accumulate_transform(Tdfg, P);
|
---|
| 408 | RefSymmSCMatrix Sdfg(aodim, matrixkit());
|
---|
| 409 | // Sdfp = Tdfp.t() * S * Tdfp
|
---|
| 410 | Sdfg.assign(0.0); Sdfg.accumulate_transform(Tdfg, S);
|
---|
| 411 | # ifdef DEBUG
|
---|
| 412 | ExEnv::out0() << "nelec = " << (mhalf(Sdfg) * Pdfg * mhalf(Sdfg)).trace() << endl;
|
---|
| 413 | # endif
|
---|
| 414 |
|
---|
| 415 | // Step 2b. Partitioning and symmetry averaging of P and S
|
---|
| 416 | // Partitioning:
|
---|
| 417 | int *maxam_on_atom = new int[natom];
|
---|
| 418 | int **nam_on_atom = new int*[natom];
|
---|
| 419 | int ***amoff_on_atom = new int**[natom];
|
---|
| 420 | int maxam = -1;
|
---|
| 421 | for (i=0; i<natom; i++) {
|
---|
| 422 | maxam_on_atom[i] = -1;
|
---|
| 423 | for (j=0; j<b->nshell_on_center(i); j++) {
|
---|
| 424 | GaussianShell &shell = b->shell(i,j);
|
---|
| 425 | int maxam_on_shell = shell.max_angular_momentum();
|
---|
| 426 | if (maxam_on_atom[i] < maxam_on_shell)
|
---|
| 427 | maxam_on_atom[i] = maxam_on_shell;
|
---|
| 428 | }
|
---|
| 429 | if (maxam_on_atom[i] > maxam) maxam = maxam_on_atom[i];
|
---|
| 430 | nam_on_atom[i] = new int[maxam_on_atom[i]+1];
|
---|
| 431 | for (j=0; j<=maxam_on_atom[i]; j++) {
|
---|
| 432 | nam_on_atom[i][j] = 0;
|
---|
| 433 | for (k=0; k<b->nshell_on_center(i); k++) {
|
---|
| 434 | GaussianShell &shell = b->shell(i,k);
|
---|
| 435 | for (l=0; l<shell.ncontraction(); l++) {
|
---|
| 436 | if (shell.am(l) == j) nam_on_atom[i][j]++;
|
---|
| 437 | if (shell.am(l) == 2 && !shell.is_pure(l) && j == 0) {
|
---|
| 438 | // the s component of a cartesian d
|
---|
| 439 | nam_on_atom[i][0]++;
|
---|
| 440 | }
|
---|
| 441 | }
|
---|
| 442 | }
|
---|
| 443 | }
|
---|
| 444 | amoff_on_atom[i] = new int*[maxam_on_atom[i]+1];
|
---|
| 445 | for (j=0; j<=maxam_on_atom[i]; j++) {
|
---|
| 446 | amoff_on_atom[i][j] = new int[nam_on_atom[i][j]];
|
---|
| 447 | int nam = 0;
|
---|
| 448 | for (k=0; k<b->nshell_on_center(i); k++) {
|
---|
| 449 | GaussianShell &shell = b->shell(i,k);
|
---|
| 450 | int function_offset
|
---|
| 451 | = b->shell_to_function(b->shell_on_center(i,k));
|
---|
| 452 | int conoffset = 0;
|
---|
| 453 | for (l=0; l<shell.ncontraction(); l++) {
|
---|
| 454 | if (shell.am(l) == j) {
|
---|
| 455 | amoff_on_atom[i][j][nam]
|
---|
| 456 | = function_offset + conoffset;
|
---|
| 457 | if (j == 2 && !shell.is_pure(l)) {
|
---|
| 458 | // the pure d part of a cartesian d shell is offset
|
---|
| 459 | amoff_on_atom[i][j][nam]++;
|
---|
| 460 | }
|
---|
| 461 | nam++;
|
---|
| 462 | }
|
---|
| 463 | if (shell.am(l) == 2 && (!shell.is_pure(l)) && j == 0) {
|
---|
| 464 | // the s component of a cartesian d
|
---|
| 465 | amoff_on_atom[i][j][nam]
|
---|
| 466 | = function_offset + conoffset;
|
---|
| 467 | nam++;
|
---|
| 468 | }
|
---|
| 469 | conoffset += shell.nfunction(l);
|
---|
| 470 | }
|
---|
| 471 | }
|
---|
| 472 | }
|
---|
| 473 | }
|
---|
| 474 |
|
---|
| 475 | # ifdef DEBUG
|
---|
| 476 | ExEnv::out0() << indent << "Basis set partitioning:" << endl;
|
---|
| 477 | ExEnv::out0() << incindent;
|
---|
| 478 | for (i=0; i<natom; i++) {
|
---|
| 479 | ExEnv::out0() << indent << "atom " << i
|
---|
| 480 | << " maxam = " << maxam_on_atom[i] << endl;
|
---|
| 481 | ExEnv::out0() << incindent;
|
---|
| 482 | for (j=0; j<=maxam_on_atom[i]; j++) {
|
---|
| 483 | ExEnv::out0() << indent << "am = " << j
|
---|
| 484 | << " n = " << nam_on_atom[i][j] << endl;
|
---|
| 485 | ExEnv::out0() << incindent;
|
---|
| 486 | ExEnv::out0() << indent << "offsets =";
|
---|
| 487 | for (k=0; k<nam_on_atom[i][j]; k++) {
|
---|
| 488 | ExEnv::out0() << " " << amoff_on_atom[i][j][k];
|
---|
| 489 | }
|
---|
| 490 | ExEnv::out0() << endl;
|
---|
| 491 | ExEnv::out0() << decindent;
|
---|
| 492 | }
|
---|
| 493 | ExEnv::out0() << decindent;
|
---|
| 494 | }
|
---|
| 495 | ExEnv::out0() << decindent;
|
---|
| 496 | # endif
|
---|
| 497 |
|
---|
| 498 | // Symmetry averaging and Step 2c: Formation of pre-NAO's
|
---|
| 499 | RefSCMatrix N(aodim, aodim, matrixkit());
|
---|
| 500 | RefDiagSCMatrix W(aodim, matrixkit());
|
---|
| 501 | form_nao(Pdfg, Sdfg, N, W, natom, maxam_on_atom, nam_on_atom, amoff_on_atom,
|
---|
| 502 | matrixkit());
|
---|
| 503 | # ifdef DEBUG
|
---|
| 504 | N.print("N");
|
---|
| 505 | W.print("W");
|
---|
| 506 | ExEnv::out0() << "nelec = " << ttrace(N, Pdfg, Sdfg) << endl;
|
---|
| 507 | # endif
|
---|
| 508 |
|
---|
| 509 | // Step 3a: selection of NMB orbitals
|
---|
| 510 |
|
---|
| 511 | // count the size of nmb
|
---|
| 512 | int nnmb = 0;
|
---|
| 513 | for (i=0; i<natom; i++) {
|
---|
| 514 | nnmb += nnmb_all_atom(molecule()->Z(i),
|
---|
| 515 | maxam_on_atom[i]);
|
---|
| 516 | }
|
---|
| 517 | int nnrb = nb - nnmb;
|
---|
| 518 |
|
---|
| 519 | # ifdef DEBUG
|
---|
| 520 | ExEnv::out0() << "nnmb = " << nnmb << endl;
|
---|
| 521 | ExEnv::out0() << "nnrb = " << nnrb << endl;
|
---|
| 522 | # endif
|
---|
| 523 |
|
---|
| 524 | RefSCDimension nmbdim = new SCDimension(nnmb);
|
---|
| 525 | RefSCDimension nrbdim = new SCDimension(nnrb);
|
---|
| 526 |
|
---|
| 527 | // split N into the nmb and nrb parts
|
---|
| 528 | RefSCMatrix Nm(aodim, nmbdim, matrixkit());
|
---|
| 529 | RefSCMatrix Nr(aodim, nrbdim, matrixkit());
|
---|
| 530 | RefDiagSCMatrix Wm(nmbdim, matrixkit());
|
---|
| 531 | RefDiagSCMatrix Wr(nrbdim, matrixkit());
|
---|
| 532 | int *Nm_map = new int[nnmb];
|
---|
| 533 | int *Nr_map = new int[nnrb];
|
---|
| 534 |
|
---|
| 535 | int im = 0;
|
---|
| 536 | int ir = 0;
|
---|
| 537 | for (i=0; i<natom; i++) {
|
---|
| 538 | int z = molecule()->Z(i);
|
---|
| 539 | for (j=0; j<=maxam_on_atom[i]; j++) {
|
---|
| 540 | int nnmb_zj = nnmb_atom(z,j);
|
---|
| 541 | int nt = nam_on_atom[i][j];
|
---|
| 542 | for (k=0; k<nt; k++) {
|
---|
| 543 | int iN = amoff_on_atom[i][j][k];
|
---|
| 544 | if (k<nnmb_zj) {
|
---|
| 545 | for (l=0; l<(2*j+1); l++) {
|
---|
| 546 | Nm_map[im] = iN;
|
---|
| 547 | Wm.set_element(im, W.get_element(iN));
|
---|
| 548 | Nm.assign_column(N.get_column(iN++),im++);
|
---|
| 549 | }
|
---|
| 550 | }
|
---|
| 551 | else {
|
---|
| 552 | for (l=0; l<(2*j+1); l++) {
|
---|
| 553 | Nr_map[ir] = iN;
|
---|
| 554 | Wr.set_element(ir, W.get_element(iN));
|
---|
| 555 | Nr.assign_column(N.get_column(iN++),ir++);
|
---|
| 556 | }
|
---|
| 557 | }
|
---|
| 558 | }
|
---|
| 559 | }
|
---|
| 560 | }
|
---|
| 561 | # ifdef DEBUG
|
---|
| 562 | ExEnv::out0() << "Nmmap:"; for (i=0;i<nnmb;i++) ExEnv::out0()<<" "<<Nm_map[i]; ExEnv::out0()<<endl;
|
---|
| 563 | ExEnv::out0() << "Nrmap:"; for (i=0;i<nnrb;i++) ExEnv::out0()<<" "<<Nr_map[i]; ExEnv::out0()<<endl;
|
---|
| 564 | Wm.print("Wm");
|
---|
| 565 | Wr.print("Wr");
|
---|
| 566 | Nm.print("Nm");
|
---|
| 567 | Nr.print("Nr");
|
---|
| 568 | (Nm.t() * Sdfg * Nr).print("3a Smr");
|
---|
| 569 | ExEnv::out0() << "nelec = "
|
---|
| 570 | << ttrace(assemble(aodim,Nm,Nm_map,Nr,Nr_map), Pdfg, Sdfg) << endl;
|
---|
| 571 | # endif
|
---|
| 572 |
|
---|
| 573 | // Step 3b: Schmidt interatomic orthogonalization of NRB to NMB orbs
|
---|
| 574 |
|
---|
| 575 | // orthogonalize the NMB orbs (temporarily, to project them out of NRB)
|
---|
| 576 | int ii=0;
|
---|
| 577 | for (i=0; i<nnmb; i++,ii++) {
|
---|
| 578 | N.assign_column(Nm.get_column(i),ii);
|
---|
| 579 | }
|
---|
| 580 | for (i=0; i<nnrb; i++,ii++) {
|
---|
| 581 | N.assign_column(Nr.get_column(i),ii);
|
---|
| 582 | }
|
---|
| 583 | N->schmidt_orthog(Sdfg.pointer(),nnmb);
|
---|
| 584 |
|
---|
| 585 | RefSCMatrix Nmo = Nm.clone();
|
---|
| 586 | for (i=0; i<nnmb; i++) {
|
---|
| 587 | Nmo.assign_column(N.get_column(i),i);
|
---|
| 588 | }
|
---|
| 589 | RefSCMatrix OSmr = Nmo.t() * Sdfg * Nr;
|
---|
| 590 | OSmr.scale(-1.0);
|
---|
| 591 | Nr.accumulate(Nmo * OSmr);
|
---|
| 592 | # ifdef DEBUG
|
---|
| 593 | OSmr.print("OSmr");
|
---|
| 594 | Nmo.print("Nmo = Nm after temporay orthog");
|
---|
| 595 | Nr.print("Nr after orthogonalization to NMB");
|
---|
| 596 | (Nm.t() * Sdfg * Nr).print("3b Smr");
|
---|
| 597 | # endif
|
---|
| 598 | Nmo = 0;
|
---|
| 599 |
|
---|
| 600 | // Step 3c: Restoration of natural character of the NRB
|
---|
| 601 | // Partitioning:
|
---|
| 602 | int *r_maxam_on_atom = new int[natom];
|
---|
| 603 | int **r_nam_on_atom = new int*[natom];
|
---|
| 604 | int ***r_amoff_on_atom = new int**[natom];
|
---|
| 605 | int r_offset = 0;
|
---|
| 606 | for (i=0; i<natom; i++) {
|
---|
| 607 | int z = molecule()->Z(i);
|
---|
| 608 | r_maxam_on_atom[i] = maxam_on_atom[i];
|
---|
| 609 | r_nam_on_atom[i] = new int[r_maxam_on_atom[i]+1];
|
---|
| 610 | for (j=0; j<=r_maxam_on_atom[i]; j++) {
|
---|
| 611 | r_nam_on_atom[i][j] = nam_on_atom[i][j] - nnmb_atom(z,j);
|
---|
| 612 | if (r_nam_on_atom[i][j] < 0) {
|
---|
| 613 | ExEnv::errn() << "NAO: < 0 rydberg orbitals of a given type" << endl;
|
---|
| 614 | abort();
|
---|
| 615 | }
|
---|
| 616 | }
|
---|
| 617 | r_amoff_on_atom[i] = new int*[r_maxam_on_atom[i]+1];
|
---|
| 618 | for (j=0; j<=r_maxam_on_atom[i]; j++) {
|
---|
| 619 | r_amoff_on_atom[i][j] = new int[r_nam_on_atom[i][j]];
|
---|
| 620 | for (k=0; k<r_nam_on_atom[i][j]; k++) {
|
---|
| 621 | r_amoff_on_atom[i][j][k] = r_offset;
|
---|
| 622 | r_offset += 2*j + 1;
|
---|
| 623 | }
|
---|
| 624 | }
|
---|
| 625 | }
|
---|
| 626 | RefSymmSCMatrix Pr(nrbdim, matrixkit());
|
---|
| 627 | // Pr = Nr.t() * Tdfg.t() * P * Tdfg * Nr;
|
---|
| 628 | Pr.assign(0.0); Pr.accumulate_transform(Nr.t(), Pdfg);
|
---|
| 629 | RefSymmSCMatrix Sr(nrbdim, matrixkit());
|
---|
| 630 | // Sr = Nr.t() * Tdfg.t() * S * Tdfg * Nr;
|
---|
| 631 | Sr.assign(0.0); Sr.accumulate_transform(Nr.t(), Sdfg);
|
---|
| 632 |
|
---|
| 633 | // Symmetry averaging and restoration of natural character of NRB
|
---|
| 634 | RefSCMatrix Nrr(nrbdim, nrbdim, matrixkit());
|
---|
| 635 | form_nao(Pr, Sr, Nrr, Wr,
|
---|
| 636 | natom, r_maxam_on_atom, r_nam_on_atom, r_amoff_on_atom,
|
---|
| 637 | matrixkit());
|
---|
| 638 | Nr = Nr * Nrr;
|
---|
| 639 | // these are out-of-date
|
---|
| 640 | Pr = 0; Sr = 0;
|
---|
| 641 | # ifdef DEBUG
|
---|
| 642 | Wr.print("Wr after restoring natural character");
|
---|
| 643 | Nr.print("Nr after restoring natural character");
|
---|
| 644 | (Nm.t() * Sdfg * Nr).print("3c Smr");
|
---|
| 645 | # endif
|
---|
| 646 |
|
---|
| 647 | // Step 4a: Weighted interatomic orthogonalization
|
---|
| 648 | // nmb part of OW
|
---|
| 649 | RefSymmSCMatrix Sm(nmbdim, matrixkit());
|
---|
| 650 | Sm.assign(0.0); Sm.accumulate_transform(Nm.t(), Sdfg);
|
---|
| 651 | RefSymmSCMatrix SWm = weight_matrix(Wm, Sm);
|
---|
| 652 | RefSCMatrix OWm = Wm * mhalf(SWm);
|
---|
| 653 | # ifdef DEBUG
|
---|
| 654 | Sm.print("Sm before 4a");
|
---|
| 655 | OWm.print("OWm");
|
---|
| 656 | (OWm.t() * Sm * OWm).print("Sm after 4a");
|
---|
| 657 | ExEnv::out0() << "nelec = "
|
---|
| 658 | << ttrace(assemble(aodim,Nm,Nm_map,Nr,Nr_map), Pdfg, Sdfg) << endl;
|
---|
| 659 | # endif
|
---|
| 660 |
|
---|
| 661 | // put OWm into Nm
|
---|
| 662 | Nm = Nm * OWm;
|
---|
| 663 |
|
---|
| 664 | # ifdef DEBUG
|
---|
| 665 | Nm.print("Nm after interatomic orthog");
|
---|
| 666 | (Nm.t() * Sdfg * Nr).print("4a Smr before r orthog");
|
---|
| 667 | ExEnv::out0() << "nelec = "
|
---|
| 668 | << ttrace(assemble(aodim,Nm,Nm_map,Nr,Nr_map), Pdfg, Sdfg)
|
---|
| 669 | << endl;
|
---|
| 670 | # endif
|
---|
| 671 |
|
---|
| 672 | // nrb part of OW
|
---|
| 673 | // based on Wr, r is split into r1 and r2
|
---|
| 674 | double tw = 1.0e-4; // the tolerance used for the split
|
---|
| 675 | int nr1 = 0;
|
---|
| 676 | int nr2 = 0;
|
---|
| 677 | for (i=0; i<nnrb; i++) {
|
---|
| 678 | if (fabs(Wr.get_element(i)) >= tw) nr1++;
|
---|
| 679 | else nr2++;
|
---|
| 680 | }
|
---|
| 681 | RefSCDimension r1dim(new SCDimension(nr1));
|
---|
| 682 | RefSCDimension r2dim(new SCDimension(nr2));
|
---|
| 683 | RefSCMatrix Nr1(aodim, r1dim, matrixkit());
|
---|
| 684 | RefSCMatrix Nr2(aodim, r2dim, matrixkit());
|
---|
| 685 | RefDiagSCMatrix Wr1(r1dim, matrixkit());
|
---|
| 686 | int *Nr1_map = new int[nr1];
|
---|
| 687 | int *Nr2_map = new int[nr2];
|
---|
| 688 | int ir1 = 0;
|
---|
| 689 | int ir2 = 0;
|
---|
| 690 | for (i=0; i<nnrb; i++) {
|
---|
| 691 | if (fabs(Wr.get_element(i)) >= tw) {
|
---|
| 692 | Nr1_map[ir1] = Nr_map[i];
|
---|
| 693 | Wr1.set_element(ir1, Wr.get_element(i));
|
---|
| 694 | Nr1.assign_column(Nr.get_column(i),ir1++);
|
---|
| 695 | }
|
---|
| 696 | else {
|
---|
| 697 | Nr2_map[ir2] = Nr_map[i];
|
---|
| 698 | Nr2.assign_column(Nr.get_column(i),ir2++);
|
---|
| 699 | }
|
---|
| 700 | }
|
---|
| 701 | # ifdef DEBUG
|
---|
| 702 | ExEnv::out0() << "Nr1map:"; for (i=0;i<nr1;i++) ExEnv::out0()<<" "<<Nr1_map[i]; ExEnv::out0()<<endl;
|
---|
| 703 | ExEnv::out0() << "Nr2map:"; for (i=0;i<nr2;i++) ExEnv::out0()<<" "<<Nr2_map[i]; ExEnv::out0()<<endl;
|
---|
| 704 | Nr1.print("Nr1");
|
---|
| 705 | Nr2.print("Nr2");
|
---|
| 706 | (Nm.t() * Sdfg * Nr1).print("4a Smr1 before r orthog");
|
---|
| 707 | (Nm.t() * Sdfg * Nr2).print("4a Smr2 before r orthog");
|
---|
| 708 | ExEnv::out0() << "nelec = "
|
---|
| 709 | << ttrace(assemble(aodim,Nm,Nm_map,Nr1,Nr1_map,Nr2,Nr2_map), Pdfg, Sdfg)
|
---|
| 710 | << endl;
|
---|
| 711 | # endif
|
---|
| 712 |
|
---|
| 713 | // Schmidt orthogonalization of r2 to r1
|
---|
| 714 | // Collect Nr together again (but in the order: r1, r2)
|
---|
| 715 | ii=0;
|
---|
| 716 | for (i=0; i<nr1; i++,ii++) {
|
---|
| 717 | Nr.assign_column(Nr1.get_column(i),ii);
|
---|
| 718 | }
|
---|
| 719 | for (i=0; i<nr2; i++,ii++) {
|
---|
| 720 | Nr.assign_column(Nr2.get_column(i),ii);
|
---|
| 721 | }
|
---|
| 722 | Nr->schmidt_orthog(Sdfg.pointer(),nr1);
|
---|
| 723 | RefSCMatrix Nr1o = Nr1.copy();
|
---|
| 724 | for (i=0; i<nr1; i++) {
|
---|
| 725 | Nr1o.assign_column(Nr.get_column(i), i);
|
---|
| 726 | }
|
---|
| 727 | RefSCMatrix Or1r2 = Nr1o.t() * Sdfg * Nr2;
|
---|
| 728 | Or1r2.scale(-1.0);
|
---|
| 729 | # ifdef DEBUG
|
---|
| 730 | (Nm.t() * Sdfg * Nr2).print("4a Smr2 before orthog of r2 to r1");
|
---|
| 731 | (Nr1.t() * Sdfg * Nr2).print("4a Sr1r2 before orthog of r2 to r1");
|
---|
| 732 | # endif
|
---|
| 733 | Nr2.accumulate(Nr1o * Or1r2);
|
---|
| 734 | # ifdef DEBUG
|
---|
| 735 | Nr2.print("Nr2 after orthogonalization to r1");
|
---|
| 736 | (Nm.t() * Sdfg * Nr2).print("4a Smr2 after orthog of r2 to r1");
|
---|
| 737 | (Nr1.t() * Sdfg * Nr2).print("4a Sr1r2 after orthog of r2 to r1");
|
---|
| 738 | ExEnv::out0() << "nelec = "
|
---|
| 739 | << ttrace(assemble(aodim,Nm,Nm_map,Nr1,Nr1_map,Nr2,Nr2_map), Pdfg, Sdfg)
|
---|
| 740 | << endl;
|
---|
| 741 | # endif
|
---|
| 742 |
|
---|
| 743 | // weighted symmetric orthog of r1
|
---|
| 744 | RefSymmSCMatrix Sr1(r1dim, matrixkit());
|
---|
| 745 | Sr1.assign(0.0); Sr1.accumulate_transform(Nr1.t(), Sdfg);
|
---|
| 746 | RefSymmSCMatrix SWr1 = weight_matrix(Wr1, Sr1);
|
---|
| 747 | RefSCMatrix OWr1 = Wr1 * mhalf(SWr1);
|
---|
| 748 | # ifdef DEBUG
|
---|
| 749 | OWr1.print("OWr1");
|
---|
| 750 | (Nr1.t() * Sdfg * Nr1).print("Nr1.t() * Sdfg * Nr1");
|
---|
| 751 | # endif
|
---|
| 752 | // Put OWr1 into Nr1
|
---|
| 753 | Nr1 = Nr1 * OWr1;
|
---|
| 754 | # ifdef DEBUG
|
---|
| 755 | Nr1.print("Nr1 after weighted symmetric orthogonalization");
|
---|
| 756 | ExEnv::out0() << "nelec = "
|
---|
| 757 | << ttrace(assemble(aodim,Nm,Nm_map,Nr1,Nr1_map,Nr2,Nr2_map), Pdfg, Sdfg)
|
---|
| 758 | << endl;
|
---|
| 759 | # endif
|
---|
| 760 |
|
---|
| 761 | // symmetric orthog of r1
|
---|
| 762 | RefSymmSCMatrix Sr2(r2dim, matrixkit());
|
---|
| 763 | Sr2.assign(0.0); Sr2.accumulate_transform(Nr2.t(), Sdfg);
|
---|
| 764 | RefSymmSCMatrix OWr2 = mhalf(Sr2);
|
---|
| 765 | # ifdef DEBUG
|
---|
| 766 | OWr2.print("OWr2");
|
---|
| 767 | # endif
|
---|
| 768 |
|
---|
| 769 | // Put OWr2 into Nr2
|
---|
| 770 | Nr2 = Nr2 * OWr2;
|
---|
| 771 | # ifdef DEBUG
|
---|
| 772 | Nr2.print("Nr2 after weighted symmetric orthogonalization");
|
---|
| 773 | ExEnv::out0() << "nelec = "
|
---|
| 774 | << ttrace(assemble(aodim,Nm,Nm_map,Nr1,Nr1_map,Nr2,Nr2_map), Pdfg, Sdfg)
|
---|
| 775 | << endl;
|
---|
| 776 | ExEnv::out0() << "nelec(o) = "
|
---|
| 777 | << ttrace(assemble(aodim,Nm,Nm_map,Nr1,Nr1_map,Nr2,Nr2_map), Pdfg)
|
---|
| 778 | << endl;
|
---|
| 779 | # endif
|
---|
| 780 |
|
---|
| 781 | // Step 4b. restoration of the natural character of the naos
|
---|
| 782 |
|
---|
| 783 | // collect Nm, Nr1, and Nr2 back into N
|
---|
| 784 | N = assemble(aodim, Nm,Nm_map, Nr1,Nr1_map, Nr2,Nr2_map);
|
---|
| 785 | # ifdef DEBUG
|
---|
| 786 | N.print("N after 4a");
|
---|
| 787 | # endif
|
---|
| 788 |
|
---|
| 789 | // compute the density and overlap in the current basis
|
---|
| 790 | // N currently has the entire transform, starting from the dfg basis
|
---|
| 791 | P.assign(0.0);
|
---|
| 792 | P.accumulate_transform(N.t(), Pdfg);
|
---|
| 793 | S.assign(0.0);
|
---|
| 794 | S.accumulate_transform(N.t(), Sdfg);
|
---|
| 795 | # ifdef DEBUG
|
---|
| 796 | P.print("P after 4a");
|
---|
| 797 | S.print("S after 4a");
|
---|
| 798 | (Nm.t() * Sdfg * Nm).print("4a Sm");
|
---|
| 799 | (Nr1.t() * Sdfg * Nr1).print("4a Sr1");
|
---|
| 800 | (Nr2.t() * Sdfg * Nr2).print("4a Sr2");
|
---|
| 801 | (Nm.t() * Sdfg * Nr1).print("4a Smr1");
|
---|
| 802 | (Nm.t() * Sdfg * Nr2).print("4a Smr2");
|
---|
| 803 | (Nr1.t() * Sdfg * Nr2).print("4a Sr1r2");
|
---|
| 804 | # endif
|
---|
| 805 |
|
---|
| 806 | RefSCMatrix Nred(aodim, aodim, matrixkit());
|
---|
| 807 | form_nao(P, S, Nred, W, natom, maxam_on_atom, nam_on_atom, amoff_on_atom,
|
---|
| 808 | matrixkit());
|
---|
| 809 | N = N * Nred;
|
---|
| 810 |
|
---|
| 811 | RefSymmSCMatrix Pfinal(aodim, matrixkit());
|
---|
| 812 | Pfinal.assign(0.0);
|
---|
| 813 | Pfinal.accumulate_transform(N.t(), Pdfg);
|
---|
| 814 | # ifdef DEBUG
|
---|
| 815 | Nred.print("Nred");
|
---|
| 816 | N.print("N after 4b");
|
---|
| 817 | ExEnv::out0() << "nelec = " << ttrace(N, Pdfg, Sdfg) << endl;
|
---|
| 818 | ExEnv::out0() << "nelec(o) = " << ttrace(N, Pdfg) << endl;
|
---|
| 819 | Pfinal.print("final P");
|
---|
| 820 | (N.t() * Sdfg * N).print("final S");
|
---|
| 821 | ExEnv::out0().form("nelec = trace(final P) = %14.8f", (N.t() * Pdfg * N).trace());
|
---|
| 822 |
|
---|
| 823 | (mhalf(Sdfg) * Pdfg * mhalf(Sdfg)).print("P in symm orth basis");
|
---|
| 824 | # endif
|
---|
| 825 |
|
---|
| 826 | # ifdef DEBUG
|
---|
| 827 | ExEnv::out0() << "nb = " << nb << endl;
|
---|
| 828 | ExEnv::out0() << "nnmb = " << nnmb << endl;
|
---|
| 829 | ExEnv::out0() << "nnrb = " << nnrb << endl;
|
---|
| 830 | ExEnv::out0() << "nr1 = " << nr1 << endl;
|
---|
| 831 | ExEnv::out0() << "nr2 = " << nr2 << endl;
|
---|
| 832 | # endif
|
---|
| 833 |
|
---|
| 834 | ExEnv::out0() << indent << "Natural Population Analysis:" << endl;
|
---|
| 835 | ExEnv::out0() << incindent;
|
---|
| 836 | ExEnv::out0() << indent << " n atom charge ";
|
---|
| 837 | for (i=0; i<=maxam; i++) {
|
---|
| 838 | const char *am = "SPDFGH?";
|
---|
| 839 | int index;
|
---|
| 840 | if (i>6) index = 6;
|
---|
| 841 | else index = i;
|
---|
| 842 | ExEnv::out0() << " ne(" << am[index] << ") ";
|
---|
| 843 | }
|
---|
| 844 | ExEnv::out0() << endl;
|
---|
| 845 | for (i=0; i<natom; i++) {
|
---|
| 846 | double e = 0.0;
|
---|
| 847 | for (j=0; j<=maxam_on_atom[i]; j++) {
|
---|
| 848 | for (k=0; k<nam_on_atom[i][j]; k++) {
|
---|
| 849 | for (l=0; l<(2*j+1); l++) {
|
---|
| 850 | e += Pfinal.get_element(amoff_on_atom[i][j][k] + l,
|
---|
| 851 | amoff_on_atom[i][j][k] + l);
|
---|
| 852 | }
|
---|
| 853 | }
|
---|
| 854 | }
|
---|
| 855 | std::string symbol(molecule()->atom_symbol(i));
|
---|
| 856 | ExEnv::out0() << indent
|
---|
| 857 | << scprintf("%3d %2s % 8.6f",i + 1,
|
---|
| 858 | symbol.c_str(),
|
---|
| 859 | double(molecule()->Z(i)) - e);
|
---|
| 860 | if (atom_charges) {
|
---|
| 861 | atom_charges[i] = molecule()->Z(i) - e;
|
---|
| 862 | }
|
---|
| 863 | for (j=0; j<=maxam_on_atom[i]; j++) {
|
---|
| 864 | e = 0.0;
|
---|
| 865 | for (k=0; k<nam_on_atom[i][j]; k++) {
|
---|
| 866 | for (l=0; l<(2*j+1); l++) {
|
---|
| 867 | e += Pfinal.get_element(amoff_on_atom[i][j][k] + l,
|
---|
| 868 | amoff_on_atom[i][j][k] + l);
|
---|
| 869 | }
|
---|
| 870 | }
|
---|
| 871 | ExEnv::out0() << scprintf(" % 8.6f",e);
|
---|
| 872 | }
|
---|
| 873 | ExEnv::out0() << endl;
|
---|
| 874 | }
|
---|
| 875 | ExEnv::out0() << endl;
|
---|
| 876 | ExEnv::out0() << decindent;
|
---|
| 877 |
|
---|
| 878 | delete[] Nm_map;
|
---|
| 879 | delete[] Nr_map;
|
---|
| 880 | delete[] Nr1_map;
|
---|
| 881 | delete[] Nr2_map;
|
---|
| 882 | delete_partition_info(natom,maxam_on_atom,nam_on_atom,amoff_on_atom);
|
---|
| 883 | delete_partition_info(natom,r_maxam_on_atom,r_nam_on_atom,r_amoff_on_atom);
|
---|
| 884 |
|
---|
| 885 | return N;
|
---|
| 886 | }
|
---|
| 887 |
|
---|
| 888 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 889 |
|
---|
| 890 | // Local Variables:
|
---|
| 891 | // mode: c++
|
---|
| 892 | // c-file-style: "CLJ"
|
---|
| 893 | // End:
|
---|