1 | //
|
---|
2 | // uscf.cc --- implementation of the UnrestrictedSCF abstract base class
|
---|
3 | //
|
---|
4 | // Copyright (C) 1997 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Edward Seidl <seidl@janed.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <math.h>
|
---|
33 | #include <limits.h>
|
---|
34 | #include <sys/types.h>
|
---|
35 | #include <sys/stat.h>
|
---|
36 | #include <unistd.h>
|
---|
37 |
|
---|
38 | #include <util/state/stateio.h>
|
---|
39 |
|
---|
40 | #include <util/misc/timer.h>
|
---|
41 | #include <util/misc/formio.h>
|
---|
42 |
|
---|
43 | #include <math/scmat/local.h>
|
---|
44 | #include <math/scmat/repl.h>
|
---|
45 | #include <math/scmat/offset.h>
|
---|
46 | #include <math/scmat/block.h>
|
---|
47 | #include <math/scmat/blocked.h>
|
---|
48 | #include <math/scmat/blkiter.h>
|
---|
49 | #include <math/scmat/local.h>
|
---|
50 |
|
---|
51 | #include <math/optimize/scextrapmat.h>
|
---|
52 | #include <math/optimize/diis.h>
|
---|
53 |
|
---|
54 | #include <chemistry/qc/basis/petite.h>
|
---|
55 | #include <chemistry/qc/scf/scfops.h>
|
---|
56 | #include <chemistry/qc/scf/scflocal.h>
|
---|
57 | #include <chemistry/qc/scf/uscf.h>
|
---|
58 | #include <chemistry/qc/scf/ltbgrad.h>
|
---|
59 | #include <chemistry/qc/scf/uhftmpl.h>
|
---|
60 |
|
---|
61 | using namespace std;
|
---|
62 | using namespace sc;
|
---|
63 |
|
---|
64 | namespace sc {
|
---|
65 |
|
---|
66 | ///////////////////////////////////////////////////////////////////////////
|
---|
67 | // UnrestrictedSCF
|
---|
68 |
|
---|
69 | static ClassDesc UnrestrictedSCF_cd(
|
---|
70 | typeid(UnrestrictedSCF),"UnrestrictedSCF",2,"public SCF",
|
---|
71 | 0, 0, 0);
|
---|
72 |
|
---|
73 | UnrestrictedSCF::UnrestrictedSCF(StateIn& s) :
|
---|
74 | SavableState(s),
|
---|
75 | SCF(s),
|
---|
76 | oso_eigenvectors_beta_(this),
|
---|
77 | eigenvalues_beta_(this),
|
---|
78 | focka_(this),
|
---|
79 | fockb_(this)
|
---|
80 | {
|
---|
81 | need_vec_ = 1;
|
---|
82 | compute_guess_ = 0;
|
---|
83 |
|
---|
84 | oso_eigenvectors_beta_.result_noupdate() =
|
---|
85 | basis_matrixkit()->matrix(so_dimension(), oso_dimension());
|
---|
86 | oso_eigenvectors_beta_.restore_state(s);
|
---|
87 | oso_eigenvectors_beta_.result_noupdate().restore(s);
|
---|
88 |
|
---|
89 | eigenvalues_beta_.result_noupdate() =
|
---|
90 | basis_matrixkit()->diagmatrix(oso_dimension());
|
---|
91 | eigenvalues_beta_.restore_state(s);
|
---|
92 | eigenvalues_beta_.result_noupdate().restore(s);
|
---|
93 |
|
---|
94 | focka_.result_noupdate() =
|
---|
95 | basis_matrixkit()->symmmatrix(so_dimension());
|
---|
96 | focka_.restore_state(s);
|
---|
97 | focka_.result_noupdate().restore(s);
|
---|
98 |
|
---|
99 | fockb_.result_noupdate() =
|
---|
100 | basis_matrixkit()->symmmatrix(so_dimension());
|
---|
101 | fockb_.restore_state(s);
|
---|
102 | fockb_.result_noupdate().restore(s);
|
---|
103 |
|
---|
104 | s.get(user_occupations_);
|
---|
105 | s.get(tnalpha_);
|
---|
106 | s.get(tnbeta_);
|
---|
107 | s.get(nirrep_);
|
---|
108 | s.get(nalpha_);
|
---|
109 | s.get(nbeta_);
|
---|
110 |
|
---|
111 | if (s.version(::class_desc<UnrestrictedSCF>()) >= 2) {
|
---|
112 | s.get(initial_nalpha_);
|
---|
113 | s.get(initial_nbeta_);
|
---|
114 | most_recent_pg_ << SavableState::restore_state(s);
|
---|
115 | } else {
|
---|
116 | initial_nalpha_ = new int[nirrep_];
|
---|
117 | memcpy(initial_nalpha_, nalpha_, sizeof(int)*nirrep_);
|
---|
118 | initial_nbeta_ = new int[nirrep_];
|
---|
119 | memcpy(initial_nbeta_, nbeta_, sizeof(int)*nirrep_);
|
---|
120 | }
|
---|
121 |
|
---|
122 | init_mem(4);
|
---|
123 | }
|
---|
124 |
|
---|
125 | UnrestrictedSCF::UnrestrictedSCF(const Ref<KeyVal>& keyval) :
|
---|
126 | SCF(keyval),
|
---|
127 | oso_eigenvectors_beta_(this),
|
---|
128 | eigenvalues_beta_(this),
|
---|
129 | focka_(this),
|
---|
130 | fockb_(this)
|
---|
131 | {
|
---|
132 | int i;
|
---|
133 |
|
---|
134 | double acc = oso_eigenvectors_.desired_accuracy();
|
---|
135 | oso_eigenvectors_beta_.set_desired_accuracy(acc);
|
---|
136 | eigenvalues_beta_.set_desired_accuracy(acc);
|
---|
137 |
|
---|
138 | if (oso_eigenvectors_beta_.desired_accuracy() < DBL_EPSILON) {
|
---|
139 | oso_eigenvectors_beta_.set_desired_accuracy(DBL_EPSILON);
|
---|
140 | eigenvalues_beta_.set_desired_accuracy(DBL_EPSILON);
|
---|
141 | }
|
---|
142 |
|
---|
143 | focka_.compute()=0;
|
---|
144 | focka_.computed()=0;
|
---|
145 | fockb_.compute()=0;
|
---|
146 | fockb_.computed()=0;
|
---|
147 |
|
---|
148 | // calculate the total nuclear charge
|
---|
149 | double Znuc=molecule()->nuclear_charge();
|
---|
150 |
|
---|
151 | // check to see if this is to be a charged molecule
|
---|
152 | double charge = keyval->doublevalue("total_charge");
|
---|
153 | int nelectrons = (int)(Znuc-charge+1.0e-4);
|
---|
154 |
|
---|
155 | // first let's try to figure out how many open shells there are
|
---|
156 | if (keyval->exists("multiplicity")) {
|
---|
157 | int mult = keyval->intvalue("multiplicity");
|
---|
158 | if (mult < 1) {
|
---|
159 | ExEnv::err0() << endl << indent
|
---|
160 | << "USCF::init: bad value for multiplicity: " << mult << endl
|
---|
161 | << indent << "assuming singlet" << endl;
|
---|
162 | mult=1;
|
---|
163 | }
|
---|
164 |
|
---|
165 | // for singlet, triplet, etc. we need an even number of electrons
|
---|
166 | // for doublet, quartet, etc. we need an odd number of electrons
|
---|
167 | if ((mult%2 && nelectrons%2) || (!(mult%2) && !(nelectrons%2))) {
|
---|
168 | ExEnv::err0() << endl << indent
|
---|
169 | << "USCF::init: Warning, there's a leftover electron..."
|
---|
170 | << " I'm going to get rid of it" << endl
|
---|
171 | << incindent << indent << "total_charge = " << charge << endl
|
---|
172 | << indent << "total nuclear charge = " << Znuc << endl
|
---|
173 | << indent << "multiplicity = " << mult << endl << decindent;
|
---|
174 | nelectrons--;
|
---|
175 | }
|
---|
176 | if (mult%2)
|
---|
177 | tnalpha_ = nelectrons/2 + (mult-1)/2;
|
---|
178 | else
|
---|
179 | tnalpha_ = nelectrons/2 + mult/2;
|
---|
180 |
|
---|
181 | } else {
|
---|
182 | // if there's an odd number of electrons, then do a doublet, otherwise
|
---|
183 | // do a triplet
|
---|
184 | tnalpha_=nelectrons/2+1;
|
---|
185 | }
|
---|
186 |
|
---|
187 | tnbeta_ = nelectrons-tnalpha_;
|
---|
188 |
|
---|
189 | ExEnv::out0() << endl << indent
|
---|
190 | << "USCF::init: total charge = " << Znuc-tnalpha_-tnbeta_
|
---|
191 | << endl << endl;
|
---|
192 |
|
---|
193 | nirrep_ = molecule()->point_group()->char_table().ncomp();
|
---|
194 |
|
---|
195 | nalpha_ = read_occ(keyval, "alpha", nirrep_);
|
---|
196 | nbeta_ = read_occ(keyval, "beta", nirrep_);
|
---|
197 | if (nalpha_ && nbeta_) {
|
---|
198 | tnalpha_ = 0;
|
---|
199 | tnbeta_ = 0;
|
---|
200 | user_occupations_=1;
|
---|
201 | for (i=0; i < nirrep_; i++) {
|
---|
202 | tnalpha_ += nalpha_[i];
|
---|
203 | tnbeta_ += nbeta_[i];
|
---|
204 | }
|
---|
205 | initial_nalpha_ = new int[nirrep_];
|
---|
206 | memcpy(initial_nalpha_, nalpha_, sizeof(int)*nirrep_);
|
---|
207 | initial_nbeta_ = new int[nirrep_];
|
---|
208 | memcpy(initial_nbeta_, nbeta_, sizeof(int)*nirrep_);
|
---|
209 | }
|
---|
210 | else if (nalpha_ && !nbeta_ || !nalpha_ && nbeta_) {
|
---|
211 | ExEnv::out0() << "ERROR: USCF: only one of alpha and beta specified: "
|
---|
212 | << "give both or none" << endl;
|
---|
213 | abort();
|
---|
214 | }
|
---|
215 | else {
|
---|
216 | initial_nalpha_=0;
|
---|
217 | initial_nbeta_=0;
|
---|
218 | nalpha_=0;
|
---|
219 | nbeta_=0;
|
---|
220 | user_occupations_=0;
|
---|
221 | set_occupations(0,0);
|
---|
222 | }
|
---|
223 |
|
---|
224 | ExEnv::out0() << indent << "alpha = [";
|
---|
225 | for (i=0; i < nirrep_; i++)
|
---|
226 | ExEnv::out0() << " " << nalpha_[i];
|
---|
227 | ExEnv::out0() << " ]\n";
|
---|
228 |
|
---|
229 | ExEnv::out0() << indent << "beta = [";
|
---|
230 | for (i=0; i < nirrep_; i++)
|
---|
231 | ExEnv::out0() << " " << nbeta_[i];
|
---|
232 | ExEnv::out0() << " ]\n";
|
---|
233 |
|
---|
234 | // check to see if this was done in SCF(keyval)
|
---|
235 | if (!keyval->exists("maxiter"))
|
---|
236 | maxiter_ = 100;
|
---|
237 |
|
---|
238 | if (!keyval->exists("level_shift"))
|
---|
239 | level_shift_ = 0.25;
|
---|
240 |
|
---|
241 | // now take care of memory stuff
|
---|
242 | init_mem(4);
|
---|
243 | }
|
---|
244 |
|
---|
245 | UnrestrictedSCF::~UnrestrictedSCF()
|
---|
246 | {
|
---|
247 | if (nalpha_) {
|
---|
248 | delete[] nalpha_;
|
---|
249 | nalpha_=0;
|
---|
250 | }
|
---|
251 | if (nbeta_) {
|
---|
252 | delete[] nbeta_;
|
---|
253 | nbeta_=0;
|
---|
254 | }
|
---|
255 | delete[] initial_nalpha_;
|
---|
256 | delete[] initial_nbeta_;
|
---|
257 | }
|
---|
258 |
|
---|
259 | void
|
---|
260 | UnrestrictedSCF::save_data_state(StateOut& s)
|
---|
261 | {
|
---|
262 | SCF::save_data_state(s);
|
---|
263 | oso_eigenvectors_beta_.save_data_state(s);
|
---|
264 | oso_eigenvectors_beta_.result_noupdate().save(s);
|
---|
265 | eigenvalues_beta_.save_data_state(s);
|
---|
266 | eigenvalues_beta_.result_noupdate().save(s);
|
---|
267 | focka_.save_data_state(s);
|
---|
268 | focka_.result_noupdate().save(s);
|
---|
269 | fockb_.save_data_state(s);
|
---|
270 | fockb_.result_noupdate().save(s);
|
---|
271 |
|
---|
272 | s.put(user_occupations_);
|
---|
273 | s.put(tnalpha_);
|
---|
274 | s.put(tnbeta_);
|
---|
275 | s.put(nirrep_);
|
---|
276 | s.put(nalpha_, nirrep_);
|
---|
277 | s.put(nbeta_, nirrep_);
|
---|
278 |
|
---|
279 | s.put(initial_nalpha_,initial_pg_->char_table().ncomp());
|
---|
280 | s.put(initial_nbeta_,initial_pg_->char_table().ncomp());
|
---|
281 | SavableState::save_state(most_recent_pg_.pointer(),s);
|
---|
282 | }
|
---|
283 |
|
---|
284 | double
|
---|
285 | UnrestrictedSCF::occupation(int ir, int i)
|
---|
286 | {
|
---|
287 | abort();
|
---|
288 | return 0;
|
---|
289 | }
|
---|
290 |
|
---|
291 | double
|
---|
292 | UnrestrictedSCF::alpha_occupation(int ir, int i)
|
---|
293 | {
|
---|
294 | if (i < nalpha_[ir]) return 1.0;
|
---|
295 | return 0.0;
|
---|
296 | }
|
---|
297 |
|
---|
298 | double
|
---|
299 | UnrestrictedSCF::beta_occupation(int ir, int i)
|
---|
300 | {
|
---|
301 | if (i < nbeta_[ir]) return 1.0;
|
---|
302 | return 0.0;
|
---|
303 | }
|
---|
304 |
|
---|
305 | RefSCMatrix
|
---|
306 | UnrestrictedSCF::eigenvectors()
|
---|
307 | {
|
---|
308 | abort();
|
---|
309 | return 0;
|
---|
310 | }
|
---|
311 |
|
---|
312 | RefDiagSCMatrix
|
---|
313 | UnrestrictedSCF::eigenvalues()
|
---|
314 | {
|
---|
315 | abort();
|
---|
316 | return 0;
|
---|
317 | }
|
---|
318 |
|
---|
319 | RefSCMatrix
|
---|
320 | UnrestrictedSCF::oso_alpha_eigenvectors()
|
---|
321 | {
|
---|
322 | return oso_eigenvectors_.result();
|
---|
323 | }
|
---|
324 |
|
---|
325 | RefSCMatrix
|
---|
326 | UnrestrictedSCF::alpha_eigenvectors()
|
---|
327 | {
|
---|
328 | return so_to_orthog_so().t() * oso_eigenvectors_.result();
|
---|
329 | }
|
---|
330 |
|
---|
331 | RefDiagSCMatrix
|
---|
332 | UnrestrictedSCF::alpha_eigenvalues()
|
---|
333 | {
|
---|
334 | return eigenvalues_.result();
|
---|
335 | }
|
---|
336 |
|
---|
337 | RefSCMatrix
|
---|
338 | UnrestrictedSCF::oso_beta_eigenvectors()
|
---|
339 | {
|
---|
340 | return oso_eigenvectors_beta_.result();
|
---|
341 | }
|
---|
342 |
|
---|
343 | RefSCMatrix
|
---|
344 | UnrestrictedSCF::beta_eigenvectors()
|
---|
345 | {
|
---|
346 | return so_to_orthog_so().t() * oso_eigenvectors_beta_.result();
|
---|
347 | }
|
---|
348 |
|
---|
349 | RefDiagSCMatrix
|
---|
350 | UnrestrictedSCF::beta_eigenvalues()
|
---|
351 | {
|
---|
352 | return eigenvalues_beta_.result();
|
---|
353 | }
|
---|
354 |
|
---|
355 | int
|
---|
356 | UnrestrictedSCF::spin_polarized()
|
---|
357 | {
|
---|
358 | return 1;
|
---|
359 | }
|
---|
360 |
|
---|
361 | int
|
---|
362 | UnrestrictedSCF::spin_unrestricted()
|
---|
363 | {
|
---|
364 | return 1;
|
---|
365 | }
|
---|
366 |
|
---|
367 | int
|
---|
368 | UnrestrictedSCF::n_fock_matrices() const
|
---|
369 | {
|
---|
370 | return 2;
|
---|
371 | }
|
---|
372 |
|
---|
373 | RefSymmSCMatrix
|
---|
374 | UnrestrictedSCF::fock(int n)
|
---|
375 | {
|
---|
376 | if (n > 1) {
|
---|
377 | ExEnv::err0() << indent
|
---|
378 | << "USCF::fock: there are only two fock matrices, "
|
---|
379 | << scprintf("but fock(%d) was requested\n",n);
|
---|
380 | abort();
|
---|
381 | }
|
---|
382 |
|
---|
383 | if (n==0)
|
---|
384 | return focka_.result();
|
---|
385 | else
|
---|
386 | return fockb_.result();
|
---|
387 | }
|
---|
388 |
|
---|
389 | void
|
---|
390 | UnrestrictedSCF::print(ostream&o) const
|
---|
391 | {
|
---|
392 | int i;
|
---|
393 |
|
---|
394 | SCF::print(o);
|
---|
395 | o << indent << "UnrestrictedSCF Parameters:\n" << incindent
|
---|
396 | << indent << "charge = " << molecule()->nuclear_charge()
|
---|
397 | - tnalpha_ - tnbeta_ << endl
|
---|
398 | << indent << "nalpha = " << tnalpha_ << endl
|
---|
399 | << indent << "nbeta = " << tnbeta_ << endl
|
---|
400 | << indent << "alpha = [";
|
---|
401 |
|
---|
402 | for (i=0; i < nirrep_; i++)
|
---|
403 | o << " " << nalpha_[i];
|
---|
404 | o << " ]" << endl;
|
---|
405 |
|
---|
406 | o << indent << "beta = [";
|
---|
407 | for (i=0; i < nirrep_; i++)
|
---|
408 | o << " " << nbeta_[i];
|
---|
409 | o << " ]" << endl << decindent << endl;
|
---|
410 | }
|
---|
411 |
|
---|
412 | //////////////////////////////////////////////////////////////////////////////
|
---|
413 |
|
---|
414 | void
|
---|
415 | UnrestrictedSCF::initial_vector(int needv)
|
---|
416 | {
|
---|
417 | if (need_vec_) {
|
---|
418 | if (always_use_guess_wfn_ || oso_eigenvectors_.result_noupdate().null()) {
|
---|
419 | // if guess_wfn_ is non-null then try to get a guess vector from it.
|
---|
420 | // First check that the same basis is used...if not, then project the
|
---|
421 | // guess vector into the present basis.
|
---|
422 | // right now the check is crude...there should be an equiv member in
|
---|
423 | // GaussianBasisSet
|
---|
424 | if (guess_wfn_.nonnull()) {
|
---|
425 | if (guess_wfn_->basis()->nbasis() == basis()->nbasis()) {
|
---|
426 | ExEnv::out0() << indent
|
---|
427 | << "Using guess wavefunction as starting vector" << endl;
|
---|
428 |
|
---|
429 | // indent output of eigenvectors() call if there is any
|
---|
430 | ExEnv::out0() << incindent << incindent;
|
---|
431 | UnrestrictedSCF *ug =
|
---|
432 | dynamic_cast<UnrestrictedSCF*>(guess_wfn_.pointer());
|
---|
433 | if (!ug || compute_guess_) {
|
---|
434 | oso_eigenvectors_ = guess_wfn_->oso_alpha_eigenvectors().copy();
|
---|
435 | eigenvalues_ = guess_wfn_->alpha_eigenvalues().copy();
|
---|
436 | oso_eigenvectors_beta_ = guess_wfn_->oso_beta_eigenvectors().copy();
|
---|
437 | eigenvalues_beta_ = guess_wfn_->beta_eigenvalues().copy();
|
---|
438 | } else if (ug) {
|
---|
439 | oso_eigenvectors_ = ug->oso_eigenvectors_.result_noupdate().copy();
|
---|
440 | eigenvalues_ = ug->eigenvalues_.result_noupdate().copy();
|
---|
441 | oso_eigenvectors_beta_
|
---|
442 | = ug->oso_eigenvectors_beta_.result_noupdate().copy();
|
---|
443 | eigenvalues_beta_ = ug->eigenvalues_beta_.result_noupdate().copy();
|
---|
444 | }
|
---|
445 | ExEnv::out0() << decindent << decindent;
|
---|
446 | } else {
|
---|
447 | ExEnv::out0() << indent
|
---|
448 | << "Projecting guess wavefunction into the present basis set"
|
---|
449 | << endl;
|
---|
450 |
|
---|
451 | // indent output of projected_eigenvectors() call if there is any
|
---|
452 | ExEnv::out0() << incindent << incindent;
|
---|
453 | oso_eigenvectors_ = projected_eigenvectors(guess_wfn_, 1);
|
---|
454 | eigenvalues_ = projected_eigenvalues(guess_wfn_, 1);
|
---|
455 | oso_eigenvectors_beta_ = projected_eigenvectors(guess_wfn_, 0);
|
---|
456 | eigenvalues_beta_ = projected_eigenvalues(guess_wfn_, 0);
|
---|
457 | ExEnv::out0() << decindent << decindent;
|
---|
458 | }
|
---|
459 |
|
---|
460 | // we should only have to do this once, so free up memory used
|
---|
461 | // for the old wavefunction, unless told otherwise
|
---|
462 | if (!keep_guess_wfn_) guess_wfn_=0;
|
---|
463 |
|
---|
464 | ExEnv::out0() << endl;
|
---|
465 |
|
---|
466 | } else {
|
---|
467 | ExEnv::out0() << indent << "Starting from core Hamiltonian guess\n"
|
---|
468 | << endl;
|
---|
469 | oso_eigenvectors_ = hcore_guess(eigenvalues_.result_noupdate());
|
---|
470 | oso_eigenvectors_beta_ = oso_eigenvectors_.result_noupdate().copy();
|
---|
471 | eigenvalues_beta_ = eigenvalues_.result_noupdate().copy();
|
---|
472 | }
|
---|
473 | } else {
|
---|
474 | // this is just an old vector
|
---|
475 | }
|
---|
476 | }
|
---|
477 |
|
---|
478 | need_vec_=needv;
|
---|
479 | }
|
---|
480 |
|
---|
481 | //////////////////////////////////////////////////////////////////////////////
|
---|
482 |
|
---|
483 | void
|
---|
484 | UnrestrictedSCF::set_occupations(const RefDiagSCMatrix& ev)
|
---|
485 | {
|
---|
486 | abort();
|
---|
487 | }
|
---|
488 |
|
---|
489 | void
|
---|
490 | UnrestrictedSCF::set_occupations(const RefDiagSCMatrix& eva,
|
---|
491 | const RefDiagSCMatrix& evb)
|
---|
492 | {
|
---|
493 | if (user_occupations_ || (initial_nalpha_ && eva.null())) {
|
---|
494 | if (form_occupations(nalpha_, initial_nalpha_)) {
|
---|
495 | form_occupations(nbeta_, initial_nbeta_);
|
---|
496 | most_recent_pg_ = new PointGroup(molecule()->point_group());
|
---|
497 | return;
|
---|
498 | }
|
---|
499 | ExEnv::out0() << indent
|
---|
500 | << "UnrestrictedSCF: WARNING: reforming occupation vector from scratch" << endl;
|
---|
501 | }
|
---|
502 |
|
---|
503 | if (nirrep_==1) {
|
---|
504 | delete[] nalpha_;
|
---|
505 | nalpha_=new int[1];
|
---|
506 | nalpha_[0] = tnalpha_;
|
---|
507 | delete[] nbeta_;
|
---|
508 | nbeta_=new int[1];
|
---|
509 | nbeta_[0] = tnbeta_;
|
---|
510 | if (!initial_nalpha_ && initial_pg_->equiv(molecule()->point_group())) {
|
---|
511 | initial_nalpha_=new int[1];
|
---|
512 | initial_nalpha_[0] = tnalpha_;
|
---|
513 | }
|
---|
514 | if (!initial_nbeta_ && initial_pg_->equiv(molecule()->point_group())) {
|
---|
515 | initial_nbeta_=new int[1];
|
---|
516 | initial_nbeta_[0] = tnbeta_;
|
---|
517 | }
|
---|
518 | return;
|
---|
519 | }
|
---|
520 |
|
---|
521 | int i,j;
|
---|
522 |
|
---|
523 | RefDiagSCMatrix evalsa, evalsb;
|
---|
524 |
|
---|
525 | if (eva.null()) {
|
---|
526 | initial_vector(0);
|
---|
527 | evalsa = eigenvalues_.result_noupdate();
|
---|
528 | evalsb = eigenvalues_beta_.result_noupdate();
|
---|
529 | }
|
---|
530 | else {
|
---|
531 | evalsa = eva;
|
---|
532 | evalsb = evb;
|
---|
533 | }
|
---|
534 |
|
---|
535 | // first convert evals to something we can deal with easily
|
---|
536 | BlockedDiagSCMatrix *bevalsa = require_dynamic_cast<BlockedDiagSCMatrix*>(evalsa,
|
---|
537 | "UnrestrictedSCF::set_occupations");
|
---|
538 | BlockedDiagSCMatrix *bevalsb = require_dynamic_cast<BlockedDiagSCMatrix*>(evalsb,
|
---|
539 | "UnrestrictedSCF::set_occupations");
|
---|
540 |
|
---|
541 | double **valsa = new double*[nirrep_];
|
---|
542 | double **valsb = new double*[nirrep_];
|
---|
543 | for (i=0; i < nirrep_; i++) {
|
---|
544 | int nf=oso_dimension()->blocks()->size(i);
|
---|
545 | if (nf) {
|
---|
546 | valsa[i] = new double[nf];
|
---|
547 | valsb[i] = new double[nf];
|
---|
548 | bevalsa->block(i)->convert(valsa[i]);
|
---|
549 | bevalsb->block(i)->convert(valsb[i]);
|
---|
550 | } else {
|
---|
551 | valsa[i] = 0;
|
---|
552 | valsb[i] = 0;
|
---|
553 | }
|
---|
554 | }
|
---|
555 |
|
---|
556 | // now loop to find the tnalpha_ lowest eigenvalues and populate those
|
---|
557 | // MO's
|
---|
558 | int *newalpha = new int[nirrep_];
|
---|
559 | memset(newalpha,0,sizeof(int)*nirrep_);
|
---|
560 |
|
---|
561 | for (i=0; i < tnalpha_; i++) {
|
---|
562 | // find lowest eigenvalue
|
---|
563 | int lir=0,ln=0;
|
---|
564 | double lowest=999999999;
|
---|
565 |
|
---|
566 | for (int ir=0; ir < nirrep_; ir++) {
|
---|
567 | int nf=oso_dimension()->blocks()->size(ir);
|
---|
568 | if (!nf)
|
---|
569 | continue;
|
---|
570 | for (j=0; j < nf; j++) {
|
---|
571 | if (valsa[ir][j] < lowest) {
|
---|
572 | lowest=valsa[ir][j];
|
---|
573 | lir=ir;
|
---|
574 | ln=j;
|
---|
575 | }
|
---|
576 | }
|
---|
577 | }
|
---|
578 | valsa[lir][ln]=999999999;
|
---|
579 | newalpha[lir]++;
|
---|
580 | }
|
---|
581 |
|
---|
582 | int *newbeta = new int[nirrep_];
|
---|
583 | memset(newbeta,0,sizeof(int)*nirrep_);
|
---|
584 |
|
---|
585 | for (i=0; i < tnbeta_; i++) {
|
---|
586 | // find lowest eigenvalue
|
---|
587 | int lir=0,ln=0;
|
---|
588 | double lowest=999999999;
|
---|
589 |
|
---|
590 | for (int ir=0; ir < nirrep_; ir++) {
|
---|
591 | int nf=oso_dimension()->blocks()->size(ir);
|
---|
592 | if (!nf)
|
---|
593 | continue;
|
---|
594 | for (j=0; j < nf; j++) {
|
---|
595 | if (valsb[ir][j] < lowest) {
|
---|
596 | lowest=valsb[ir][j];
|
---|
597 | lir=ir;
|
---|
598 | ln=j;
|
---|
599 | }
|
---|
600 | }
|
---|
601 | }
|
---|
602 | valsb[lir][ln]=999999999;
|
---|
603 | newbeta[lir]++;
|
---|
604 | }
|
---|
605 |
|
---|
606 | // get rid of vals
|
---|
607 | for (i=0; i < nirrep_; i++) {
|
---|
608 | if (valsa[i])
|
---|
609 | delete[] valsa[i];
|
---|
610 | if (valsb[i])
|
---|
611 | delete[] valsb[i];
|
---|
612 | }
|
---|
613 | delete[] valsa;
|
---|
614 | delete[] valsb;
|
---|
615 |
|
---|
616 | if (!nalpha_) {
|
---|
617 | nalpha_=newalpha;
|
---|
618 | nbeta_=newbeta;
|
---|
619 | } else if (most_recent_pg_.nonnull()
|
---|
620 | && most_recent_pg_->equiv(molecule()->point_group())) {
|
---|
621 | // test to see if newocc is different from nalpha_
|
---|
622 | for (i=0; i < nirrep_; i++) {
|
---|
623 | if (nalpha_[i] != newalpha[i]) {
|
---|
624 | ExEnv::err0() << indent << "UnrestrictedSCF::set_occupations: WARNING!!!!\n"
|
---|
625 | << incindent << indent
|
---|
626 | << scprintf("occupations for irrep %d have changed\n",i+1)
|
---|
627 | << indent
|
---|
628 | << scprintf("nalpha was %d, changed to %d", nalpha_[i], newalpha[i])
|
---|
629 | << endl << decindent;
|
---|
630 | }
|
---|
631 | if (nbeta_[i] != newbeta[i]) {
|
---|
632 | ExEnv::err0() << indent << "UnrestrictedSCF::set_occupations: WARNING!!!!\n"
|
---|
633 | << incindent << indent
|
---|
634 | << scprintf("occupations for irrep %d have changed\n",i+1)
|
---|
635 | << indent
|
---|
636 | << scprintf("nbeta was %d, changed to %d", nbeta_[i], newbeta[i])
|
---|
637 | << endl << decindent;
|
---|
638 | }
|
---|
639 | }
|
---|
640 |
|
---|
641 | memcpy(nalpha_,newalpha,sizeof(int)*nirrep_);
|
---|
642 | memcpy(nbeta_,newbeta,sizeof(int)*nirrep_);
|
---|
643 | delete[] newalpha;
|
---|
644 | delete[] newbeta;
|
---|
645 | }
|
---|
646 |
|
---|
647 | if (initial_pg_->equiv(molecule()->point_group())) {
|
---|
648 | delete[] initial_nalpha_;
|
---|
649 | initial_nalpha_ = new int[nirrep_];
|
---|
650 | memcpy(initial_nalpha_,nalpha_,sizeof(int)*nirrep_);
|
---|
651 | }
|
---|
652 |
|
---|
653 | if (initial_pg_->equiv(molecule()->point_group())) {
|
---|
654 | delete[] initial_nbeta_;
|
---|
655 | initial_nbeta_ = new int[nirrep_];
|
---|
656 | memcpy(initial_nbeta_,nbeta_,sizeof(int)*nirrep_);
|
---|
657 | }
|
---|
658 |
|
---|
659 | most_recent_pg_ = new PointGroup(molecule()->point_group());
|
---|
660 | }
|
---|
661 |
|
---|
662 | void
|
---|
663 | UnrestrictedSCF::symmetry_changed()
|
---|
664 | {
|
---|
665 | SCF::symmetry_changed();
|
---|
666 | nirrep_ = molecule()->point_group()->char_table().ncomp();
|
---|
667 | oso_eigenvectors_beta_.result_noupdate() = 0;
|
---|
668 | eigenvalues_beta_.result_noupdate() = 0;
|
---|
669 | focka_.result_noupdate() = 0;
|
---|
670 | fockb_.result_noupdate() = 0;
|
---|
671 | set_occupations(0,0);
|
---|
672 | }
|
---|
673 |
|
---|
674 | //////////////////////////////////////////////////////////////////////////////
|
---|
675 | //
|
---|
676 | // scf things
|
---|
677 | //
|
---|
678 |
|
---|
679 | void
|
---|
680 | UnrestrictedSCF::init_vector()
|
---|
681 | {
|
---|
682 | init_threads();
|
---|
683 |
|
---|
684 | // allocate storage for other temp matrices
|
---|
685 | densa_ = hcore_.clone();
|
---|
686 | densa_.assign(0.0);
|
---|
687 |
|
---|
688 | diff_densa_ = hcore_.clone();
|
---|
689 | diff_densa_.assign(0.0);
|
---|
690 |
|
---|
691 | densb_ = hcore_.clone();
|
---|
692 | densb_.assign(0.0);
|
---|
693 |
|
---|
694 | diff_densb_ = hcore_.clone();
|
---|
695 | diff_densb_.assign(0.0);
|
---|
696 |
|
---|
697 | // gmat is in AO basis
|
---|
698 | gmata_ = basis()->matrixkit()->symmmatrix(basis()->basisdim());
|
---|
699 | gmata_.assign(0.0);
|
---|
700 |
|
---|
701 | gmatb_ = gmata_.clone();
|
---|
702 | gmatb_.assign(0.0);
|
---|
703 |
|
---|
704 | if (focka_.result_noupdate().null()) {
|
---|
705 | focka_ = hcore_.clone();
|
---|
706 | focka_.result_noupdate().assign(0.0);
|
---|
707 | fockb_ = hcore_.clone();
|
---|
708 | fockb_.result_noupdate().assign(0.0);
|
---|
709 | }
|
---|
710 |
|
---|
711 | // set up trial vector
|
---|
712 | initial_vector(1);
|
---|
713 |
|
---|
714 | oso_scf_vector_ = oso_eigenvectors_.result_noupdate();
|
---|
715 | oso_scf_vector_beta_ = oso_eigenvectors_beta_.result_noupdate();
|
---|
716 | }
|
---|
717 |
|
---|
718 | void
|
---|
719 | UnrestrictedSCF::done_vector()
|
---|
720 | {
|
---|
721 | done_threads();
|
---|
722 |
|
---|
723 | hcore_ = 0;
|
---|
724 | gmata_ = 0;
|
---|
725 | densa_ = 0;
|
---|
726 | diff_densa_ = 0;
|
---|
727 | gmatb_ = 0;
|
---|
728 | densb_ = 0;
|
---|
729 | diff_densb_ = 0;
|
---|
730 |
|
---|
731 | oso_scf_vector_ = 0;
|
---|
732 | oso_scf_vector_beta_ = 0;
|
---|
733 | }
|
---|
734 |
|
---|
735 | RefSymmSCMatrix
|
---|
736 | UnrestrictedSCF::alpha_density()
|
---|
737 | {
|
---|
738 | RefSymmSCMatrix dens(so_dimension(), basis_matrixkit());
|
---|
739 | so_density(dens, 1.0, 1);
|
---|
740 | return dens;
|
---|
741 | }
|
---|
742 |
|
---|
743 | RefSymmSCMatrix
|
---|
744 | UnrestrictedSCF::beta_density()
|
---|
745 | {
|
---|
746 | RefSymmSCMatrix dens(so_dimension(), basis_matrixkit());
|
---|
747 | so_density(dens, 1.0, 0);
|
---|
748 | return dens;
|
---|
749 | }
|
---|
750 |
|
---|
751 | void
|
---|
752 | UnrestrictedSCF::reset_density()
|
---|
753 | {
|
---|
754 | gmata_.assign(0.0);
|
---|
755 | diff_densa_.assign(densa_);
|
---|
756 |
|
---|
757 | gmatb_.assign(0.0);
|
---|
758 | diff_densb_.assign(densb_);
|
---|
759 | }
|
---|
760 |
|
---|
761 | double
|
---|
762 | UnrestrictedSCF::new_density()
|
---|
763 | {
|
---|
764 | // copy current density into density diff and scale by -1. later we'll
|
---|
765 | // add the new density to this to get the density difference.
|
---|
766 | diff_densa_.assign(densa_);
|
---|
767 | diff_densa_.scale(-1.0);
|
---|
768 |
|
---|
769 | diff_densb_.assign(densb_);
|
---|
770 | diff_densb_.scale(-1.0);
|
---|
771 |
|
---|
772 | so_density(densa_, 1.0, 1);
|
---|
773 | so_density(densb_, 1.0, 0);
|
---|
774 |
|
---|
775 | diff_densa_.accumulate(densa_);
|
---|
776 | diff_densb_.accumulate(densb_);
|
---|
777 |
|
---|
778 | RefSymmSCMatrix d = diff_densa_ + diff_densb_;
|
---|
779 |
|
---|
780 | Ref<SCElementScalarProduct> sp(new SCElementScalarProduct);
|
---|
781 | d.element_op(sp.pointer(), d);
|
---|
782 | d=0;
|
---|
783 |
|
---|
784 | double delta = sp->result();
|
---|
785 | delta = sqrt(delta/i_offset(diff_densa_.n()));
|
---|
786 |
|
---|
787 | return delta;
|
---|
788 | }
|
---|
789 |
|
---|
790 | RefSymmSCMatrix
|
---|
791 | UnrestrictedSCF::density()
|
---|
792 | {
|
---|
793 | if (!density_.computed()) {
|
---|
794 | RefSymmSCMatrix densa(so_dimension(), basis_matrixkit());
|
---|
795 | RefSymmSCMatrix densb(so_dimension(), basis_matrixkit());
|
---|
796 | so_density(densa, 1.0, 1);
|
---|
797 | so_density(densb, 1.0, 0);
|
---|
798 | densa.accumulate(densb);
|
---|
799 | densb=0;
|
---|
800 |
|
---|
801 | density_ = densa;
|
---|
802 | // only flag the density as computed if the calc is converged
|
---|
803 | if (!value_needed()) density_.computed() = 1;
|
---|
804 | }
|
---|
805 |
|
---|
806 | return density_.result_noupdate();
|
---|
807 | }
|
---|
808 |
|
---|
809 | double
|
---|
810 | UnrestrictedSCF::scf_energy()
|
---|
811 | {
|
---|
812 | SCFEnergy *eop = new SCFEnergy;
|
---|
813 | eop->reference();
|
---|
814 | Ref<SCElementOp2> op = eop;
|
---|
815 | focka_.result_noupdate().element_op(op, densa_);
|
---|
816 | double ea = eop->result();
|
---|
817 |
|
---|
818 | eop->reset();
|
---|
819 | fockb_.result_noupdate().element_op(op, densb_);
|
---|
820 | double eb = eop->result();
|
---|
821 |
|
---|
822 | RefSymmSCMatrix denst = densa_+densb_;
|
---|
823 | eop->reset();
|
---|
824 | hcore_.element_op(op, denst);
|
---|
825 | double ec = eop->result();
|
---|
826 | denst=0;
|
---|
827 |
|
---|
828 | op=0;
|
---|
829 | eop->dereference();
|
---|
830 | delete eop;
|
---|
831 |
|
---|
832 | return ec+ea+eb;
|
---|
833 | }
|
---|
834 |
|
---|
835 | RefSymmSCMatrix
|
---|
836 | UnrestrictedSCF::effective_fock()
|
---|
837 | {
|
---|
838 | abort();
|
---|
839 | return 0;
|
---|
840 | }
|
---|
841 |
|
---|
842 | ////////////////////////////////////////////////////////////////////////////
|
---|
843 |
|
---|
844 | class UAExtrapErrorOp : public BlockedSCElementOp {
|
---|
845 | private:
|
---|
846 | UnrestrictedSCF *scf_;
|
---|
847 |
|
---|
848 | public:
|
---|
849 | UAExtrapErrorOp(UnrestrictedSCF *s) : scf_(s) {}
|
---|
850 | ~UAExtrapErrorOp() {}
|
---|
851 |
|
---|
852 | int has_side_effects() { return 1; }
|
---|
853 |
|
---|
854 | void process(SCMatrixBlockIter& bi) {
|
---|
855 | int ir=current_block();
|
---|
856 |
|
---|
857 | for (bi.reset(); bi; bi++) {
|
---|
858 | int i=bi.i();
|
---|
859 | int j=bi.j();
|
---|
860 | if (scf_->alpha_occupation(ir,i) == scf_->alpha_occupation(ir,j))
|
---|
861 | bi.set(0.0);
|
---|
862 | }
|
---|
863 | }
|
---|
864 | };
|
---|
865 |
|
---|
866 | class UBExtrapErrorOp : public BlockedSCElementOp {
|
---|
867 | private:
|
---|
868 | UnrestrictedSCF *scf_;
|
---|
869 |
|
---|
870 | public:
|
---|
871 | UBExtrapErrorOp(UnrestrictedSCF *s) : scf_(s) {}
|
---|
872 | ~UBExtrapErrorOp() {}
|
---|
873 |
|
---|
874 | int has_side_effects() { return 1; }
|
---|
875 |
|
---|
876 | void process(SCMatrixBlockIter& bi) {
|
---|
877 | int ir=current_block();
|
---|
878 |
|
---|
879 | for (bi.reset(); bi; bi++) {
|
---|
880 | int i=bi.i();
|
---|
881 | int j=bi.j();
|
---|
882 | if (scf_->beta_occupation(ir,i) == scf_->beta_occupation(ir,j))
|
---|
883 | bi.set(0.0);
|
---|
884 | }
|
---|
885 | }
|
---|
886 | };
|
---|
887 |
|
---|
888 | Ref<SCExtrapData>
|
---|
889 | UnrestrictedSCF::extrap_data()
|
---|
890 | {
|
---|
891 | Ref<SCExtrapData> data =
|
---|
892 | new SymmSCMatrix2SCExtrapData(focka_.result_noupdate(),
|
---|
893 | fockb_.result_noupdate());
|
---|
894 | return data;
|
---|
895 | }
|
---|
896 |
|
---|
897 | Ref<SCExtrapError>
|
---|
898 | UnrestrictedSCF::extrap_error()
|
---|
899 | {
|
---|
900 | RefSCMatrix so_to_ortho_so_tr = so_to_orthog_so().t();
|
---|
901 |
|
---|
902 | // form Error_a
|
---|
903 | RefSymmSCMatrix moa(oso_dimension(), basis_matrixkit());
|
---|
904 | moa.assign(0.0);
|
---|
905 | moa.accumulate_transform(so_to_ortho_so_tr * oso_scf_vector_,
|
---|
906 | focka_.result_noupdate(),
|
---|
907 | SCMatrix::TransposeTransform);
|
---|
908 |
|
---|
909 | Ref<SCElementOp> op = new UAExtrapErrorOp(this);
|
---|
910 | moa.element_op(op.pointer());
|
---|
911 |
|
---|
912 | // form Error_b
|
---|
913 | RefSymmSCMatrix mob(oso_dimension(), basis_matrixkit());
|
---|
914 | mob.assign(0.0);
|
---|
915 | mob.accumulate_transform(so_to_ortho_so_tr * oso_scf_vector_beta_,
|
---|
916 | fockb_.result_noupdate(),
|
---|
917 | SCMatrix::TransposeTransform);
|
---|
918 |
|
---|
919 | op = new UBExtrapErrorOp(this);
|
---|
920 | mob.element_op(op);
|
---|
921 |
|
---|
922 | RefSymmSCMatrix aoa(so_dimension(), basis_matrixkit());
|
---|
923 | aoa.assign(0.0);
|
---|
924 | aoa.accumulate_transform(so_to_ortho_so_tr * oso_scf_vector_, moa);
|
---|
925 | moa = 0;
|
---|
926 |
|
---|
927 | RefSymmSCMatrix aob(so_dimension(), basis_matrixkit());
|
---|
928 | aob.assign(0.0);
|
---|
929 | aob.accumulate_transform(so_to_ortho_so_tr * oso_scf_vector_beta_,mob);
|
---|
930 | mob=0;
|
---|
931 |
|
---|
932 | aoa.accumulate(aob);
|
---|
933 | aob=0;
|
---|
934 |
|
---|
935 | Ref<SCExtrapError> error = new SymmSCMatrixSCExtrapError(aoa);
|
---|
936 | aoa=0;
|
---|
937 |
|
---|
938 | return error;
|
---|
939 | }
|
---|
940 |
|
---|
941 | ///////////////////////////////////////////////////////////////////////////
|
---|
942 |
|
---|
943 | double
|
---|
944 | UnrestrictedSCF::compute_vector(double& eelec, double nucrep)
|
---|
945 | {
|
---|
946 | tim_enter("vector");
|
---|
947 | int i;
|
---|
948 |
|
---|
949 | // reinitialize the extrapolation object
|
---|
950 | extrap_->reinitialize();
|
---|
951 |
|
---|
952 | // create level shifter
|
---|
953 | ALevelShift *alevel_shift = new ALevelShift(this);
|
---|
954 | alevel_shift->reference();
|
---|
955 | BLevelShift *blevel_shift = new BLevelShift(this);
|
---|
956 | blevel_shift->reference();
|
---|
957 |
|
---|
958 | // calculate the core Hamiltonian
|
---|
959 | hcore_ = core_hamiltonian();
|
---|
960 |
|
---|
961 | // add density independant contributions to Hcore
|
---|
962 | accumdih_->accum(hcore_);
|
---|
963 |
|
---|
964 | // set up subclass for vector calculation
|
---|
965 | init_vector();
|
---|
966 |
|
---|
967 | RefDiagSCMatrix evalsa(oso_dimension(), basis_matrixkit());
|
---|
968 | RefDiagSCMatrix evalsb(oso_dimension(), basis_matrixkit());
|
---|
969 |
|
---|
970 | double delta = 1.0;
|
---|
971 | int iter;
|
---|
972 |
|
---|
973 | ExEnv::out0() << indent
|
---|
974 | << "Beginning iterations. Basis is "
|
---|
975 | << basis()->label() << '.' << std::endl;
|
---|
976 | for (iter=0; iter < maxiter_; iter++) {
|
---|
977 | // form the density from the current vector
|
---|
978 | tim_enter("density");
|
---|
979 | delta = new_density();
|
---|
980 | tim_exit("density");
|
---|
981 |
|
---|
982 | // check convergence
|
---|
983 | if (delta < desired_value_accuracy())
|
---|
984 | break;
|
---|
985 |
|
---|
986 | // reset the density from time to time
|
---|
987 | if (iter && !(iter%dens_reset_freq_))
|
---|
988 | reset_density();
|
---|
989 |
|
---|
990 | // form the AO basis fock matrix
|
---|
991 | tim_enter("fock");
|
---|
992 | double accuracy = 0.01 * delta;
|
---|
993 | if (accuracy > 0.0001) accuracy = 0.0001;
|
---|
994 | ao_fock(accuracy);
|
---|
995 | tim_exit("fock");
|
---|
996 |
|
---|
997 | // calculate the electronic energy
|
---|
998 | eelec = scf_energy();
|
---|
999 | ExEnv::out0() << indent
|
---|
1000 | << scprintf("iter %5d energy = %15.10f delta = %10.5e",
|
---|
1001 | iter+1, eelec+nucrep, delta)
|
---|
1002 | << endl;
|
---|
1003 |
|
---|
1004 | // now extrapolate the fock matrix
|
---|
1005 | tim_enter("extrap");
|
---|
1006 | Ref<SCExtrapData> data = extrap_data();
|
---|
1007 | Ref<SCExtrapError> error = extrap_error();
|
---|
1008 | extrap_->extrapolate(data,error);
|
---|
1009 | data=0;
|
---|
1010 | error=0;
|
---|
1011 | tim_exit("extrap");
|
---|
1012 |
|
---|
1013 | // diagonalize effective MO fock to get MO vector
|
---|
1014 | tim_enter("evals");
|
---|
1015 |
|
---|
1016 | RefSCMatrix so_to_oso_tr = so_to_orthog_so().t();
|
---|
1017 |
|
---|
1018 | RefSymmSCMatrix moa(oso_dimension(), basis_matrixkit());
|
---|
1019 | moa.assign(0.0);
|
---|
1020 | moa.accumulate_transform(so_to_oso_tr * oso_scf_vector_,
|
---|
1021 | focka_.result_noupdate(),
|
---|
1022 | SCMatrix::TransposeTransform);
|
---|
1023 |
|
---|
1024 | RefSymmSCMatrix mob(oso_dimension(), basis_matrixkit());
|
---|
1025 | mob.assign(0.0);
|
---|
1026 | mob.accumulate_transform(so_to_oso_tr * oso_scf_vector_beta_,
|
---|
1027 | fockb_.result_noupdate(),
|
---|
1028 | SCMatrix::TransposeTransform);
|
---|
1029 |
|
---|
1030 | RefSCMatrix nvectora(oso_dimension(), oso_dimension(), basis_matrixkit());
|
---|
1031 | RefSCMatrix nvectorb(oso_dimension(), oso_dimension(), basis_matrixkit());
|
---|
1032 |
|
---|
1033 | // level shift effective fock in the mo basis
|
---|
1034 | alevel_shift->set_shift(level_shift_);
|
---|
1035 | moa.element_op(alevel_shift);
|
---|
1036 | blevel_shift->set_shift(level_shift_);
|
---|
1037 | mob.element_op(blevel_shift);
|
---|
1038 |
|
---|
1039 | // transform back to the oso basis to do the diagonalization
|
---|
1040 | RefSymmSCMatrix osoa(oso_dimension(), basis_matrixkit());
|
---|
1041 | osoa.assign(0.0);
|
---|
1042 | osoa.accumulate_transform(oso_scf_vector_,moa);
|
---|
1043 | moa = 0;
|
---|
1044 | osoa.diagonalize(evalsa,oso_scf_vector_);
|
---|
1045 | osoa = 0;
|
---|
1046 |
|
---|
1047 | RefSymmSCMatrix osob(oso_dimension(), basis_matrixkit());
|
---|
1048 | osob.assign(0.0);
|
---|
1049 | osob.accumulate_transform(oso_scf_vector_beta_,mob);
|
---|
1050 | mob = 0;
|
---|
1051 | osob.diagonalize(evalsb,oso_scf_vector_beta_);
|
---|
1052 | osob = 0;
|
---|
1053 |
|
---|
1054 | tim_exit("evals");
|
---|
1055 |
|
---|
1056 | // now un-level shift eigenvalues
|
---|
1057 | alevel_shift->set_shift(-level_shift_);
|
---|
1058 | evalsa.element_op(alevel_shift);
|
---|
1059 | blevel_shift->set_shift(-level_shift_);
|
---|
1060 | evalsb.element_op(blevel_shift);
|
---|
1061 |
|
---|
1062 | if (reset_occ_)
|
---|
1063 | set_occupations(evalsa, evalsb);
|
---|
1064 |
|
---|
1065 | savestate_iter(iter);
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 | eigenvalues_ = evalsa;
|
---|
1069 | eigenvalues_.computed() = 1;
|
---|
1070 | eigenvalues_.set_actual_accuracy(delta);
|
---|
1071 | evalsa = 0;
|
---|
1072 |
|
---|
1073 | oso_eigenvectors_ = oso_scf_vector_;
|
---|
1074 | oso_eigenvectors_.computed() = 1;
|
---|
1075 | oso_eigenvectors_.set_actual_accuracy(delta);
|
---|
1076 |
|
---|
1077 | oso_eigenvectors_beta_ = oso_scf_vector_beta_;
|
---|
1078 | oso_eigenvectors_beta_.computed() = 1;
|
---|
1079 | oso_eigenvectors_beta_.set_actual_accuracy(delta);
|
---|
1080 |
|
---|
1081 | eigenvalues_beta_ = evalsb;
|
---|
1082 | eigenvalues_beta_.computed() = 1;
|
---|
1083 | eigenvalues_beta_.set_actual_accuracy(delta);
|
---|
1084 | evalsb = 0;
|
---|
1085 |
|
---|
1086 | {
|
---|
1087 | // compute spin contamination
|
---|
1088 | RefSCMatrix so_to_oso_tr = so_to_orthog_so().t();
|
---|
1089 | RefSCMatrix Sab
|
---|
1090 | = (so_to_oso_tr * oso_scf_vector_).t()
|
---|
1091 | * overlap()
|
---|
1092 | * (so_to_oso_tr * oso_scf_vector_beta_);
|
---|
1093 | //Sab.print("Sab");
|
---|
1094 | BlockedSCMatrix *pSab = dynamic_cast<BlockedSCMatrix*>(Sab.pointer());
|
---|
1095 | double s2=0;
|
---|
1096 | for (int ir=0; ir < nirrep_; ir++) {
|
---|
1097 | RefSCMatrix Sab_ir=pSab->block(0);
|
---|
1098 | if (Sab_ir.nonnull()) {
|
---|
1099 | for (i=0; i < nalpha_[ir]; i++)
|
---|
1100 | for (int j=0; j < nbeta_[ir]; j++)
|
---|
1101 | s2 += Sab_ir.get_element(i,j)*Sab_ir.get_element(i,j);
|
---|
1102 | }
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 | double S2real = (double)(tnalpha_-tnbeta_)/2.;
|
---|
1106 | S2real = S2real*(S2real+1);
|
---|
1107 | double S2 = S2real + tnbeta_ - s2;
|
---|
1108 |
|
---|
1109 | ExEnv::out0() << endl
|
---|
1110 | << indent << scprintf("<S^2>exact = %f", S2real) << endl
|
---|
1111 | << indent << scprintf("<S^2> = %f", S2) << endl;
|
---|
1112 | }
|
---|
1113 |
|
---|
1114 | // now clean up
|
---|
1115 | done_vector();
|
---|
1116 |
|
---|
1117 | alevel_shift->dereference();
|
---|
1118 | delete alevel_shift;
|
---|
1119 | blevel_shift->dereference();
|
---|
1120 | delete blevel_shift;
|
---|
1121 |
|
---|
1122 | tim_exit("vector");
|
---|
1123 | //tim_print(0);
|
---|
1124 |
|
---|
1125 | return delta;
|
---|
1126 | }
|
---|
1127 |
|
---|
1128 | ////////////////////////////////////////////////////////////////////////////
|
---|
1129 |
|
---|
1130 | void
|
---|
1131 | UnrestrictedSCF::init_gradient()
|
---|
1132 | {
|
---|
1133 | // presumably the eigenvectors have already been computed by the time
|
---|
1134 | // we get here
|
---|
1135 | oso_scf_vector_ = oso_eigenvectors_.result_noupdate();
|
---|
1136 | oso_scf_vector_beta_ = oso_eigenvectors_beta_.result_noupdate();
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 | void
|
---|
1140 | UnrestrictedSCF::done_gradient()
|
---|
1141 | {
|
---|
1142 | densa_=0;
|
---|
1143 | densb_=0;
|
---|
1144 | oso_scf_vector_ = 0;
|
---|
1145 | oso_scf_vector_beta_ = 0;
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | /////////////////////////////////////////////////////////////////////////////
|
---|
1149 |
|
---|
1150 | RefSymmSCMatrix
|
---|
1151 | UnrestrictedSCF::lagrangian()
|
---|
1152 | {
|
---|
1153 | RefSCMatrix so_to_oso_tr = so_to_orthog_so().t();
|
---|
1154 |
|
---|
1155 | RefDiagSCMatrix ea = eigenvalues_.result_noupdate().copy();
|
---|
1156 | RefDiagSCMatrix eb = eigenvalues_beta_.result_noupdate().copy();
|
---|
1157 |
|
---|
1158 | BlockedDiagSCMatrix *eab = dynamic_cast<BlockedDiagSCMatrix*>(ea.pointer());
|
---|
1159 | BlockedDiagSCMatrix *ebb = dynamic_cast<BlockedDiagSCMatrix*>(eb.pointer());
|
---|
1160 |
|
---|
1161 | Ref<PetiteList> pl = integral()->petite_list(basis());
|
---|
1162 |
|
---|
1163 | for (int ir=0; ir < nirrep_; ir++) {
|
---|
1164 | RefDiagSCMatrix eair = eab->block(ir);
|
---|
1165 | RefDiagSCMatrix ebir = ebb->block(ir);
|
---|
1166 |
|
---|
1167 | if (eair.null())
|
---|
1168 | continue;
|
---|
1169 |
|
---|
1170 | int i;
|
---|
1171 | for (i=nalpha_[ir]; i < eair.dim().n(); i++)
|
---|
1172 | eair.set_element(i,0.0);
|
---|
1173 | for (i=nbeta_[ir]; i < ebir.dim().n(); i++)
|
---|
1174 | ebir.set_element(i,0.0);
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | RefSymmSCMatrix la = basis_matrixkit()->symmmatrix(so_dimension());
|
---|
1178 | la.assign(0.0);
|
---|
1179 | la.accumulate_transform(so_to_oso_tr * oso_scf_vector_, ea);
|
---|
1180 |
|
---|
1181 | RefSymmSCMatrix lb = la.clone();
|
---|
1182 | lb.assign(0.0);
|
---|
1183 | lb.accumulate_transform(so_to_oso_tr * oso_scf_vector_beta_, eb);
|
---|
1184 |
|
---|
1185 | la.accumulate(lb);
|
---|
1186 |
|
---|
1187 | la = pl->to_AO_basis(la);
|
---|
1188 | la->scale(-1.0);
|
---|
1189 |
|
---|
1190 | return la;
|
---|
1191 | }
|
---|
1192 |
|
---|
1193 | RefSymmSCMatrix
|
---|
1194 | UnrestrictedSCF::gradient_density()
|
---|
1195 | {
|
---|
1196 | densa_ = basis_matrixkit()->symmmatrix(so_dimension());
|
---|
1197 | densb_ = densa_.clone();
|
---|
1198 |
|
---|
1199 | so_density(densa_, 1.0, 1);
|
---|
1200 | so_density(densb_, 1.0, 0);
|
---|
1201 |
|
---|
1202 | Ref<PetiteList> pl = integral()->petite_list(basis());
|
---|
1203 |
|
---|
1204 | densa_ = pl->to_AO_basis(densa_);
|
---|
1205 | densb_ = pl->to_AO_basis(densb_);
|
---|
1206 |
|
---|
1207 | RefSymmSCMatrix tdens = densa_.copy();
|
---|
1208 | tdens.accumulate(densb_);
|
---|
1209 | return tdens;
|
---|
1210 | }
|
---|
1211 |
|
---|
1212 | //////////////////////////////////////////////////////////////////////////////
|
---|
1213 |
|
---|
1214 | void
|
---|
1215 | UnrestrictedSCF::init_hessian()
|
---|
1216 | {
|
---|
1217 | }
|
---|
1218 |
|
---|
1219 | void
|
---|
1220 | UnrestrictedSCF::done_hessian()
|
---|
1221 | {
|
---|
1222 | }
|
---|
1223 |
|
---|
1224 | //////////////////////////////////////////////////////////////////////////////
|
---|
1225 |
|
---|
1226 | void
|
---|
1227 | UnrestrictedSCF::two_body_deriv_hf(double * tbgrad, double exchange_fraction)
|
---|
1228 | {
|
---|
1229 | Ref<SCElementMaxAbs> m = new SCElementMaxAbs;
|
---|
1230 | densa_.element_op(m.pointer());
|
---|
1231 | double pmax = m->result();
|
---|
1232 | m=0;
|
---|
1233 |
|
---|
1234 | // now try to figure out the matrix specialization we're dealing with.
|
---|
1235 | // if we're using Local matrices, then there's just one subblock, or
|
---|
1236 | // see if we can convert P to local matrices
|
---|
1237 |
|
---|
1238 | if (local_ || local_dens_) {
|
---|
1239 | // grab the data pointers from the P matrices
|
---|
1240 | double *pmata, *pmatb;
|
---|
1241 | RefSymmSCMatrix ptmpa = get_local_data(densa_, pmata, SCF::Read);
|
---|
1242 | RefSymmSCMatrix ptmpb = get_local_data(densb_, pmatb, SCF::Read);
|
---|
1243 |
|
---|
1244 | Ref<PetiteList> pl = integral()->petite_list();
|
---|
1245 | LocalUHFGradContribution l(pmata,pmatb);
|
---|
1246 |
|
---|
1247 | int i;
|
---|
1248 | int na3 = molecule()->natom()*3;
|
---|
1249 | int nthread = threadgrp_->nthread();
|
---|
1250 | double **grads = new double*[nthread];
|
---|
1251 | Ref<TwoBodyDerivInt> *tbis = new Ref<TwoBodyDerivInt>[nthread];
|
---|
1252 | for (i=0; i < nthread; i++) {
|
---|
1253 | tbis[i] = integral()->electron_repulsion_deriv();
|
---|
1254 | grads[i] = new double[na3];
|
---|
1255 | memset(grads[i], 0, sizeof(double)*na3);
|
---|
1256 | }
|
---|
1257 |
|
---|
1258 | LocalTBGrad<LocalUHFGradContribution> **tblds =
|
---|
1259 | new LocalTBGrad<LocalUHFGradContribution>*[nthread];
|
---|
1260 |
|
---|
1261 | for (i=0; i < nthread; i++) {
|
---|
1262 | tblds[i] = new LocalTBGrad<LocalUHFGradContribution>(
|
---|
1263 | l, tbis[i], pl, basis(), scf_grp_, grads[i], pmax,
|
---|
1264 | desired_gradient_accuracy(), nthread, i, exchange_fraction);
|
---|
1265 | threadgrp_->add_thread(i, tblds[i]);
|
---|
1266 | }
|
---|
1267 |
|
---|
1268 | if (threadgrp_->start_threads() < 0
|
---|
1269 | ||threadgrp_->wait_threads() < 0) {
|
---|
1270 | ExEnv::err0() << indent
|
---|
1271 | << "USCF: error running threads" << endl;
|
---|
1272 | abort();
|
---|
1273 | }
|
---|
1274 |
|
---|
1275 | for (i=0; i < nthread; i++) {
|
---|
1276 | for (int j=0; j < na3; j++)
|
---|
1277 | tbgrad[j] += grads[i][j];
|
---|
1278 |
|
---|
1279 | delete[] grads[i];
|
---|
1280 | delete tblds[i];
|
---|
1281 | }
|
---|
1282 |
|
---|
1283 | scf_grp_->sum(tbgrad,3 * basis()->molecule()->natom());
|
---|
1284 | }
|
---|
1285 |
|
---|
1286 | // for now quit
|
---|
1287 | else {
|
---|
1288 | ExEnv::err0() << indent
|
---|
1289 | << "USCF::two_body_deriv_hf: can't do gradient yet\n";
|
---|
1290 | abort();
|
---|
1291 | }
|
---|
1292 | }
|
---|
1293 |
|
---|
1294 | void
|
---|
1295 | UnrestrictedSCF::set_desired_value_accuracy(double eps)
|
---|
1296 | {
|
---|
1297 | OneBodyWavefunction::set_desired_value_accuracy(eps);
|
---|
1298 | oso_eigenvectors_beta_.set_desired_accuracy(eps);
|
---|
1299 | eigenvalues_beta_.set_desired_accuracy(eps);
|
---|
1300 | }
|
---|
1301 |
|
---|
1302 |
|
---|
1303 | //////////////////////////////////////////////////////////////////////////////
|
---|
1304 |
|
---|
1305 | }
|
---|
1306 |
|
---|
1307 | // Local Variables:
|
---|
1308 | // mode: c++
|
---|
1309 | // c-file-style: "ETS"
|
---|
1310 | // End:
|
---|