// // uhf.cc --- implementation of the unrestricted Hartree-Fock class // // Copyright (C) 1996 Limit Point Systems, Inc. // // Author: Edward Seidl // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // #ifdef __GNUC__ #pragma implementation #endif #include #include #include #include #include #include #include #include using namespace std; using namespace sc; /////////////////////////////////////////////////////////////////////////// // UHF static ClassDesc UHF_cd( typeid(UHF),"UHF",1,"public UnrestrictedSCF", 0, create, create); UHF::UHF(StateIn& s) : SavableState(s), UnrestrictedSCF(s) { } UHF::UHF(const Ref& keyval) : UnrestrictedSCF(keyval) { } UHF::~UHF() { } void UHF::save_data_state(StateOut& s) { UnrestrictedSCF::save_data_state(s); } int UHF::value_implemented() const { return 1; } int UHF::gradient_implemented() const { return 1; } void UHF::print(ostream&o) const { UnrestrictedSCF::print(o); } ////////////////////////////////////////////////////////////////////////////// void UHF::two_body_energy(double &ec, double &ex) { tim_enter("uhf e2"); ec = 0.0; ex = 0.0; if (local_ || local_dens_) { // grab the data pointers from the G and P matrices double *apmat; double *bpmat; tim_enter("local data"); RefSymmSCMatrix adens = alpha_ao_density(); RefSymmSCMatrix bdens = beta_ao_density(); adens->scale(2.0); adens->scale_diagonal(0.5); bdens->scale(2.0); bdens->scale_diagonal(0.5); RefSymmSCMatrix aptmp = get_local_data(adens, apmat, SCF::Read); RefSymmSCMatrix bptmp = get_local_data(bdens, bpmat, SCF::Read); tim_exit("local data"); // initialize the two electron integral classes Ref tbi = integral()->electron_repulsion(); tbi->set_integral_storage(0); signed char * pmax = init_pmax(apmat); LocalUHFEnergyContribution lclc(apmat, bpmat); Ref pl = integral()->petite_list(); LocalGBuild gb(lclc, tbi, pl, basis(), scf_grp_, pmax, desired_value_accuracy()/100.0); gb.run(); delete[] pmax; ec = lclc.ec; ex = lclc.ex; } else { ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n"; abort(); } tim_exit("uhf e2"); } ////////////////////////////////////////////////////////////////////////////// void UHF::ao_fock(double accuracy) { Ref pl = integral()->petite_list(basis()); // calculate G. First transform diff_densa_ to the AO basis, then // scale the off-diagonal elements by 2.0 RefSymmSCMatrix dda = diff_densa_; diff_densa_ = pl->to_AO_basis(dda); diff_densa_->scale(2.0); diff_densa_->scale_diagonal(0.5); RefSymmSCMatrix ddb = diff_densb_; diff_densb_ = pl->to_AO_basis(ddb); diff_densb_->scale(2.0); diff_densb_->scale_diagonal(0.5); // now try to figure out the matrix specialization we're dealing with // if we're using Local matrices, then there's just one subblock, or // see if we can convert G and P to local matrices if (local_ || local_dens_) { double *gmat, *gmato, *pmat, *pmato; // grab the data pointers from the G and P matrices RefSymmSCMatrix gtmp = get_local_data(gmata_, gmat, SCF::Accum); RefSymmSCMatrix ptmp = get_local_data(diff_densa_, pmat, SCF::Read); RefSymmSCMatrix gotmp = get_local_data(gmatb_, gmato, SCF::Accum); RefSymmSCMatrix potmp = get_local_data(diff_densb_, pmato, SCF::Read); signed char * pmax = init_pmax(pmat); // LocalUHFContribution lclc(gmat, pmat, gmato, pmato); // LocalGBuild // gb(lclc, tbi_, pl, basis(), scf_grp_, pmax, // desired_value_accuracy()/100.0); // gb.run(); int i; int nthread = threadgrp_->nthread(); LocalGBuild **gblds = new LocalGBuild*[nthread]; LocalUHFContribution **conts = new LocalUHFContribution*[nthread]; double **gmats = new double*[nthread]; gmats[0] = gmat; double **gmatos = new double*[nthread]; gmatos[0] = gmato; Ref bs = basis(); int ntri = i_offset(bs->nbasis()); double gmat_accuracy = accuracy; if (min_orthog_res() < 1.0) { gmat_accuracy *= min_orthog_res(); } for (i=0; i < nthread; i++) { if (i) { gmats[i] = new double[ntri]; memset(gmats[i], 0, sizeof(double)*ntri); gmatos[i] = new double[ntri]; memset(gmatos[i], 0, sizeof(double)*ntri); } conts[i] = new LocalUHFContribution(gmats[i], pmat, gmatos[i], pmato); gblds[i] = new LocalGBuild(*conts[i], tbis_[i], pl, bs, scf_grp_, pmax, gmat_accuracy, nthread, i ); threadgrp_->add_thread(i, gblds[i]); } tim_enter("start thread"); if (threadgrp_->start_threads() < 0) { ExEnv::err0() << indent << "UHF: error starting threads" << endl; abort(); } tim_exit("start thread"); tim_enter("stop thread"); if (threadgrp_->wait_threads() < 0) { ExEnv::err0() << indent << "UHF: error waiting for threads" << endl; abort(); } tim_exit("stop thread"); double tnint=0; for (i=0; i < nthread; i++) { tnint += gblds[i]->tnint; if (i) { for (int j=0; j < ntri; j++) { gmat[j] += gmats[i][j]; gmato[j] += gmatos[i][j]; } delete[] gmats[i]; delete[] gmatos[i]; } delete gblds[i]; delete conts[i]; } delete[] gmats; delete[] gmatos; delete[] gblds; delete[] conts; delete[] pmax; scf_grp_->sum(&tnint, 1, 0, 0); ExEnv::out0() << indent << scprintf("%20.0f integrals\n", tnint); // if we're running on multiple processors, then sum the G matrices if (scf_grp_->n() > 1) { scf_grp_->sum(gmat, i_offset(basis()->nbasis())); scf_grp_->sum(gmato, i_offset(basis()->nbasis())); } // if we're running on multiple processors, or we don't have local // matrices, then accumulate gtmp back into G if (!local_ || scf_grp_->n() > 1) { gmata_->convert_accumulate(gtmp); gmatb_->convert_accumulate(gotmp); } } // for now quit else { ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n"; abort(); } // get rid of AO delta P diff_densa_ = dda; dda = diff_densa_.clone(); diff_densb_ = ddb; ddb = diff_densb_.clone(); // now symmetrize the skeleton G matrix, placing the result in dda RefSymmSCMatrix skel_gmat = gmata_.copy(); skel_gmat.scale(1.0/(double)pl->order()); pl->symmetrize(skel_gmat,dda); skel_gmat = gmatb_.copy(); skel_gmat.scale(1.0/(double)pl->order()); pl->symmetrize(skel_gmat,ddb); // Fa = H+Ga focka_.result_noupdate().assign(hcore_); focka_.result_noupdate().accumulate(dda); // Fb = H+Gb fockb_.result_noupdate().assign(hcore_); fockb_.result_noupdate().accumulate(ddb); dda.assign(0.0); accumddh_->accum(dda); focka_.result_noupdate().accumulate(dda); fockb_.result_noupdate().accumulate(dda); focka_.computed()=1; fockb_.computed()=1; } ///////////////////////////////////////////////////////////////////////////// void UHF::two_body_deriv(double * tbgrad) { two_body_deriv_hf(tbgrad, 1.0); } ///////////////////////////////////////////////////////////////////////////// // Local Variables: // mode: c++ // c-file-style: "ETS" // End: