// // ossscf.cc --- implementation of the open shell singlet SCF class // // Copyright (C) 1996 Limit Point Systems, Inc. // // Author: Edward Seidl // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // #ifdef __GNUC__ #pragma implementation #endif #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace sc; /////////////////////////////////////////////////////////////////////////// // OSSSCF static ClassDesc OSSSCF_cd( typeid(OSSSCF),"OSSSCF",1,"public SCF", 0, 0, 0); OSSSCF::OSSSCF(StateIn& s) : SavableState(s), SCF(s), cl_fock_(this), op_focka_(this), op_fockb_(this) { cl_fock_.result_noupdate() = basis_matrixkit()->symmmatrix(so_dimension()); cl_fock_.restore_state(s); cl_fock_.result_noupdate().restore(s); op_focka_.result_noupdate() = basis_matrixkit()->symmmatrix(so_dimension()); op_focka_.restore_state(s); op_focka_.result_noupdate().restore(s); op_fockb_.result_noupdate() = basis_matrixkit()->symmmatrix(so_dimension()); op_fockb_.restore_state(s); op_fockb_.result_noupdate().restore(s); s.get(user_occupations_); s.get(tndocc_); s.get(nirrep_); s.get(ndocc_); s.get(osa_); s.get(osb_); // now take care of memory stuff init_mem(6); } OSSSCF::OSSSCF(const Ref& keyval) : SCF(keyval), cl_fock_(this), op_focka_(this), op_fockb_(this) { cl_fock_.compute()=0; cl_fock_.computed()=0; op_focka_.compute()=0; op_focka_.computed()=0; op_fockb_.compute()=0; op_fockb_.computed()=0; // calculate the total nuclear charge double Znuc=molecule()->nuclear_charge(); // check to see if this is to be a charged molecule double charge = keyval->doublevalue("total_charge"); int nelectrons = (int)(Znuc-charge+1.0e-4); // figure out how many doubly occupied shells there are if (keyval->exists("ndocc")) { tndocc_ = keyval->intvalue("ndocc"); } else { tndocc_ = (nelectrons-2)/2; if ((nelectrons-2)%2) { ExEnv::err0() << endl << indent << "OSSSCF::init: Warning, there's a leftover electron.\n" << incindent << indent << "total_charge = " << charge << endl << indent << "total nuclear charge = " << Znuc << endl << indent << "ndocc_ = " << tndocc_ << endl << decindent; } } ExEnv::out0() << endl << indent << "OSSSCF::init: total charge = " << Znuc-2*tndocc_-2 << endl << endl; nirrep_ = molecule()->point_group()->char_table().ncomp(); if (nirrep_==1) { ExEnv::err0() << indent << "OSSSCF::init: cannot do C1 symmetry\n"; abort(); } osa_=-1; osb_=-1; ndocc_ = read_occ(keyval, "docc", nirrep_); int *nsocc = read_occ(keyval, "socc", nirrep_); if (ndocc_ && nsocc) { user_occupations_=1; for (int i=0; i < nirrep_; i++) { int nsi = nsocc[i]; if (nsi && osa_<0) osa_=i; else if (nsi && osb_<0) osb_=i; else if (nsi) { ExEnv::err0() << indent << "OSSSCF::init: too many open shells\n"; abort(); } } delete[] nsocc; } else if (ndocc_ && !nsocc || !ndocc_ && nsocc) { ExEnv::outn() << "ERROR: OSSSCF: only one of docc and socc specified: " << "give both or none" << endl; abort(); } else { ndocc_=0; user_occupations_=0; set_occupations(0); } int i; ExEnv::out0() << indent << "docc = ["; for (i=0; i < nirrep_; i++) ExEnv::out0() << " " << ndocc_[i]; ExEnv::out0() << " ]\n"; ExEnv::out0() << indent << "socc = ["; for (i=0; i < nirrep_; i++) ExEnv::out0() << " " << (i==osa_ || i==osb_) ? 1 : 0; ExEnv::out0() << " ]\n"; // check to see if this was done in SCF(keyval) if (!keyval->exists("maxiter")) maxiter_ = 200; if (!keyval->exists("level_shift")) level_shift_ = 0.25; // now take care of memory stuff init_mem(6); } OSSSCF::~OSSSCF() { if (ndocc_) { delete[] ndocc_; ndocc_=0; } } void OSSSCF::save_data_state(StateOut& s) { SCF::save_data_state(s); cl_fock_.save_data_state(s); cl_fock_.result_noupdate().save(s); op_focka_.save_data_state(s); op_focka_.result_noupdate().save(s); op_fockb_.save_data_state(s); op_fockb_.result_noupdate().save(s); s.put(user_occupations_); s.put(tndocc_); s.put(nirrep_); s.put(ndocc_,nirrep_); s.put(osa_); s.put(osb_); } double OSSSCF::occupation(int ir, int i) { if (i < ndocc_[ir]) return 2.0; else if ((ir==osa_ || ir==osb_) && (i == ndocc_[ir])) return 1.0; return 0.0; } double OSSSCF::alpha_occupation(int ir, int i) { if (i < ndocc_[ir] || (ir==osa_ && i==ndocc_[ir])) return 1.0; return 0.0; } double OSSSCF::beta_occupation(int ir, int i) { if (i < ndocc_[ir] || (ir==osb_ && i==ndocc_[ir])) return 1.0; return 0.0; } int OSSSCF::n_fock_matrices() const { return 3; } RefSymmSCMatrix OSSSCF::fock(int n) { if (n > 2) { ExEnv::err0() << indent << "OSSSCF::fock: there are only three fock matrices, " << scprintf("but fock(%d) was requested\n", n); abort(); } if (n==0) return cl_fock_.result(); else if (n==1) return op_focka_.result(); else return op_fockb_.result(); } int OSSSCF::spin_polarized() { return 1; } void OSSSCF::print(ostream&o) const { int i; SCF::print(o); o << indent << "OSSSCF Parameters:\n" << incindent << indent << "ndocc = " << tndocc_ << endl << indent << "docc = ["; for (i=0; i < nirrep_; i++) o << " " << ndocc_[i]; o << " ]" << endl; o << indent << "socc = ["; for (i=0; i < nirrep_; i++) o << " " << (i==osa_ || i==osb_) ? 1 : 0; o << " ]" << endl << decindent << endl; } ////////////////////////////////////////////////////////////////////////////// void OSSSCF::set_occupations(const RefDiagSCMatrix& ev) { if (user_occupations_) return; int i,j; RefDiagSCMatrix evals; if (ev.null()) { initial_vector(0); evals = eigenvalues_.result_noupdate(); } else evals = ev; // first convert evals to something we can deal with easily BlockedDiagSCMatrix *evalsb = require_dynamic_cast(evals, "OSSSCF::set_occupations"); double **vals = new double*[nirrep_]; for (i=0; i < nirrep_; i++) { int nf=oso_dimension()->blocks()->size(i); if (nf) { vals[i] = new double[nf]; evalsb->block(i)->convert(vals[i]); } else { vals[i] = 0; } } // now loop to find the tndocc_ lowest eigenvalues and populate those // MO's int *newdocc = new int[nirrep_]; memset(newdocc,0,sizeof(int)*nirrep_); for (i=0; i < tndocc_; i++) { // find lowest eigenvalue int lir=0,ln=0; double lowest=999999999; for (int ir=0; ir < nirrep_; ir++) { int nf=oso_dimension()->blocks()->size(ir); if (!nf) continue; for (j=0; j < nf; j++) { if (vals[ir][j] < lowest) { lowest=vals[ir][j]; lir=ir; ln=j; } } } vals[lir][ln]=999999999; newdocc[lir]++; } int osa=-1, osb=-1; for (i=0; i < 2; i++) { // find lowest eigenvalue int lir=0,ln=0; double lowest=999999999; for (int ir=0; ir < nirrep_; ir++) { int nf=oso_dimension()->blocks()->size(ir); if (!nf) continue; for (j=0; j < nf; j++) { if (vals[ir][j] < lowest) { lowest=vals[ir][j]; lir=ir; ln=j; } } } vals[lir][ln]=999999999; if (!i) { osa=lir; } else { if (lir==osa) { i--; continue; } osb=lir; } } // get rid of vals for (i=0; i < nirrep_; i++) if (vals[i]) delete[] vals[i]; delete[] vals; if (!ndocc_) { ndocc_=newdocc; osa_=osa; osb_=osb; } else { // test to see if newocc is different from ndocc_ for (i=0; i < nirrep_; i++) { if (ndocc_[i] != newdocc[i]) { ExEnv::err0() << indent << "OSSSCF::set_occupations: WARNING!!!!\n" << incindent << indent << scprintf("occupations for irrep %d have changed\n", i+1) << indent << scprintf("ndocc was %d, changed to %d", ndocc_[i], newdocc[i]) << endl << decindent; } if ((osa != osa_ && osa != osb_) || (osb != osb_ && osb != osa_)) { ExEnv::err0() << indent << "OSSSCF::set_occupations: WARNING!!!!\n" << incindent << indent << "open shell occupations have changed" << endl << decindent; osa_=osa; osb_=osb; reset_density(); } } memcpy(ndocc_,newdocc,sizeof(int)*nirrep_); delete[] newdocc; } } void OSSSCF::symmetry_changed() { SCF::symmetry_changed(); cl_fock_.result_noupdate()=0; op_focka_.result_noupdate()=0; op_fockb_.result_noupdate()=0; nirrep_ = molecule()->point_group()->char_table().ncomp(); set_occupations(0); } ////////////////////////////////////////////////////////////////////////////// // // scf things // void OSSSCF::init_vector() { init_threads(); // allocate storage for other temp matrices cl_dens_ = hcore_.clone(); cl_dens_.assign(0.0); cl_dens_diff_ = hcore_.clone(); cl_dens_diff_.assign(0.0); op_densa_ = hcore_.clone(); op_densa_.assign(0.0); op_densa_diff_ = hcore_.clone(); op_densa_diff_.assign(0.0); op_densb_ = hcore_.clone(); op_densb_.assign(0.0); op_densb_diff_ = hcore_.clone(); op_densb_diff_.assign(0.0); // gmat is in AO basis cl_gmat_ = basis()->matrixkit()->symmmatrix(basis()->basisdim()); cl_gmat_.assign(0.0); op_gmata_ = cl_gmat_.clone(); op_gmata_.assign(0.0); op_gmatb_ = cl_gmat_.clone(); op_gmatb_.assign(0.0); // test to see if we need a guess vector. if (cl_fock_.result_noupdate().null()) { cl_fock_ = hcore_.clone(); cl_fock_.result_noupdate().assign(0.0); op_focka_ = hcore_.clone(); op_focka_.result_noupdate().assign(0.0); op_fockb_ = hcore_.clone(); op_fockb_.result_noupdate().assign(0.0); } // set up trial vector initial_vector(1); oso_scf_vector_ = oso_eigenvectors_.result_noupdate(); } void OSSSCF::done_vector() { done_threads(); cl_gmat_ = 0; cl_dens_ = 0; cl_dens_diff_ = 0; op_gmata_ = 0; op_densa_ = 0; op_densa_diff_ = 0; op_gmatb_ = 0; op_densb_ = 0; op_densb_diff_ = 0; oso_scf_vector_ = 0; } RefSymmSCMatrix OSSSCF::density() { if (!density_.computed()) { RefSymmSCMatrix dens(so_dimension(), basis_matrixkit()); RefSymmSCMatrix dens1(so_dimension(), basis_matrixkit()); so_density(dens, 2.0); dens.scale(2.0); so_density(dens1, 1.0); dens.accumulate(dens1); dens1=0; density_ = dens; // only flag the density as computed if the calc is converged if (!value_needed()) density_.computed() = 1; } return density_.result_noupdate(); } RefSymmSCMatrix OSSSCF::alpha_density() { RefSymmSCMatrix dens1(so_dimension(), basis_matrixkit()); RefSymmSCMatrix dens2(so_dimension(), basis_matrixkit()); so_density(dens1, 2.0); so_density(dens2, 1.0); dynamic_cast(dens2.pointer())->block(osb_)->assign(0.0); dens1.accumulate(dens2); dens2=0; return dens1; } RefSymmSCMatrix OSSSCF::beta_density() { RefSymmSCMatrix dens1(so_dimension(), basis_matrixkit()); RefSymmSCMatrix dens2(so_dimension(), basis_matrixkit()); so_density(dens1, 2.0); so_density(dens2, 1.0); dynamic_cast(dens2.pointer())->block(osa_)->assign(0.0); dens1.accumulate(dens2); dens2=0; return dens1; } void OSSSCF::reset_density() { cl_gmat_.assign(0.0); cl_dens_diff_.assign(cl_dens_); op_gmata_.assign(0.0); op_densa_diff_.assign(op_densa_); op_gmatb_.assign(0.0); op_densb_diff_.assign(op_densb_); } double OSSSCF::new_density() { // copy current density into density diff and scale by -1. later we'll // add the new density to this to get the density difference. cl_dens_diff_.assign(cl_dens_); cl_dens_diff_.scale(-1.0); op_densa_diff_.assign(op_densa_); op_densa_diff_.scale(-1.0); op_densb_diff_.assign(op_densb_); op_densb_diff_.scale(-1.0); so_density(cl_dens_, 2.0); cl_dens_.scale(2.0); so_density(op_densa_, 1.0); cl_dens_.accumulate(op_densa_); op_densb_.assign(op_densa_); dynamic_cast(op_densa_.pointer())->block(osb_)->assign(0.0); dynamic_cast(op_densb_.pointer())->block(osa_)->assign(0.0); cl_dens_diff_.accumulate(cl_dens_); op_densa_diff_.accumulate(op_densa_); op_densb_diff_.accumulate(op_densb_); Ref sp(new SCElementScalarProduct); cl_dens_diff_.element_op(sp.pointer(), cl_dens_diff_); double delta = sp->result(); delta = sqrt(delta/i_offset(cl_dens_diff_.n())); return delta; } double OSSSCF::scf_energy() { RefSymmSCMatrix t = cl_fock_.result_noupdate().copy(); t.accumulate(hcore_); RefSymmSCMatrix ga = op_focka_.result_noupdate().copy(); ga.scale(-1.0); ga.accumulate(cl_fock_.result_noupdate()); RefSymmSCMatrix gb = op_fockb_.result_noupdate().copy(); gb.scale(-1.0); gb.accumulate(cl_fock_.result_noupdate()); SCFEnergy *eop = new SCFEnergy; eop->reference(); Ref op = eop; t.element_op(op, cl_dens_); double cl_e = eop->result(); eop->reset(); ga.element_op(op, op_densa_); double opa_e = eop->result(); eop->reset(); gb.element_op(op, op_densb_); double opb_e = eop->result(); op=0; eop->dereference(); delete eop; return cl_e-opa_e-opb_e; } //////////////////////////////////////////////////////////////////////////// Ref OSSSCF::extrap_data() { RefSymmSCMatrix *m = new RefSymmSCMatrix[3]; m[0] = cl_fock_.result_noupdate(); m[1] = op_focka_.result_noupdate(); m[2] = op_fockb_.result_noupdate(); Ref data = new SymmSCMatrixNSCExtrapData(3, m); delete[] m; return data; } RefSymmSCMatrix OSSSCF::effective_fock() { // use fock() instead of cl_fock_ just in case this is called from // someplace outside SCF::compute_vector() RefSymmSCMatrix mofock(oso_dimension(), basis_matrixkit()); mofock.assign(0.0); RefSymmSCMatrix mofocka(oso_dimension(), basis_matrixkit()); mofocka.assign(0.0); RefSymmSCMatrix mofockb(oso_dimension(), basis_matrixkit()); mofockb.assign(0.0); // use eigenvectors if oso_scf_vector_ is null RefSCMatrix vec; if (oso_scf_vector_.null()) { vec = eigenvectors(); } else { vec = so_to_orthog_so().t() * oso_scf_vector_; } mofock.accumulate_transform(vec, fock(0), SCMatrix::TransposeTransform); mofocka.accumulate_transform(vec, fock(1), SCMatrix::TransposeTransform); mofockb.accumulate_transform(vec, fock(2), SCMatrix::TransposeTransform); dynamic_cast(mofocka.pointer())->block(osb_)->assign(0.0); dynamic_cast(mofockb.pointer())->block(osa_)->assign(0.0); mofocka.accumulate(mofockb); mofockb=0; Ref op = new GSGeneralEffH(this); mofock.element_op(op, mofocka); return mofock; } ///////////////////////////////////////////////////////////////////////////// void OSSSCF::init_gradient() { // presumably the eigenvectors have already been computed by the time // we get here oso_scf_vector_ = oso_eigenvectors_.result_noupdate(); } void OSSSCF::done_gradient() { cl_dens_=0; op_densa_=0; op_densb_=0; oso_scf_vector_ = 0; } ///////////////////////////////////////////////////////////////////////////// // MO lagrangian // c o v // c |2*FC|2*FC|0| // ------------- // o |2*FC| FO |0| // ------------- // v | 0 | 0 |0| // RefSymmSCMatrix OSSSCF::lagrangian() { RefSCMatrix vec = so_to_orthog_so().t() * oso_scf_vector_; RefSymmSCMatrix mofock(oso_dimension(), basis_matrixkit()); mofock.assign(0.0); mofock.accumulate_transform(vec, cl_fock_.result_noupdate(), SCMatrix::TransposeTransform); RefSymmSCMatrix mofocka(oso_dimension(), basis_matrixkit()); mofocka.assign(0.0); mofocka.accumulate_transform(vec, op_focka_.result_noupdate(), SCMatrix::TransposeTransform); RefSymmSCMatrix mofockb(oso_dimension(), basis_matrixkit()); mofockb.assign(0.0); mofockb.accumulate_transform(vec, op_fockb_.result_noupdate(), SCMatrix::TransposeTransform); dynamic_cast(mofocka.pointer())->block(osb_)->assign(0.0); dynamic_cast(mofockb.pointer())->block(osa_)->assign(0.0); mofocka.accumulate(mofockb); mofockb=0; mofock.scale(2.0); Ref op = new MOLagrangian(this); mofock.element_op(op, mofocka); mofocka=0; // transform MO lagrangian to SO basis RefSymmSCMatrix so_lag(so_dimension(), basis_matrixkit()); so_lag.assign(0.0); so_lag.accumulate_transform(vec, mofock); // and then from SO to AO Ref pl = integral()->petite_list(); RefSymmSCMatrix ao_lag = pl->to_AO_basis(so_lag); ao_lag.scale(-1.0); return ao_lag; } RefSymmSCMatrix OSSSCF::gradient_density() { cl_dens_ = basis_matrixkit()->symmmatrix(so_dimension()); op_densa_ = cl_dens_.clone(); op_densb_ = cl_dens_.clone(); so_density(cl_dens_, 2.0); cl_dens_.scale(2.0); so_density(op_densa_, 1.0); op_densb_.assign(op_densa_); dynamic_cast(op_densa_.pointer())->block(osb_)->assign(0.0); dynamic_cast(op_densb_.pointer())->block(osa_)->assign(0.0); Ref pl = integral()->petite_list(basis()); cl_dens_ = pl->to_AO_basis(cl_dens_); op_densa_ = pl->to_AO_basis(op_densa_); op_densb_ = pl->to_AO_basis(op_densb_); RefSymmSCMatrix tdens = cl_dens_.copy(); tdens.accumulate(op_densa_); tdens.accumulate(op_densb_); op_densa_.scale(2.0); op_densb_.scale(2.0); return tdens; } ///////////////////////////////////////////////////////////////////////////// void OSSSCF::init_hessian() { } void OSSSCF::done_hessian() { } ///////////////////////////////////////////////////////////////////////////// // Local Variables: // mode: c++ // c-file-style: "ETS" // End: