// // osshf.cc --- implementation of the open shell singlet Hartree-Fock SCF class // // Copyright (C) 1997 Limit Point Systems, Inc. // // Author: Edward Seidl // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // #ifdef __GNUC__ #pragma implementation #endif #include #include #include #include #include #include #include #include #include using namespace std; using namespace sc; /////////////////////////////////////////////////////////////////////////// // OSSHF static ClassDesc OSSHF_cd( typeid(OSSHF),"OSSHF",1,"public OSSSCF", 0, create, create); OSSHF::OSSHF(StateIn& s) : SavableState(s), OSSSCF(s) { } OSSHF::OSSHF(const Ref& keyval) : OSSSCF(keyval) { } OSSHF::~OSSHF() { } void OSSHF::save_data_state(StateOut& s) { OSSSCF::save_data_state(s); } int OSSHF::value_implemented() const { return 1; } int OSSHF::gradient_implemented() const { return 1; } void OSSHF::print(ostream&o) const { OSSSCF::print(o); } ////////////////////////////////////////////////////////////////////////////// void OSSHF::ao_fock(double accuracy) { Ref pl = integral()->petite_list(basis()); // calculate G. First transform cl_dens_diff_ to the AO basis, then // scale the off-diagonal elements by 2.0 RefSymmSCMatrix dd = cl_dens_diff_; cl_dens_diff_ = pl->to_AO_basis(dd); cl_dens_diff_->scale(2.0); cl_dens_diff_->scale_diagonal(0.5); RefSymmSCMatrix dda = op_densa_diff_; op_densa_diff_ = pl->to_AO_basis(dda); op_densa_diff_->scale(2.0); op_densa_diff_->scale_diagonal(0.5); RefSymmSCMatrix ddb = op_densb_diff_; op_densb_diff_ = pl->to_AO_basis(ddb); op_densb_diff_->scale(2.0); op_densb_diff_->scale_diagonal(0.5); // now try to figure out the matrix specialization we're dealing with // if we're using Local matrices, then there's just one subblock, or // see if we can convert G and P to local matrices if (local_ || local_dens_) { // grab the data pointers from the G and P matrices double *gmat, *gmata, *gmatb, *pmat, *pmata, *pmatb; RefSymmSCMatrix gtmp = get_local_data(cl_gmat_, gmat, SCF::Accum); RefSymmSCMatrix ptmp = get_local_data(cl_dens_diff_, pmat, SCF::Read); RefSymmSCMatrix gatmp = get_local_data(op_gmata_, gmata, SCF::Accum); RefSymmSCMatrix patmp = get_local_data(op_densa_diff_, pmata, SCF::Read); RefSymmSCMatrix gbtmp = get_local_data(op_gmatb_, gmatb, SCF::Accum); RefSymmSCMatrix pbtmp = get_local_data(op_densb_diff_, pmatb, SCF::Read); signed char * pmax = init_pmax(pmat); // LocalOSSContribution lclc(gmat, pmat, gmata, pmata, gmatb, pmatb); // LocalGBuild // gb(lclc, tbi_, pl, basis(), scf_grp_, pmax, // desired_value_accuracy()/100.0); // gb.run(); int nthread = threadgrp_->nthread(); LocalGBuild **gblds = new LocalGBuild*[nthread]; LocalOSSContribution **conts = new LocalOSSContribution*[nthread]; double **gmatas = new double*[nthread]; gmatas[0] = gmata; double **gmatbs = new double*[nthread]; gmatbs[0] = gmatb; double **gmats = new double*[nthread]; gmats[0] = gmat; Ref bs = basis(); int ntri = i_offset(bs->nbasis()); double gmat_accuracy = accuracy; if (min_orthog_res() < 1.0) { gmat_accuracy *= min_orthog_res(); } int i; for (i=0; i < nthread; i++) { if (i) { gmatas[i] = new double[ntri]; memset(gmatas[i], 0, sizeof(double)*ntri); gmatbs[i] = new double[ntri]; memset(gmatbs[i], 0, sizeof(double)*ntri); gmats[i] = new double[ntri]; memset(gmats[i], 0, sizeof(double)*ntri); } conts[i] = new LocalOSSContribution(gmats[i], pmat, gmatas[i], pmata, gmatbs[i], pmatb); gblds[i] = new LocalGBuild(*conts[i], tbis_[i], pl, bs, scf_grp_, pmax, gmat_accuracy, nthread, i ); threadgrp_->add_thread(i, gblds[i]); } tim_enter("start thread"); if (threadgrp_->start_threads() < 0) { ExEnv::err0() << indent << "OSSHF: error starting threads" << endl; abort(); } tim_exit("start thread"); tim_enter("stop thread"); if (threadgrp_->wait_threads() < 0) { ExEnv::err0() << indent << "OSSHF: error waiting for threads" << endl; abort(); } tim_exit("stop thread"); double tnint=0; for (i=0; i < nthread; i++) { tnint += gblds[i]->tnint; if (i) { for (int j=0; j < ntri; j++) { gmata[j] += gmatas[i][j]; gmatb[j] += gmatbs[i][j]; gmat[j] += gmats[i][j]; } delete[] gmatas[i]; delete[] gmatbs[i]; delete[] gmats[i]; } delete gblds[i]; delete conts[i]; } delete[] gmatas; delete[] gmatbs; delete[] gmats; delete[] gblds; delete[] conts; delete[] pmax; // if we're running on multiple processors, then sum the G matrices if (scf_grp_->n() > 1) { scf_grp_->sum(gmat, i_offset(basis()->nbasis())); scf_grp_->sum(gmata, i_offset(basis()->nbasis())); scf_grp_->sum(gmatb, i_offset(basis()->nbasis())); } // if we're running on multiple processors, or we don't have local // matrices, then accumulate gtmp back into G if (!local_ || scf_grp_->n() > 1) { cl_gmat_->convert_accumulate(gtmp); op_gmata_->convert_accumulate(gatmp); op_gmatb_->convert_accumulate(gbtmp); } } // for now quit else { ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n"; abort(); } // get rid of AO delta P cl_dens_diff_ = dd; dd = cl_dens_diff_.clone(); op_densa_diff_ = dda; dda = op_densa_diff_.clone(); op_densb_diff_ = ddb; ddb = op_densb_diff_.clone(); // now symmetrize the skeleton G matrix, placing the result in dd RefSymmSCMatrix skel_gmat = cl_gmat_.copy(); skel_gmat.scale(1.0/(double)pl->order()); pl->symmetrize(skel_gmat,dd); skel_gmat = op_gmata_.copy(); skel_gmat.scale(1.0/(double)pl->order()); pl->symmetrize(skel_gmat,dda); skel_gmat = op_gmatb_.copy(); skel_gmat.scale(1.0/(double)pl->order()); pl->symmetrize(skel_gmat,ddb); // F = H+G cl_fock_.result_noupdate().assign(hcore_); cl_fock_.result_noupdate().accumulate(dd); // Fa = H+G-Ga op_focka_.result_noupdate().assign(cl_fock_.result_noupdate()); dda.scale(-1.0); op_focka_.result_noupdate().accumulate(dda); // Fb = H+G-Gb op_fockb_.result_noupdate().assign(cl_fock_.result_noupdate()); ddb.scale(-1.0); op_fockb_.result_noupdate().accumulate(ddb); dd.assign(0.0); accumddh_->accum(dd); cl_fock_.result_noupdate().accumulate(dd); op_focka_.result_noupdate().accumulate(dd); op_fockb_.result_noupdate().accumulate(dd); cl_fock_.computed()=1; op_focka_.computed()=1; op_fockb_.computed()=1; } ////////////////////////////////////////////////////////////////////////////// void OSSHF::two_body_energy(double& ec, double& ex) { tim_enter("oshf e2"); ec = 0.0; ex = 0.0; if (local_ || local_dens_) { Ref pl = integral()->petite_list(basis()); // grab the data pointers from the G and P matrices double *dpmat; double *sapmat; double *sbpmat; tim_enter("local data"); RefSymmSCMatrix adens = alpha_density(); RefSymmSCMatrix bdens = beta_density(); RefSymmSCMatrix ddens = adens+bdens; // 2C+a+b - 2(c+b) = a-b RefSymmSCMatrix sdensa = bdens.copy(); sdensa.scale(-2.0); sdensa.accumulate(ddens); dynamic_cast(sdensa.pointer())->block(osb_)->assign(0.0); // 2C+a+b - 2(c+a) = b-a RefSymmSCMatrix sdensb = adens.copy(); sdensb.scale(-2.0); sdensb.accumulate(ddens); dynamic_cast(sdensb.pointer())->block(osa_)->assign(0.0); adens=0; bdens=0; ddens = pl->to_AO_basis(ddens); sdensa = pl->to_AO_basis(sdensa); sdensb = pl->to_AO_basis(sdensb); ddens->scale(2.0); ddens->scale_diagonal(0.5); sdensa->scale(2.0); sdensa->scale_diagonal(0.5); sdensb->scale(2.0); sdensb->scale_diagonal(0.5); RefSymmSCMatrix dptmp = get_local_data(ddens, dpmat, SCF::Read); RefSymmSCMatrix saptmp = get_local_data(sdensa, sapmat, SCF::Read); RefSymmSCMatrix sbptmp = get_local_data(sdensb, sbpmat, SCF::Read); tim_exit("local data"); // initialize the two electron integral classes Ref tbi = integral()->electron_repulsion(); tbi->set_integral_storage(0); signed char * pmax = init_pmax(dpmat); LocalOSSEnergyContribution lclc(dpmat, sapmat, sbpmat); LocalGBuild gb(lclc, tbi, pl, basis(), scf_grp_, pmax, desired_value_accuracy()/100.0); gb.run(); delete[] pmax; ec = lclc.ec; ex = lclc.ex; } // for now quit else { ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n"; abort(); } tim_exit("oshf e2"); } ///////////////////////////////////////////////////////////////////////////// void OSSHF::two_body_deriv(double * tbgrad) { Ref m = new SCElementMaxAbs; cl_dens_.element_op(m.pointer()); double pmax = m->result(); m=0; // now try to figure out the matrix specialization we're dealing with. // if we're using Local matrices, then there's just one subblock, or // see if we can convert P to local matrices if (local_ || local_dens_) { // grab the data pointers from the P matrices double *pmat, *pmata, *pmatb; RefSymmSCMatrix ptmp = get_local_data(cl_dens_, pmat, SCF::Read); RefSymmSCMatrix patmp = get_local_data(op_densa_, pmata, SCF::Read); RefSymmSCMatrix pbtmp = get_local_data(op_densb_, pmatb, SCF::Read); LocalOSSGradContribution l(pmat,pmata,pmatb); Ref tbi = integral()->electron_repulsion_deriv(); Ref pl = integral()->petite_list(); LocalTBGrad tb(l, tbi, pl, basis(), scf_grp_, tbgrad, pmax, desired_gradient_accuracy()); tb.run(); scf_grp_->sum(tbgrad,3 * basis()->molecule()->natom()); } // for now quit else { ExEnv::err0() << indent << "OSSHF::two_body_deriv: can't do gradient yet\n"; abort(); } } ///////////////////////////////////////////////////////////////////////////// // Local Variables: // mode: c++ // c-file-style: "ETS" // End: