// // lbgbuild.h --- definitino of the load-balanced local G matrix builder // // Copyright (C) 1996 Limit Point Systems, Inc. // // Author: Edward Seidl // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // #ifndef _chemistry_qc_scf_lbgbuild_h #define _chemistry_qc_scf_lbgbuild_h #ifdef __GNUC__ #pragma interface #endif #include namespace sc { template class LocalLBGBuild : public GBuild { protected: Ref grp_; Ref tbi_; Ref integral_; Ref gbs_; signed char *pmax; public: LocalLBGBuild(T& t, const Ref& tbi, const Ref& ints, const Ref& bs, const Ref& g, signed char *pm) : GBuild(t), grp_(g), tbi_(tbi), integral_(ints), gbs_(bs), pmax(pm) {} ~LocalLBGBuild() {} void build_gmat(double accuracy) { tim_enter("ao_gmat"); tim_set_default("quartet"); double tnint=0; int tol = (int) (log(accuracy)/log(2.0)); int me=grp_->me(); int nproc = grp_->n(); Ref rpl = integral_->petite_list(); // grab references for speed GaussianBasisSet& gbs = *gbs_.pointer(); PetiteList& pl = *rpl.pointer(); TwoBodyInt& tbi = *tbi_.pointer(); tbi.set_redundant(0); const double *intbuf = tbi.buffer(); int inds[4]; // node zero passes out indices if (me==0) { int i; for (i=0; i < gbs.nshell(); i++) { if (!pl.in_p1(i)) continue; inds[0]=i; for (int j=0; j <= i; j++) { int oij = i_offset(i)+j; if (!pl.in_p2(oij)) continue; inds[1]=j; tim_enter_default(); int from; grp_->recvt(2323, &from, 1); grp_->sendt(from, 3232, inds, 4); tim_exit_default(); } } // now clean up inds[0] = inds[1] = inds[2] = inds[3] = -1; for (i=1; i < nproc; i++) { int from; grp_->recvt(2323, &from, 1); grp_->sendt(from, 3232, inds, 4); } } // all other nodes do the work else { do { grp_->sendt(0, 2323, &me, 1); grp_->recvt(3232, inds, 4); int i=inds[0]; int j=inds[1]; if (i < 0) break; int fi=gbs.shell_to_function(i); int ni=gbs(i).nfunction(); int oij = i_offset(i)+j; int fj=gbs.shell_to_function(j); int nj=gbs(j).nfunction(); int pmaxij = pmax[oij]; for (int k=0; k <= i; k++) { int fk=gbs.shell_to_function(k); int nk=gbs(k).nfunction(); int pmaxijk=pmaxij, ptmp; if ((ptmp=pmax[i_offset(i)+k]-2) > pmaxijk) pmaxijk=ptmp; if ((ptmp=pmax[ij_offset(j,k)]-2) > pmaxijk) pmaxijk=ptmp; int okl = i_offset(k); for (int l=0; l <= (k==i?j:k); l++,okl++) { int pmaxijkl = pmaxijk; if ((ptmp=pmax[okl]) > pmaxijkl) pmaxijkl=ptmp; if ((ptmp=pmax[i_offset(i)+l]-2) > pmaxijkl) pmaxijkl=ptmp; if ((ptmp=pmax[ij_offset(j,l)]-2) > pmaxijkl) pmaxijkl=ptmp; if (tbi.log2_shell_bound(i,j,k,l)+pmaxijkl < tol) continue; int qijkl = pl.in_p4(oij,okl,i,j,k,l); if (!qijkl) continue; tim_enter_default(); tbi.compute_shell(i,j,k,l); tim_exit_default(); int e12 = (i==j); int e34 = (k==l); int e13e24 = (i==k) && (j==l); int e_any = e12||e34||e13e24; int fl=gbs.shell_to_function(l); int nl=gbs(l).nfunction(); int ii,jj,kk,ll; int I,J,K,L; int index=0; for (I=0, ii=fi; I < ni; I++, ii++) { for (J=0, jj=fj; J <= (e12 ? I : nj-1); J++, jj++) { for (K=0, kk=fk; K <= (e13e24 ? I : nk-1); K++, kk++) { int lend = (e34 ? ((e13e24)&&(K==I) ? J : K) : ((e13e24)&&(K==I)) ? J : nl-1); for (L=0, ll=fl; L <= lend; L++, ll++, index++) { double pki_int = intbuf[index]; if ((pki_int>0?pki_int:-pki_int) < 1.0e-15) continue; if (qijkl > 1) pki_int *= qijkl; if (e_any) { int ij,kl; double val; if (jj == kk) { /* * if i=j=k or j=k=l, then this integral contributes * to J, K1, and K2 of G(ij), so * pkval = (ijkl) - 0.25 * ((ikjl)-(ilkj)) * = 0.5 * (ijkl) */ if (ii == jj || kk == ll) { ij = i_offset(ii)+jj; kl = i_offset(kk)+ll; val = (ij==kl) ? 0.5*pki_int : pki_int; contribution.cont5(ij,kl,val); } else { /* * if j=k, then this integral contributes * to J and K1 of G(ij) * * pkval = (ijkl) - 0.25 * (ikjl) * = 0.75 * (ijkl) */ ij = i_offset(ii)+jj; kl = i_offset(kk)+ll; val = (ij==kl) ? 0.5*pki_int : pki_int; contribution.cont4(ij,kl,val); /* * this integral also contributes to K1 and K2 of * G(il) * * pkval = -0.25 * ((ijkl)+(ikjl)) * = -0.5 * (ijkl) */ ij = ij_offset(ii,ll); kl = ij_offset(kk,jj); val = (ij==kl) ? 0.5*pki_int : pki_int; contribution.cont3(ij,kl,val); } } else if (ii == kk || jj == ll) { /* * if i=k or j=l, then this integral contributes * to J and K2 of G(ij) * * pkval = (ijkl) - 0.25 * (ilkj) * = 0.75 * (ijkl) */ ij = i_offset(ii)+jj; kl = i_offset(kk)+ll; val = (ij==kl) ? 0.5*pki_int : pki_int; contribution.cont4(ij,kl,val); /* * this integral also contributes to K1 and K2 of * G(ik) * * pkval = -0.25 * ((ijkl)+(ilkj)) * = -0.5 * (ijkl) */ ij = ij_offset(ii,kk); kl = ij_offset(jj,ll); val = (ij==kl) ? 0.5*pki_int : pki_int; contribution.cont3(ij,kl,val); } else { /* * This integral contributes to J of G(ij) * * pkval = (ijkl) */ ij = i_offset(ii)+jj; kl = i_offset(kk)+ll; val = (ij==kl) ? 0.5*pki_int : pki_int; contribution.cont1(ij,kl,val); /* * and to K1 of G(ik) * * pkval = -0.25 * (ijkl) */ ij = ij_offset(ii,kk); kl = ij_offset(jj,ll); val = (ij==kl) ? 0.5*pki_int : pki_int; contribution.cont2(ij,kl,val); if ((ii != jj) && (kk != ll)) { /* * if i!=j and k!=l, then this integral also * contributes to K2 of G(il) * * pkval = -0.25 * (ijkl) * * note: if we get here, then ik can't equal jl, * so pkval wasn't multiplied by 0.5 above. */ ij = ij_offset(ii,ll); kl = ij_offset(kk,jj); contribution.cont2(ij,kl,val); } } } else { // !e_any if (jj == kk) { /* * if j=k, then this integral contributes * to J and K1 of G(ij) * * pkval = (ijkl) - 0.25 * (ikjl) * = 0.75 * (ijkl) */ contribution.cont4(i_offset(ii)+jj,i_offset(kk)+ll,pki_int); /* * this integral also contributes to K1 and K2 of * G(il) * * pkval = -0.25 * ((ijkl)+(ikjl)) * = -0.5 * (ijkl) */ contribution.cont3(ij_offset(ii,ll),ij_offset(kk,jj),pki_int); } else if (ii == kk || jj == ll) { /* * if i=k or j=l, then this integral contributes * to J and K2 of G(ij) * * pkval = (ijkl) - 0.25 * (ilkj) * = 0.75 * (ijkl) */ contribution.cont4(i_offset(ii)+jj,i_offset(kk)+ll,pki_int); /* * this integral also contributes to K1 and K2 of * G(ik) * * pkval = -0.25 * ((ijkl)+(ilkj)) * = -0.5 * (ijkl) */ contribution.cont3(ij_offset(ii,kk),ij_offset(jj,ll),pki_int); } else { /* * This integral contributes to J of G(ij) * * pkval = (ijkl) */ contribution.cont1(i_offset(ii)+jj,i_offset(kk)+ll,pki_int); /* * and to K1 of G(ik) * * pkval = -0.25 * (ijkl) */ contribution.cont2(ij_offset(ii,kk),ij_offset(jj,ll),pki_int); /* * and to K2 of G(il) * * pkval = -0.25 * (ijkl) */ contribution.cont2(ij_offset(ii,ll),ij_offset(kk,jj),pki_int); } } } } } } tnint += (double) ni*nj*nk*nl; } } } while (inds[0] > -1); } grp_->sum(&tnint, 1, 0, 0); ExEnv::out0() << indent << scprintf("%20.0f integrals\n", tnint); tim_exit("ao_gmat"); } }; } #endif // Local Variables: // mode: c++ // c-file-style: "ETS" // End: