1 | //
|
---|
2 | // mbpt.h
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Ida Nielsen <ibniels@kemi.aau.dk>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifndef _chemistry_qc_mbpt_mbpt_h
|
---|
29 | #define _chemistry_qc_mbpt_mbpt_h
|
---|
30 |
|
---|
31 | #ifdef __GNUC__
|
---|
32 | #pragma interface
|
---|
33 | #endif
|
---|
34 |
|
---|
35 | #include <util/group/memory.h>
|
---|
36 | #include <util/group/message.h>
|
---|
37 | #include <util/group/thread.h>
|
---|
38 | #include <chemistry/qc/basis/obint.h>
|
---|
39 | #include <chemistry/qc/basis/tbint.h>
|
---|
40 | #include <chemistry/qc/scf/scf.h>
|
---|
41 |
|
---|
42 | namespace sc {
|
---|
43 |
|
---|
44 | // //////////////////////////////////////////////////////////////////////////
|
---|
45 |
|
---|
46 | /** The MBPT2 class implements several second-order perturbation theory
|
---|
47 | methods. */
|
---|
48 | class MBPT2: public Wavefunction {
|
---|
49 | protected:
|
---|
50 | #define ref_to_mp2_acc 100.0
|
---|
51 |
|
---|
52 | Ref<SCF> reference_;
|
---|
53 | Ref<MemoryGrp> mem;
|
---|
54 | int nfzc, nfzv;
|
---|
55 | size_t mem_alloc;
|
---|
56 |
|
---|
57 | double cphf_epsilon_;
|
---|
58 | int eliminate_in_gmat_;
|
---|
59 | const double *intbuf_;
|
---|
60 | Ref<TwoBodyInt> tbint_;
|
---|
61 | Ref<TwoBodyInt> *tbints_;
|
---|
62 | Ref<TwoBodyDerivInt> *tbintder_;
|
---|
63 | int nbasis;
|
---|
64 | int noso;
|
---|
65 | Ref<MessageGrp> msg_;
|
---|
66 | int nvir, nocc, nsocc;
|
---|
67 |
|
---|
68 | Ref<ThreadGrp> thr_;
|
---|
69 |
|
---|
70 | // use a dynamic load balance algorithm if possible if true
|
---|
71 | // (will not work if messagegrp not thread safe and
|
---|
72 | // memorygrp needs catchup to work)
|
---|
73 | int dynamic_;
|
---|
74 |
|
---|
75 | // control how frequently progress is printed
|
---|
76 | double print_percent_;
|
---|
77 |
|
---|
78 | // The maximum number of orbitals in a pass.
|
---|
79 | int max_norb_;
|
---|
80 |
|
---|
81 | // the irreps of the orbitals and the offset within the irrep
|
---|
82 | int *symorb_irrep_;
|
---|
83 | int *symorb_num_;
|
---|
84 |
|
---|
85 | char *method_;
|
---|
86 | char *algorithm_;
|
---|
87 | // if do_d1_ is true, D1(MP2) will be computed even if the gradient is not
|
---|
88 | int do_d1_;
|
---|
89 | // if do_d2_ is true, D2(MP1) will be computed
|
---|
90 | int do_d2_;
|
---|
91 |
|
---|
92 | int nfuncmax;
|
---|
93 |
|
---|
94 | double hf_energy_;
|
---|
95 | RefSCVector hf_gradient_;
|
---|
96 |
|
---|
97 | double restart_ecorr_;
|
---|
98 | int restart_orbital_v1_;
|
---|
99 | int restart_orbital_memgrp_;
|
---|
100 |
|
---|
101 | protected:
|
---|
102 | void init_variables();
|
---|
103 |
|
---|
104 | // implement the Compute::compute() function
|
---|
105 | void compute();
|
---|
106 |
|
---|
107 | // Fill in the eigenvectors and eigenvalues (Guest & Saunders general
|
---|
108 | // form is used for the Fock matrix in the open shell case).
|
---|
109 | void eigen(RefDiagSCMatrix &vals, RefSCMatrix &vecs,
|
---|
110 | RefDiagSCMatrix &occs);
|
---|
111 |
|
---|
112 | // calculate the opt2 energy using algorithm v1
|
---|
113 | void compute_hsos_v1();
|
---|
114 |
|
---|
115 | // calculate the opt2 energy using algorithm v2
|
---|
116 | distsize_t compute_v2_memory(int ni,
|
---|
117 | int nfuncmax, int nbfme, int nshell,
|
---|
118 | int ndocc, int nsocc, int nvir, int nproc);
|
---|
119 | void compute_hsos_v2();
|
---|
120 |
|
---|
121 | // calculate the opt2 energy using the load balanced version of v2
|
---|
122 | void compute_hsos_v2_lb();
|
---|
123 |
|
---|
124 | // calculate the closed shell mp2 energy and gradient
|
---|
125 | int compute_cs_batchsize(size_t mem_static, int nocc_act);
|
---|
126 | // distsize_t is used to allow memory requirements to be
|
---|
127 | // estimated by starting the calculation on a single processor
|
---|
128 | distsize_t compute_cs_dynamic_memory(int ni, int nocc_act);
|
---|
129 | int make_cs_gmat(RefSymmSCMatrix& Gmat, double *DPmat);
|
---|
130 | int make_cs_gmat_new(RefSymmSCMatrix& Gmat, const RefSymmSCMatrix& DPmat);
|
---|
131 | void form_max_dens(double *DPmat, signed char *maxp);
|
---|
132 | int init_cs_gmat();
|
---|
133 | void done_cs_gmat();
|
---|
134 | int make_g_d_nor(RefSymmSCMatrix& Gmat,
|
---|
135 | double *DPmat, const double *mgdbuff);
|
---|
136 | void cs_cphf(double **scf_vector,
|
---|
137 | double *Laj, double *eigval, RefSCMatrix& P2aj);
|
---|
138 | void s2pdm_contrib(const double *intderbuf, double *PHF,
|
---|
139 | double *P2AO, double **hf_ginter, double **ginter);
|
---|
140 | void hcore_cs_grad(double *PHF, double *PMP2,
|
---|
141 | double **hf_ginter, double **ginter);
|
---|
142 | void overlap_cs_grad(double *WHF, double *WMP2,
|
---|
143 | double **hf_ginter, double **ginter);
|
---|
144 | void compute_cs_grad();
|
---|
145 | public:
|
---|
146 | MBPT2(StateIn&);
|
---|
147 | /** The KeyVal constructor.
|
---|
148 | <dl>
|
---|
149 |
|
---|
150 | <dt><tt>reference</tt><dd> This gives the reference wavefunction.
|
---|
151 | It must be an object of type CLSCF for closed-shell molecules and
|
---|
152 | HSOSSCF for open-shell molecules. The is no default.
|
---|
153 |
|
---|
154 | <dt><tt>nfzc</tt><dd> The number of frozen core orbitals. The
|
---|
155 | default is 0. If no atoms have an atomic number greater than 30,
|
---|
156 | then the number of orbitals to be frozen can be automatically
|
---|
157 | determined by specifying nfzc = auto.
|
---|
158 |
|
---|
159 | <dt><tt>nfzv</tt><dd> The number of frozen virtual orbitals. The
|
---|
160 | default is 0.
|
---|
161 |
|
---|
162 | <dt><tt>memory</tt><dd> The amount of memory, in bytes, that each
|
---|
163 | processor may use.
|
---|
164 |
|
---|
165 | <dt><tt>method</tt><dd> This gives a string that must take on one
|
---|
166 | of the values below. The default is mp for closed-shell systems
|
---|
167 | and zapt for open-shell systems.
|
---|
168 |
|
---|
169 | <dl>
|
---|
170 |
|
---|
171 | <dt><tt>mp</tt><dd> Use Møller-Plesset perturbation theory.
|
---|
172 | This is only valid for closed-shell systems. Energies and
|
---|
173 | gradients can be computed with this method.
|
---|
174 |
|
---|
175 | <dt><tt>opt1</tt><dd> Use the OPT1 variant of open-shell
|
---|
176 | perturbation theory. Only energies can be computed for
|
---|
177 | open-shell systems.
|
---|
178 |
|
---|
179 | <dt><tt>opt2</tt><dd> Use the OPT2 variant of open-shell
|
---|
180 | perturbation theory. Only energies can be computed for
|
---|
181 | open-shell systems.
|
---|
182 |
|
---|
183 | <dt><tt>zapt</tt><dd> Use the ZAPT variant of open-shell
|
---|
184 | perturbation theory. Only energies can be computed for
|
---|
185 | open-shell systems.
|
---|
186 |
|
---|
187 | </dl>
|
---|
188 |
|
---|
189 | <dt><tt>algorithm</tt><dd> This gives a string that must take on
|
---|
190 | one of the values given below. The default is memgrp for
|
---|
191 | closed-shell systems. For open-shell systems v1 is used for a
|
---|
192 | small number of processors and v2 is used otherwise.
|
---|
193 |
|
---|
194 | <dl>
|
---|
195 |
|
---|
196 | <dt><tt>memgrp</tt><dd> Use the distributed shared memory
|
---|
197 | algorithm (which uses a MemoryGrp object). This is only valid
|
---|
198 | for MP2 energies and gradients.
|
---|
199 |
|
---|
200 | <dt><tt>v1</tt><dd> Use algorithm V1. Only energies can be
|
---|
201 | computed. The maximum number of processors that can be utilized
|
---|
202 | is the number of virtual orbitals. This algorithm computes few
|
---|
203 | integrals than the others, but has higher communication
|
---|
204 | requirements.
|
---|
205 |
|
---|
206 | <dt><tt>v2</tt><dd> Use algorithm V2. Only energies can be
|
---|
207 | computed. The maximum number of processors that can be utilized
|
---|
208 | is the number of shells.
|
---|
209 |
|
---|
210 | <dt><tt>v2lb</tt><dd> Use a modified V2 algorithm that may
|
---|
211 | compute more two electron integrals, but may get better load
|
---|
212 | balance on the \f$O(n_\mathrm{basis}^5)\f$ part of the
|
---|
213 | calculation. Only energies can be computed. This is recommended
|
---|
214 | only for computations involving large molecules (where the
|
---|
215 | transformation is dominant) on very many processors (approaching
|
---|
216 | the number of shells).
|
---|
217 |
|
---|
218 | </dl>
|
---|
219 |
|
---|
220 | The v1 and v2 algorithms are discussed in Ida M. B. Nielsen and
|
---|
221 | Edward T. Seidl, J. Comp. Chem. 16, 1301 (1995). The memgrp
|
---|
222 | algorithm is discussed in Ida M. B. Nielsen, Chem. Phys. Lett. 255,
|
---|
223 | 210 (1996).
|
---|
224 |
|
---|
225 | <dt><tt>memorygrp</tt><dd> A MemoryGrp object is used by the memgrp
|
---|
226 | algorithm. If this is not given the program will try to find an
|
---|
227 | appropriate default.
|
---|
228 |
|
---|
229 | </dl> */
|
---|
230 | MBPT2(const Ref<KeyVal>&);
|
---|
231 | ~MBPT2();
|
---|
232 |
|
---|
233 | void save_data_state(StateOut&);
|
---|
234 |
|
---|
235 | Ref<SCF> ref() { return reference_; }
|
---|
236 | double ref_energy();
|
---|
237 | double corr_energy();
|
---|
238 | RefSCVector ref_energy_gradient();
|
---|
239 | RefSCVector corr_energy_gradient();
|
---|
240 |
|
---|
241 | int nelectron();
|
---|
242 |
|
---|
243 | int nfzcore() const { return nfzc; };
|
---|
244 | int nfzvirt() const { return nfzv; };
|
---|
245 |
|
---|
246 | RefSymmSCMatrix density();
|
---|
247 | int spin_polarized();
|
---|
248 |
|
---|
249 | int gradient_implemented() const;
|
---|
250 | int value_implemented() const;
|
---|
251 |
|
---|
252 | void symmetry_changed();
|
---|
253 |
|
---|
254 | // override compute's obsolete so we can call the reference's obsolete
|
---|
255 | void obsolete();
|
---|
256 |
|
---|
257 | void print(std::ostream&o=ExEnv::out0()) const;
|
---|
258 | };
|
---|
259 |
|
---|
260 | }
|
---|
261 |
|
---|
262 | #endif
|
---|
263 |
|
---|
264 | // Local Variables:
|
---|
265 | // mode: c++
|
---|
266 | // c-file-style: "CLJ"
|
---|
267 | // End:
|
---|