[0b990d] | 1 | //
|
---|
| 2 | // hsosv1.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Ida Nielsen <ida@kemi.aau.dk>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | typedef int dmt_matrix;
|
---|
| 29 |
|
---|
| 30 | #include <stdlib.h>
|
---|
| 31 | #include <math.h>
|
---|
| 32 |
|
---|
| 33 | #include <util/misc/formio.h>
|
---|
| 34 | #include <util/misc/timer.h>
|
---|
| 35 | #include <util/class/class.h>
|
---|
| 36 | #include <util/state/state.h>
|
---|
| 37 | #include <util/group/message.h>
|
---|
| 38 | #include <math/scmat/matrix.h>
|
---|
| 39 | #include <chemistry/molecule/molecule.h>
|
---|
| 40 | #include <chemistry/qc/scf/scf.h>
|
---|
| 41 | #include <chemistry/qc/mbpt/mbpt.h>
|
---|
| 42 | #include <chemistry/qc/mbpt/bzerofast.h>
|
---|
| 43 | #include <chemistry/qc/mbpt/hsosv1e1.h>
|
---|
| 44 |
|
---|
| 45 | using namespace std;
|
---|
| 46 | using namespace sc;
|
---|
| 47 |
|
---|
| 48 | static distsize_t
|
---|
| 49 | compute_v1_memory(int ni,
|
---|
| 50 | int nfuncmax, int nbasis, int noso,
|
---|
| 51 | int a_number, int nshell,
|
---|
| 52 | int ndocc, int nsocc, int nvir,
|
---|
| 53 | int nfzc, int nfzv,
|
---|
| 54 | int nproc)
|
---|
| 55 | {
|
---|
| 56 | distsize_t mem = 0;
|
---|
| 57 | int nocc = ndocc + nsocc;
|
---|
| 58 | int dim_ij = nocc*ni - (ni*(ni-1))/2;
|
---|
| 59 | mem += nproc*sizeof(int);
|
---|
| 60 | mem += (noso+nsocc-nfzc-nfzv)*sizeof(double);
|
---|
| 61 | mem += nfuncmax*nfuncmax*nbasis*ni*sizeof(double);
|
---|
| 62 | mem += nfuncmax*nfuncmax*nbasis*ni*sizeof(double);
|
---|
| 63 | mem += (distsize_t)nbasis*a_number*dim_ij*sizeof(double);
|
---|
| 64 | mem += nvir*a_number*sizeof(double);
|
---|
| 65 | mem += nvir*nvir*sizeof(double);
|
---|
| 66 | if (nsocc) {
|
---|
| 67 | mem += nsocc*sizeof(double);
|
---|
| 68 | mem += ndocc*nsocc*(nvir-nsocc)*sizeof(double);
|
---|
| 69 | mem += ndocc*nsocc*(nvir-nsocc)*sizeof(double);
|
---|
| 70 | }
|
---|
| 71 | mem += sizeof(double*)*(nbasis);
|
---|
| 72 | mem += sizeof(double)*((nocc+nvir)*nbasis);
|
---|
| 73 | return mem;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | void
|
---|
| 77 | MBPT2::compute_hsos_v1()
|
---|
| 78 | {
|
---|
| 79 | int i, j;
|
---|
| 80 | int s1, s2;
|
---|
| 81 | int a, b;
|
---|
| 82 | int isocc, asocc; /* indices running over singly occupied orbitals */
|
---|
| 83 | int nfuncmax = basis()->max_nfunction_in_shell();
|
---|
| 84 | int nvir;
|
---|
| 85 | int nocc=0;
|
---|
| 86 | int ndocc=0,nsocc=0;
|
---|
| 87 | int i_offset;
|
---|
| 88 | int npass, pass;
|
---|
| 89 | int ni; /* batch size */
|
---|
| 90 | int nr, ns;
|
---|
| 91 | int R, S;
|
---|
| 92 | int q, r, s;
|
---|
| 93 | int bf3,bf4;
|
---|
| 94 | int docc_index, socc_index, vir_index;
|
---|
| 95 | int me;
|
---|
| 96 | int nproc;
|
---|
| 97 | int rest;
|
---|
| 98 | int a_rest;
|
---|
| 99 | int a_number; /* number of a-values processed by each node */
|
---|
| 100 | int a_offset;
|
---|
| 101 | int *a_vector; /* each node's # of iajb integrals for one i,j */
|
---|
| 102 | int compute_index;
|
---|
| 103 | int tmp_index;
|
---|
| 104 | int dim_ij;
|
---|
| 105 | int nshell;
|
---|
| 106 | double *evals_open; /* reordered scf eigenvalues */
|
---|
| 107 | double *trans_int1; /* partially transformed integrals */
|
---|
| 108 | double *trans_int2; /* partially transformed integrals */
|
---|
| 109 | double *trans_int3; /* partially transformed integrals */
|
---|
| 110 | double *trans_int4_node;/* each node's subset of fully transf. integrals */
|
---|
| 111 | double *trans_int4; /* fully transformed integrals */
|
---|
| 112 | double *mo_int_do_so_vir=0;/*mo integral (is|sa); i:d.o.,s:s.o.,a:vir */
|
---|
| 113 | double *mo_int_tmp=0; /* scratch array used in global summations */
|
---|
| 114 | double *socc_sum=0; /* sum of 2-el integrals involving only s.o.'s */
|
---|
| 115 | double *iqrs;
|
---|
| 116 | double *iars_ptr, *iajs_ptr, *iajr_ptr;
|
---|
| 117 | double iajr;
|
---|
| 118 | double iars;
|
---|
| 119 | double *iajb;
|
---|
| 120 | double *c_qa;
|
---|
| 121 | double *c_rb, *c_rj, *c_sj;
|
---|
| 122 | double delta_ijab;
|
---|
| 123 | double delta;
|
---|
| 124 | double contrib1, contrib2;
|
---|
| 125 | double ecorr_opt2=0,ecorr_opt1=0;
|
---|
| 126 | double ecorr_zapt2;
|
---|
| 127 | double ecorr_opt2_contrib=0, ecorr_zapt2_contrib=0;
|
---|
| 128 | double escf;
|
---|
| 129 | double eopt2,eopt1,ezapt2;
|
---|
| 130 | double tol; /* log2 of the erep tolerance (erep < 2^tol => discard) */
|
---|
| 131 | int ithread;
|
---|
| 132 |
|
---|
| 133 | me = msg_->me();
|
---|
| 134 |
|
---|
| 135 | ExEnv::out0() << indent << "Just entered OPT2 program (opt2_v1)" << endl;
|
---|
| 136 |
|
---|
| 137 | tol = (int) (-10.0/log10(2.0)); /* discard ereps smaller than 10^-10 */
|
---|
| 138 |
|
---|
| 139 | nproc = msg_->n();
|
---|
| 140 | ExEnv::out0() << indent << "nproc = " << nproc << endl;
|
---|
| 141 |
|
---|
| 142 | ndocc = nsocc = 0;
|
---|
| 143 | const double epsilon = 1.0e-4;
|
---|
| 144 | for (i=0; i<oso_dimension()->n(); i++) {
|
---|
| 145 | if (reference_->occupation(i) >= 2.0 - epsilon) ndocc++;
|
---|
| 146 | else if (reference_->occupation(i) >= 1.0 - epsilon) nsocc++;
|
---|
| 147 | }
|
---|
| 148 |
|
---|
| 149 | /* do a few preliminary tests to make sure the desired calculation *
|
---|
| 150 | * can be done (and appears to be meaningful!) */
|
---|
| 151 |
|
---|
| 152 | if (ndocc == 0 && nsocc == 0) {
|
---|
| 153 | ExEnv::err0() << "There are no occupied orbitals; program exiting" << endl;
|
---|
| 154 | abort();
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | if (nfzc > ndocc) {
|
---|
| 158 | ExEnv::err0()
|
---|
| 159 | << "The number of frozen core orbitals exceeds the number" << endl
|
---|
| 160 | << "of doubly occupied orbitals; program exiting" << endl;
|
---|
| 161 | abort();
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | if (nfzv > noso - ndocc - nsocc) {
|
---|
| 165 | ExEnv::err0()
|
---|
| 166 | << "The number of frozen virtual orbitals exceeds the number" << endl
|
---|
| 167 | << "of unoccupied orbitals; program exiting" << endl;
|
---|
| 168 | abort();
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 | ndocc = ndocc - nfzc;
|
---|
| 172 | /* nvir = # of unocc. orb. + # of s.o. orb. - # of frozen virt. orb. */
|
---|
| 173 | nvir = noso - ndocc - nfzc - nfzv;
|
---|
| 174 | /* nocc = # of d.o. orb. + # of s.o. orb - # of frozen d.o. orb. */
|
---|
| 175 | nocc = ndocc + nsocc;
|
---|
| 176 |
|
---|
| 177 |
|
---|
| 178 | /* compute number of a-values (a_number) processed by each node */
|
---|
| 179 |
|
---|
| 180 | a_number = nvir/nproc;
|
---|
| 181 | a_rest = nvir%nproc;
|
---|
| 182 | if (me < a_rest) a_number++;
|
---|
| 183 |
|
---|
| 184 | if (me == 0 && a_number < nsocc) {
|
---|
| 185 | ExEnv::err0() << "not enough memory allocated" << endl;
|
---|
| 186 | /* must have all socc's on node 0 for computation of socc_sum*/
|
---|
| 187 | abort();
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | if (me < a_rest) a_offset = me*a_number; /* a_offset for each node */
|
---|
| 191 | else a_offset = a_rest*(a_number + 1) + (me - a_rest)*a_number;
|
---|
| 192 |
|
---|
| 193 | /* fill in elements of a_vector for gcollect */
|
---|
| 194 |
|
---|
| 195 | a_vector = (int*) malloc(nproc*sizeof(int));
|
---|
| 196 | if (!a_vector) {
|
---|
| 197 | ExEnv::errn() << "could not allocate storage for a_vector" << endl;
|
---|
| 198 | abort();
|
---|
| 199 | }
|
---|
| 200 | for (i=0; i<nproc; i++) {
|
---|
| 201 | a_vector[i] = nvir*(nvir/nproc)*sizeof(double);
|
---|
| 202 | }
|
---|
| 203 | for (i=0; i<a_rest; i++) {
|
---|
| 204 | a_vector[i] += nvir*sizeof(double); /* first a_rest nodes hold an extra a */
|
---|
| 205 | }
|
---|
| 206 |
|
---|
| 207 | // Cannot restart when singly occupied orbitals are present
|
---|
| 208 | if (nsocc) {
|
---|
| 209 | restart_orbital_v1_ = 0;
|
---|
| 210 | }
|
---|
| 211 | else if (restart_orbital_v1_) {
|
---|
| 212 | ExEnv::out0() << indent
|
---|
| 213 | << scprintf("Restarting at orbital %d with partial energy %18.14f",
|
---|
| 214 | restart_orbital_v1_, restart_ecorr_)
|
---|
| 215 | << endl;
|
---|
| 216 | }
|
---|
| 217 |
|
---|
| 218 | /* compute batch size ni for opt2 loops *
|
---|
| 219 | * need to store the following arrays: trans_int1-4, trans_int4_node, *
|
---|
| 220 | * scf_vector, evals_open, socc_sum, mo_int_do_so_vir, mo_int_tmp and *
|
---|
| 221 | * a_vector; *
|
---|
| 222 | * since a_number is not the same on all nodes, use node 0's a_number *
|
---|
| 223 | * (which is >= all other a_numbers) and broadcast ni afterwords */
|
---|
| 224 |
|
---|
| 225 | nshell = basis()->nshell();
|
---|
| 226 | size_t memused = 0;
|
---|
| 227 | ni = 0;
|
---|
| 228 | for (i=1; i<=nocc-restart_orbital_v1_; i++) {
|
---|
| 229 | distsize_t tmpmem = compute_v1_memory(i,
|
---|
| 230 | nfuncmax, nbasis, noso,
|
---|
| 231 | a_number, nshell,
|
---|
| 232 | ndocc, nsocc, nvir,
|
---|
| 233 | nfzc, nfzv, nproc);
|
---|
| 234 | if (tmpmem > mem_alloc) break;
|
---|
| 235 | ni = i;
|
---|
| 236 | memused = distsize_to_size(tmpmem);
|
---|
| 237 | }
|
---|
| 238 |
|
---|
| 239 | size_t mem_remaining = mem_alloc - memused;
|
---|
| 240 |
|
---|
| 241 | /* set ni equal to the smallest batch size for any node */
|
---|
| 242 | msg_->min(ni);
|
---|
| 243 | msg_->bcast(ni);
|
---|
| 244 |
|
---|
| 245 | ExEnv::out0() << indent
|
---|
| 246 | << "Memory available per node: " << mem_alloc << " Bytes"
|
---|
| 247 | << endl;
|
---|
| 248 | ExEnv::out0() << indent
|
---|
| 249 | << "Total memory used per node: " << memused << " Bytes"
|
---|
| 250 | << endl;
|
---|
| 251 | ExEnv::out0() << indent
|
---|
| 252 | << "Memory required for one pass: "
|
---|
| 253 | << compute_v1_memory(nocc-restart_orbital_v1_,
|
---|
| 254 | nfuncmax, nbasis, noso, a_number, nshell,
|
---|
| 255 | ndocc, nsocc, nvir, nfzc, nfzv, nproc)
|
---|
| 256 | << " Bytes"
|
---|
| 257 | << endl;
|
---|
| 258 | ExEnv::out0() << indent
|
---|
| 259 | << "Minimum memory required: "
|
---|
| 260 | << compute_v1_memory(1,
|
---|
| 261 | nfuncmax, nbasis, noso, a_number, nshell,
|
---|
| 262 | ndocc, nsocc, nvir, nfzc, nfzv, nproc)
|
---|
| 263 | << " Bytes"
|
---|
| 264 | << endl;
|
---|
| 265 | ExEnv::out0() << indent
|
---|
| 266 | << "Batch size: " << ni
|
---|
| 267 | << endl;
|
---|
| 268 |
|
---|
| 269 | if (ni < nsocc) {
|
---|
| 270 | ExEnv::out0() << indent << "Not enough memory allocated to handle"
|
---|
| 271 | << " SOCC orbs in first pass" << endl;
|
---|
| 272 | abort();
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | if (ni < 1) {
|
---|
| 276 | ExEnv::out0() << indent << "Not enough memory allocated" << endl;
|
---|
| 277 | abort();
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | rest = (nocc-restart_orbital_v1_)%ni;
|
---|
| 281 | npass = (nocc - restart_orbital_v1_ - rest)/ni + 1;
|
---|
| 282 | if (rest == 0) npass--;
|
---|
| 283 |
|
---|
| 284 | if (me == 0) {
|
---|
| 285 | ExEnv::out0() << indent << " npass rest nbasis nshell nfuncmax"
|
---|
| 286 | << " ndocc nsocc nvir nfzc nfzv" << endl;
|
---|
| 287 | ExEnv::out0() << indent << scprintf(" %-4i %-3i %-5i %-4i %-3i"
|
---|
| 288 | " %-3i %-3i %-3i %-3i %-3i",
|
---|
| 289 | npass,rest,nbasis,nshell,nfuncmax,ndocc,nsocc,nvir,nfzc,nfzv)
|
---|
| 290 | << endl;
|
---|
| 291 | }
|
---|
| 292 |
|
---|
| 293 | /* the scf vector might be distributed between the nodes, but for OPT2 *
|
---|
| 294 | * each node needs its own copy of the vector; *
|
---|
| 295 | * therefore, put a copy of the scf vector on each node; *
|
---|
| 296 | * while doing this, duplicate columns corresponding to singly *
|
---|
| 297 | * occupied orbitals and order columns as [socc docc socc unocc] */
|
---|
| 298 | /* also rearrange scf eigenvalues as [socc docc socc unocc] *
|
---|
| 299 | * want socc first to get the socc's in the first batch *
|
---|
| 300 | * (need socc's to compute energy denominators - see *
|
---|
| 301 | * socc_sum comment below) */
|
---|
| 302 |
|
---|
| 303 | evals_open = (double*) malloc((noso+nsocc-nfzc-nfzv)*sizeof(double));
|
---|
| 304 | if (!evals_open) {
|
---|
| 305 | ExEnv::errn() << "could not allocate storage for evals_open" << endl;
|
---|
| 306 | abort();
|
---|
| 307 | }
|
---|
| 308 |
|
---|
| 309 | RefDiagSCMatrix occ;
|
---|
| 310 | RefDiagSCMatrix evals;
|
---|
| 311 | RefSCMatrix Scf_Vec;
|
---|
| 312 | eigen(evals, Scf_Vec, occ);
|
---|
| 313 |
|
---|
| 314 | if (debug_>0) ExEnv::out0() << indent << "eigvenvectors computed" << endl;
|
---|
| 315 | if (debug_>1) evals.print("eigenvalues");
|
---|
| 316 | if (debug_>2) Scf_Vec.print("eigenvectors");
|
---|
| 317 |
|
---|
| 318 | double *scf_vectort_dat = new double[noso*nbasis];
|
---|
| 319 | Scf_Vec->convert(scf_vectort_dat);
|
---|
| 320 |
|
---|
| 321 | double** scf_vectort = new double*[nocc + nvir];
|
---|
| 322 |
|
---|
| 323 | int idoc = 0, ivir = 0, isoc = 0;
|
---|
| 324 | for (i=nfzc; i<noso-nfzv; i++) {
|
---|
| 325 | if (occ(i) >= 2.0 - epsilon) {
|
---|
| 326 | evals_open[idoc+nsocc] = evals(i);
|
---|
| 327 | scf_vectort[idoc+nsocc] = &scf_vectort_dat[i*nbasis];
|
---|
| 328 | idoc++;
|
---|
| 329 | }
|
---|
| 330 | else if (occ(i) >= 1.0 - epsilon) {
|
---|
| 331 | evals_open[isoc] = evals(i);
|
---|
| 332 | scf_vectort[isoc] = &scf_vectort_dat[i*nbasis];
|
---|
| 333 | evals_open[isoc+nocc] = evals(i);
|
---|
| 334 | scf_vectort[isoc+nocc] = &scf_vectort_dat[i*nbasis];
|
---|
| 335 | isoc++;
|
---|
| 336 | }
|
---|
| 337 | else {
|
---|
| 338 | if (ivir < nvir) {
|
---|
| 339 | evals_open[ivir+nocc+nsocc] = evals(i);
|
---|
| 340 | scf_vectort[ivir+nocc+nsocc] = &scf_vectort_dat[i*nbasis];
|
---|
| 341 | }
|
---|
| 342 | ivir++;
|
---|
| 343 | }
|
---|
| 344 | }
|
---|
| 345 |
|
---|
| 346 | // need the transpose of the vector
|
---|
| 347 | if (debug_>0) ExEnv::out0() << indent << "allocating scf_vector" << endl;
|
---|
| 348 | double **scf_vector = new double*[nbasis];
|
---|
| 349 | double *scf_vector_dat = new double[(nocc+nvir)*nbasis];
|
---|
| 350 | for (i=0; i<nbasis; i++) {
|
---|
| 351 | scf_vector[i] = &scf_vector_dat[(nocc+nvir)*i];
|
---|
| 352 | for (j=0; j<nocc+nvir; j++) {
|
---|
| 353 | scf_vector[i][j] = scf_vectort[j][i];
|
---|
| 354 | }
|
---|
| 355 | }
|
---|
| 356 | delete[] scf_vectort;
|
---|
| 357 | delete[] scf_vectort_dat;
|
---|
| 358 |
|
---|
| 359 | if (debug_>2) {
|
---|
| 360 | ExEnv::out0() << indent << "Final eigenvalues and vectors" << endl;
|
---|
| 361 | for (i=0; i<nocc+nvir; i++) {
|
---|
| 362 | ExEnv::out0() << indent << evals_open[i];
|
---|
| 363 | for (j=0; j<nbasis; j++) {
|
---|
| 364 | ExEnv::out0() << " " << scf_vector[j][i];
|
---|
| 365 | }
|
---|
| 366 | ExEnv::out0()<< endl;
|
---|
| 367 | }
|
---|
| 368 | ExEnv::out0() << endl;
|
---|
| 369 | }
|
---|
| 370 |
|
---|
| 371 | /* allocate storage for integral arrays */
|
---|
| 372 | if (debug_>0) ExEnv::out0() << indent << "allocating intermediates" << endl;
|
---|
| 373 | dim_ij = nocc*ni - ni*(ni-1)/2;
|
---|
| 374 |
|
---|
| 375 | trans_int1 = (double*) malloc(nfuncmax*nfuncmax*nbasis*ni*sizeof(double));
|
---|
| 376 | trans_int2 = (double*) malloc(nfuncmax*nfuncmax*nbasis*ni*sizeof(double));
|
---|
| 377 | trans_int3 = (double*) malloc(nbasis*a_number*dim_ij*sizeof(double));
|
---|
| 378 | trans_int4_node= (double*) malloc(nvir*a_number*sizeof(double));
|
---|
| 379 | trans_int4 = (double*) malloc(nvir*nvir*sizeof(double));
|
---|
| 380 | if (!(trans_int1 && trans_int2
|
---|
| 381 | && (!a_number || trans_int3)
|
---|
| 382 | && (!a_number || trans_int4_node) && trans_int4)){
|
---|
| 383 | ExEnv::errn() << "could not allocate storage for integral arrays" << endl;
|
---|
| 384 | abort();
|
---|
| 385 | }
|
---|
| 386 | if (nsocc) socc_sum = (double*) malloc(nsocc*sizeof(double));
|
---|
| 387 | if (nsocc) mo_int_do_so_vir =
|
---|
| 388 | (double*) malloc(ndocc*nsocc*(nvir-nsocc)*sizeof(double));
|
---|
| 389 | if (nsocc) mo_int_tmp =
|
---|
| 390 | (double*) malloc(ndocc*nsocc*(nvir-nsocc)*sizeof(double));
|
---|
| 391 |
|
---|
| 392 | if (nsocc) bzerofast(mo_int_do_so_vir,ndocc*nsocc*(nvir-nsocc));
|
---|
| 393 |
|
---|
| 394 | // create the integrals object
|
---|
| 395 | if (debug_>0) ExEnv::out0() << indent << "allocating integrals" << endl;
|
---|
| 396 | integral()->set_storage(mem_remaining);
|
---|
| 397 | Ref<TwoBodyInt> *tbint = new Ref<TwoBodyInt>[thr_->nthread()];
|
---|
| 398 | for (ithread=0; ithread<thr_->nthread(); ithread++) {
|
---|
| 399 | tbint[ithread] = integral()->electron_repulsion();
|
---|
| 400 | }
|
---|
| 401 |
|
---|
| 402 | // set up the thread objects
|
---|
| 403 | Ref<ThreadLock> lock = thr_->new_lock();
|
---|
| 404 | HSOSV1Erep1Qtr** e1thread = new HSOSV1Erep1Qtr*[thr_->nthread()];
|
---|
| 405 | for (ithread=0; ithread<thr_->nthread(); ithread++) {
|
---|
| 406 | e1thread[ithread] = new HSOSV1Erep1Qtr(ithread, thr_->nthread(), me, nproc,
|
---|
| 407 | lock, basis(), tbint[ithread], ni,
|
---|
| 408 | scf_vector, tol, debug_);
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | if (debug_>0) ExEnv::out0() << indent << "beginning passes" << endl;
|
---|
| 412 |
|
---|
| 413 | /**************************************************************************
|
---|
| 414 | * begin opt2 loops *
|
---|
| 415 | ***************************************************************************/
|
---|
| 416 |
|
---|
| 417 | int work = ((nshell*(nshell+1))/2);
|
---|
| 418 | int print_interval = work/100;
|
---|
| 419 | if (print_interval == 0) print_interval = 1;
|
---|
| 420 | if (work == 0) work = 1;
|
---|
| 421 |
|
---|
| 422 | for (pass=0; pass<npass; pass++) {
|
---|
| 423 | if (debug_) {
|
---|
| 424 | ExEnv::out0() << indent << "Beginning pass " << pass << endl;
|
---|
| 425 | }
|
---|
| 426 |
|
---|
| 427 | int print_index = 0;
|
---|
| 428 |
|
---|
| 429 | i_offset= pass*ni + restart_orbital_v1_;
|
---|
| 430 | if ((pass == npass - 1) && (rest != 0)) ni = rest;
|
---|
| 431 | bzerofast(trans_int3,nbasis*a_number*dim_ij);
|
---|
| 432 |
|
---|
| 433 | tim_enter("RS loop");
|
---|
| 434 | for (R = 0; R < basis()->nshell(); R++) {
|
---|
| 435 | nr = basis()->shell(R).nfunction();
|
---|
| 436 |
|
---|
| 437 | for (S = 0; S <= R; S++) {
|
---|
| 438 | ns = basis()->shell(S).nfunction();
|
---|
| 439 | tim_enter("bzerofast trans_int1");
|
---|
| 440 | bzerofast(trans_int1,nfuncmax*nfuncmax*nbasis*ni);
|
---|
| 441 | tim_exit("bzerofast trans_int1");
|
---|
| 442 |
|
---|
| 443 | if (debug_ && (print_index++)%print_interval == 0) {
|
---|
| 444 | lock->lock();
|
---|
| 445 | ExEnv::outn() << scprintf("%d: (PQ|%d %d) %d%%",
|
---|
| 446 | me,R,S,(100*print_index)/work)
|
---|
| 447 | << endl;
|
---|
| 448 | lock->unlock();
|
---|
| 449 | }
|
---|
| 450 |
|
---|
| 451 | tim_enter("PQ loop");
|
---|
| 452 |
|
---|
| 453 | for (ithread=0; ithread<thr_->nthread(); ithread++) {
|
---|
| 454 | e1thread[ithread]->set_data(R,nr,S,ns,ni,i_offset);
|
---|
| 455 | thr_->add_thread(ithread,e1thread[ithread]);
|
---|
| 456 | }
|
---|
| 457 | thr_->start_threads();
|
---|
| 458 | thr_->wait_threads();
|
---|
| 459 | for (ithread=0; ithread<thr_->nthread(); ithread++) {
|
---|
| 460 | e1thread[ithread]->accum_buffer(trans_int1);
|
---|
| 461 | }
|
---|
| 462 |
|
---|
| 463 | tim_exit("PQ loop");
|
---|
| 464 |
|
---|
| 465 | tim_enter("sum int");
|
---|
| 466 | msg_->sum(trans_int1,nr*ns*nbasis*ni,trans_int2);
|
---|
| 467 | tim_exit("sum int");
|
---|
| 468 |
|
---|
| 469 | /* begin second quarter transformation */
|
---|
| 470 |
|
---|
| 471 | tim_enter("bzerofast trans_int2");
|
---|
| 472 | bzerofast(trans_int2,nfuncmax*nfuncmax*nbasis*ni);
|
---|
| 473 | tim_exit("bzerofast trans_int2");
|
---|
| 474 |
|
---|
| 475 | tim_enter("2. quart. tr.");
|
---|
| 476 |
|
---|
| 477 | for (bf3 = 0; bf3 < nr; bf3++) {
|
---|
| 478 |
|
---|
| 479 | for (bf4 = 0; bf4 < ns; bf4++) {
|
---|
| 480 | if (R == S && bf4 > bf3) continue;
|
---|
| 481 |
|
---|
| 482 | for (q = 0; q < nbasis; q++) {
|
---|
| 483 | c_qa = &scf_vector[q][nocc + a_offset];
|
---|
| 484 | iqrs = &trans_int1[((bf4*nr + bf3)*nbasis + q)*ni];
|
---|
| 485 | iars_ptr = &trans_int2[((bf4*nr + bf3)*a_number)*ni];
|
---|
| 486 |
|
---|
| 487 | for (a = 0; a < a_number; a++) {
|
---|
| 488 |
|
---|
| 489 | for (i=ni; i; i--) {
|
---|
| 490 | *iars_ptr++ += *c_qa * *iqrs++;
|
---|
| 491 | }
|
---|
| 492 |
|
---|
| 493 | iqrs -= ni;
|
---|
| 494 | c_qa++;
|
---|
| 495 | }
|
---|
| 496 | }
|
---|
| 497 | }
|
---|
| 498 | }
|
---|
| 499 | tim_exit("2. quart. tr.");
|
---|
| 500 |
|
---|
| 501 | /* begin third quarter transformation */
|
---|
| 502 | tim_enter("3. quart. tr.");
|
---|
| 503 |
|
---|
| 504 |
|
---|
| 505 | for (bf3 = 0; bf3<nr; bf3++) {
|
---|
| 506 | r = basis()->shell_to_function(R) + bf3;
|
---|
| 507 |
|
---|
| 508 | for (bf4 = 0; bf4 <= (R == S ? bf3:(ns-1)); bf4++) {
|
---|
| 509 | s = basis()->shell_to_function(S) + bf4;
|
---|
| 510 |
|
---|
| 511 | for (i=0; i<ni; i++) {
|
---|
| 512 | tmp_index = i*(i+1)/2 + i*i_offset;
|
---|
| 513 |
|
---|
| 514 | for (a=0; a<a_number; a++) {
|
---|
| 515 | iars = trans_int2[((bf4*nr + bf3)*a_number + a)*ni + i];
|
---|
| 516 | if (r == s) iars *= 0.5;
|
---|
| 517 | iajs_ptr = &trans_int3[tmp_index + dim_ij*(a + a_number*s)];
|
---|
| 518 | iajr_ptr = &trans_int3[tmp_index + dim_ij*(a + a_number*r)];
|
---|
| 519 | c_rj = scf_vector[r];
|
---|
| 520 | c_sj = scf_vector[s];
|
---|
| 521 |
|
---|
| 522 | for (j=0; j<=i+i_offset; j++) {
|
---|
| 523 | *iajs_ptr++ += *c_rj++ * iars;
|
---|
| 524 | *iajr_ptr++ += *c_sj++ * iars;
|
---|
| 525 | }
|
---|
| 526 | }
|
---|
| 527 | }
|
---|
| 528 | } /* exit bf4 loop */
|
---|
| 529 | } /* exit bf3 loop */
|
---|
| 530 | tim_exit("3. quart. tr.");
|
---|
| 531 | } /* exit S loop */
|
---|
| 532 | } /* exit R loop */
|
---|
| 533 | tim_exit("RS loop");
|
---|
| 534 |
|
---|
| 535 | /* begin fourth quarter transformation; *
|
---|
| 536 | * first tansform integrals with only s.o. indices; *
|
---|
| 537 | * these integrals are needed to compute the denominators *
|
---|
| 538 | * in the various terms contributing to the correlation energy *
|
---|
| 539 | * and must all be computed in the first pass; *
|
---|
| 540 | * the integrals are summed into the array socc_sum: *
|
---|
| 541 | * socc_sum[isocc] = sum over asocc of (isocc asocc|asocc isocc) *
|
---|
| 542 | * (isocc, asocc = s.o. and the sum over asocc runs over all s.o.'s) *
|
---|
| 543 | * the individual integrals are not saved here, only the sums are kept */
|
---|
| 544 |
|
---|
| 545 | if (debug_) {
|
---|
| 546 | ExEnv::out0() << indent << "Beginning 4. quarter transform" << endl;
|
---|
| 547 | }
|
---|
| 548 |
|
---|
| 549 | tim_enter("4. quart. tr.");
|
---|
| 550 | if (pass == 0 && me == 0) {
|
---|
| 551 | if (nsocc) bzerofast(socc_sum,nsocc);
|
---|
| 552 | for (isocc=0; isocc<nsocc; isocc++) {
|
---|
| 553 |
|
---|
| 554 | for (r=0; r<nbasis; r++) {
|
---|
| 555 |
|
---|
| 556 | for (asocc=0; asocc<nsocc; asocc++) {
|
---|
| 557 | socc_sum[isocc] += scf_vector[r][nocc+asocc]*
|
---|
| 558 | trans_int3[isocc*(isocc+1)/2 + isocc*i_offset
|
---|
| 559 | + isocc + dim_ij*(asocc + a_number*r)];
|
---|
| 560 | }
|
---|
| 561 | }
|
---|
| 562 | }
|
---|
| 563 | }
|
---|
| 564 |
|
---|
| 565 | tim_enter("bcast0 socc_sum");
|
---|
| 566 | if (nsocc) msg_->bcast(socc_sum,nsocc);
|
---|
| 567 | tim_exit("bcast0 socc_sum");
|
---|
| 568 |
|
---|
| 569 | tim_exit("4. quart. tr.");
|
---|
| 570 |
|
---|
| 571 | /* now we have all the sums of integrals involving s.o.'s (socc_sum); *
|
---|
| 572 | * begin fourth quarter transformation for all integrals (including *
|
---|
| 573 | * integrals with only s.o. indices); use restriction j <= (i_offset+i) *
|
---|
| 574 | * to save flops */
|
---|
| 575 |
|
---|
| 576 | compute_index = 0;
|
---|
| 577 |
|
---|
| 578 | for (i=0; i<ni; i++) {
|
---|
| 579 |
|
---|
| 580 | for (j=0; j <= (i_offset+i); j++) {
|
---|
| 581 |
|
---|
| 582 | tim_enter("4. quart. tr.");
|
---|
| 583 |
|
---|
| 584 | bzerofast(trans_int4_node,nvir*a_number);
|
---|
| 585 |
|
---|
| 586 | for (r=0; r<nbasis; r++) {
|
---|
| 587 |
|
---|
| 588 | for (a=0; a<a_number; a++) {
|
---|
| 589 | iajb = &trans_int4_node[a*nvir];
|
---|
| 590 | c_rb = &scf_vector[r][nocc];
|
---|
| 591 | iajr = trans_int3[i*(i+1)/2 + i*i_offset + j + dim_ij*(a+a_number*r)];
|
---|
| 592 |
|
---|
| 593 | for (b=0; b<nvir; b++) {
|
---|
| 594 | *iajb++ += *c_rb++ * iajr;
|
---|
| 595 | }
|
---|
| 596 | }
|
---|
| 597 | }
|
---|
| 598 |
|
---|
| 599 | tim_exit("4. quart. tr.");
|
---|
| 600 |
|
---|
| 601 | /* collect each node's part of fully transf. int. into trans_int4 */
|
---|
| 602 | tim_enter("collect");
|
---|
| 603 | msg_->collect(trans_int4_node,a_vector,trans_int4);
|
---|
| 604 | tim_exit("collect");
|
---|
| 605 |
|
---|
| 606 |
|
---|
| 607 | /* we now have the fully transformed integrals (ia|jb) *
|
---|
| 608 | * for one i, one j (j <= i_offset+i), and all a and b; *
|
---|
| 609 | * compute contribution to the OPT1 and OPT2 correlation *
|
---|
| 610 | * energies; use restriction b <= a to save flops */
|
---|
| 611 |
|
---|
| 612 | tim_enter("compute ecorr");
|
---|
| 613 |
|
---|
| 614 | for (a=0; a<nvir; a++) {
|
---|
| 615 | for (b=0; b<=a; b++) {
|
---|
| 616 | compute_index++;
|
---|
| 617 | if (compute_index%nproc != me) continue;
|
---|
| 618 |
|
---|
| 619 | docc_index = ((i_offset+i) >= nsocc && (i_offset+i) < nocc)
|
---|
| 620 | + (j >= nsocc && j < nocc);
|
---|
| 621 | socc_index = ((i_offset+i)<nsocc)+(j<nsocc)+(a<nsocc)+(b<nsocc);
|
---|
| 622 | vir_index = (a >= nsocc) + (b >= nsocc);
|
---|
| 623 |
|
---|
| 624 | if (socc_index >= 3) continue; /* skip to next b value */
|
---|
| 625 |
|
---|
| 626 | delta_ijab = evals_open[i_offset+i] + evals_open[j]
|
---|
| 627 | - evals_open[nocc+a] - evals_open[nocc+b];
|
---|
| 628 |
|
---|
| 629 | /* determine integral type and compute energy contribution */
|
---|
| 630 | if (docc_index == 2 && vir_index == 2) {
|
---|
| 631 | if (i_offset+i == j && a == b) {
|
---|
| 632 | contrib1 = trans_int4[a*nvir + b]*trans_int4[a*nvir + b];
|
---|
| 633 | ecorr_opt2 += contrib1/delta_ijab;
|
---|
| 634 | ecorr_opt1 += contrib1/delta_ijab;
|
---|
| 635 | }
|
---|
| 636 | else if (i_offset+i == j || a == b) {
|
---|
| 637 | contrib1 = trans_int4[a*nvir + b]*trans_int4[a*nvir + b];
|
---|
| 638 | ecorr_opt2 += 2*contrib1/delta_ijab;
|
---|
| 639 | ecorr_opt1 += 2*contrib1/delta_ijab;
|
---|
| 640 | }
|
---|
| 641 | else {
|
---|
| 642 | contrib1 = trans_int4[a*nvir + b];
|
---|
| 643 | contrib2 = trans_int4[b*nvir + a];
|
---|
| 644 | ecorr_opt2 += 4*(contrib1*contrib1 + contrib2*contrib2
|
---|
| 645 | - contrib1*contrib2)/delta_ijab;
|
---|
| 646 | ecorr_opt1 += 4*(contrib1*contrib1 + contrib2*contrib2
|
---|
| 647 | - contrib1*contrib2)/delta_ijab;
|
---|
| 648 | }
|
---|
| 649 | }
|
---|
| 650 | else if (docc_index == 2 && socc_index == 2) {
|
---|
| 651 | contrib1 = (trans_int4[a*nvir + b] - trans_int4[b*nvir + a])*
|
---|
| 652 | (trans_int4[a*nvir + b] - trans_int4[b*nvir + a]);
|
---|
| 653 | ecorr_opt2 += contrib1/
|
---|
| 654 | (delta_ijab - 0.5*(socc_sum[a]+socc_sum[b]));
|
---|
| 655 | ecorr_opt1 += contrib1/delta_ijab;
|
---|
| 656 | }
|
---|
| 657 | else if (socc_index == 2 && vir_index == 2) {
|
---|
| 658 | contrib1 = (trans_int4[a*nvir + b] - trans_int4[b*nvir + a])*
|
---|
| 659 | (trans_int4[a*nvir + b] - trans_int4[b*nvir + a]);
|
---|
| 660 | ecorr_opt2 += contrib1/
|
---|
| 661 | (delta_ijab - 0.5*(socc_sum[i_offset+i]+socc_sum[j]));
|
---|
| 662 | ecorr_opt1 += contrib1/delta_ijab;
|
---|
| 663 | }
|
---|
| 664 | else if (docc_index == 2 && socc_index == 1 && vir_index == 1) {
|
---|
| 665 | if (i_offset+i == j) {
|
---|
| 666 | contrib1 = trans_int4[a*nvir + b]*trans_int4[a*nvir + b];
|
---|
| 667 | ecorr_opt2 += contrib1/(delta_ijab - 0.5*socc_sum[b]);
|
---|
| 668 | ecorr_opt1 += contrib1/delta_ijab;
|
---|
| 669 | }
|
---|
| 670 | else {
|
---|
| 671 | contrib1 = trans_int4[a*nvir + b];
|
---|
| 672 | contrib2 = trans_int4[b*nvir + a];
|
---|
| 673 | ecorr_opt2 += 2*(contrib1*contrib1 + contrib2*contrib2
|
---|
| 674 | - contrib1*contrib2)/(delta_ijab - 0.5*socc_sum[b]);
|
---|
| 675 | ecorr_opt1 += 2*(contrib1*contrib1 + contrib2*contrib2
|
---|
| 676 | - contrib1*contrib2)/delta_ijab;
|
---|
| 677 | }
|
---|
| 678 | }
|
---|
| 679 | else if (docc_index == 1 && socc_index == 2 && vir_index == 1) {
|
---|
| 680 | contrib1 = trans_int4[b*nvir+a]*trans_int4[b*nvir+a];
|
---|
| 681 | if (j == b) {
|
---|
| 682 | /* to compute the total energy contribution from an integral *
|
---|
| 683 | * of the type (is1|s1a) (i=d.o., s1=s.o., a=unocc.), we need *
|
---|
| 684 | * the (is|sa) integrals for all s=s.o.; these integrals are *
|
---|
| 685 | * therefore stored here in the array mo_int_do_so_vir, and *
|
---|
| 686 | * the energy contribution is computed after exiting the loop *
|
---|
| 687 | * over i-batches (pass) */
|
---|
| 688 | mo_int_do_so_vir[a-nsocc + (nvir-nsocc)*
|
---|
| 689 | (i_offset+i-nsocc + ndocc*b)] =
|
---|
| 690 | trans_int4[b*nvir + a];
|
---|
| 691 | ecorr_opt2_contrib += 1.5*contrib1/delta_ijab;
|
---|
| 692 | ecorr_opt1 += 1.5*contrib1/delta_ijab;
|
---|
| 693 | ecorr_zapt2_contrib += contrib1/
|
---|
| 694 | (delta_ijab - 0.5*(socc_sum[j]+socc_sum[b]))
|
---|
| 695 | + 0.5*contrib1/delta_ijab;
|
---|
| 696 | }
|
---|
| 697 | else {
|
---|
| 698 | ecorr_opt2 += contrib1/
|
---|
| 699 | (delta_ijab - 0.5*(socc_sum[j] + socc_sum[b]));
|
---|
| 700 | ecorr_opt1 += contrib1/delta_ijab;
|
---|
| 701 | }
|
---|
| 702 | }
|
---|
| 703 | else if (docc_index == 1 && socc_index == 1 && vir_index == 2) {
|
---|
| 704 | if (a == b) {
|
---|
| 705 | contrib1 = trans_int4[a*nvir + b]*trans_int4[a*nvir + b];
|
---|
| 706 | ecorr_opt2 += contrib1/(delta_ijab - 0.5*socc_sum[j]);
|
---|
| 707 | ecorr_opt1 += contrib1/delta_ijab;
|
---|
| 708 | }
|
---|
| 709 | else {
|
---|
| 710 | contrib1 = trans_int4[a*nvir + b];
|
---|
| 711 | contrib2 = trans_int4[b*nvir + a];
|
---|
| 712 | ecorr_opt2 += 2*(contrib1*contrib1 + contrib2*contrib2
|
---|
| 713 | - contrib1*contrib2)/(delta_ijab - 0.5*socc_sum[j]);
|
---|
| 714 | ecorr_opt1 += 2*(contrib1*contrib1 + contrib2*contrib2
|
---|
| 715 | - contrib1*contrib2)/delta_ijab;
|
---|
| 716 | }
|
---|
| 717 | }
|
---|
| 718 | } /* exit b loop */
|
---|
| 719 | } /* exit a loop */
|
---|
| 720 | tim_exit("compute ecorr");
|
---|
| 721 | } /* exit j loop */
|
---|
| 722 | } /* exit i loop */
|
---|
| 723 |
|
---|
| 724 | if (nsocc == 0 && npass > 1 && pass < npass - 1) {
|
---|
| 725 | double passe = ecorr_opt2;
|
---|
| 726 | msg_->sum(passe);
|
---|
| 727 | ExEnv::out0() << indent
|
---|
| 728 | << "Partial correlation energy for pass " << pass << ":" << endl;
|
---|
| 729 | ExEnv::out0() << indent
|
---|
| 730 | << scprintf(" restart_ecorr = %18.14f", passe)
|
---|
| 731 | << endl;
|
---|
| 732 | ExEnv::out0() << indent
|
---|
| 733 | << scprintf(" restart_orbital_v1 = %d", ((pass+1) * ni))
|
---|
| 734 | << endl;
|
---|
| 735 | }
|
---|
| 736 | } /* exit loop over i-batches (pass) */
|
---|
| 737 |
|
---|
| 738 | // don't need the AO integrals and threads anymore
|
---|
| 739 | double aoint_computed = 0.0;
|
---|
| 740 | for (i=0; i<thr_->nthread(); i++) {
|
---|
| 741 | tbint[i] = 0;
|
---|
| 742 | aoint_computed += e1thread[i]->aoint_computed();
|
---|
| 743 | delete e1thread[i];
|
---|
| 744 | }
|
---|
| 745 | delete[] e1thread;
|
---|
| 746 | delete[] tbint;
|
---|
| 747 |
|
---|
| 748 | /* compute contribution from excitations of the type is1 -> s1a where *
|
---|
| 749 | * i=d.o., s1=s.o. and a=unocc; single excitations of the type i -> a, *
|
---|
| 750 | * where i and a have the same spin, contribute to this term; *
|
---|
| 751 | * (Brillouin's theorem not satisfied for ROHF wave functions); */
|
---|
| 752 |
|
---|
| 753 | tim_enter("compute ecorr");
|
---|
| 754 |
|
---|
| 755 | if (nsocc > 0) {
|
---|
| 756 | tim_enter("sum mo_int_do_so_vir");
|
---|
| 757 | msg_->sum(mo_int_do_so_vir,ndocc*nsocc*(nvir-nsocc),mo_int_tmp);
|
---|
| 758 | tim_exit("sum mo_int_do_so_vir");
|
---|
| 759 | }
|
---|
| 760 |
|
---|
| 761 | /* add extra contribution for triplet and higher spin multiplicities *
|
---|
| 762 | * contribution = sum over s1 and s2<s1 of (is1|s1a)*(is2|s2a)/delta */
|
---|
| 763 |
|
---|
| 764 | if (me == 0 && nsocc) {
|
---|
| 765 | for (i=0; i<ndocc; i++) {
|
---|
| 766 |
|
---|
| 767 | for (a=0; a<nvir-nsocc; a++) {
|
---|
| 768 | delta = evals_open[nsocc+i] - evals_open[nocc+nsocc+a];
|
---|
| 769 |
|
---|
| 770 | for (s1=0; s1<nsocc; s1++) {
|
---|
| 771 |
|
---|
| 772 | for (s2=0; s2<s1; s2++) {
|
---|
| 773 | contrib1 = mo_int_do_so_vir[a + (nvir-nsocc)*(i + ndocc*s1)]*
|
---|
| 774 | mo_int_do_so_vir[a + (nvir-nsocc)*(i + ndocc*s2)]/delta;
|
---|
| 775 | ecorr_opt2 += contrib1;
|
---|
| 776 | ecorr_opt1 += contrib1;
|
---|
| 777 | }
|
---|
| 778 | }
|
---|
| 779 | } /* exit a loop */
|
---|
| 780 | } /* exit i loop */
|
---|
| 781 | }
|
---|
| 782 |
|
---|
| 783 | tim_exit("compute ecorr");
|
---|
| 784 |
|
---|
| 785 | ecorr_zapt2 = ecorr_opt2 + ecorr_zapt2_contrib;
|
---|
| 786 | ecorr_opt2 += ecorr_opt2_contrib;
|
---|
| 787 | msg_->sum(ecorr_opt1);
|
---|
| 788 | msg_->sum(ecorr_opt2);
|
---|
| 789 | msg_->sum(ecorr_zapt2);
|
---|
| 790 | msg_->sum(aoint_computed);
|
---|
| 791 |
|
---|
| 792 | if (restart_orbital_v1_) {
|
---|
| 793 | ecorr_opt1 += restart_ecorr_;
|
---|
| 794 | ecorr_opt2 += restart_ecorr_;
|
---|
| 795 | ecorr_zapt2 += restart_ecorr_;
|
---|
| 796 | }
|
---|
| 797 |
|
---|
| 798 | escf = reference_->energy();
|
---|
| 799 | hf_energy_ = escf;
|
---|
| 800 |
|
---|
| 801 | if (me == 0) {
|
---|
| 802 | eopt2 = escf + ecorr_opt2;
|
---|
| 803 | eopt1 = escf + ecorr_opt1;
|
---|
| 804 | ezapt2 = escf + ecorr_zapt2;
|
---|
| 805 |
|
---|
| 806 | /* print out various energies etc.*/
|
---|
| 807 |
|
---|
| 808 | ExEnv::out0() << indent
|
---|
| 809 | << "Number of shell quartets for which AO integrals would" << endl
|
---|
| 810 | << indent
|
---|
| 811 | << "have been computed without bounds checking: "
|
---|
| 812 | << npass*nshell*nshell*(nshell+1)*(nshell+1)/4 << endl;
|
---|
| 813 | ExEnv::out0() << indent
|
---|
| 814 | << "Number of shell quartets for which AO integrals" << endl
|
---|
| 815 | << indent << "were computed: " << aoint_computed << endl;
|
---|
| 816 | ExEnv::out0() << indent
|
---|
| 817 | << scprintf("ROHF energy [au]: %17.12lf\n", escf);
|
---|
| 818 | ExEnv::out0() << indent
|
---|
| 819 | << scprintf("OPT1 energy [au]: %17.12lf\n", eopt1);
|
---|
| 820 | ExEnv::out0() << indent
|
---|
| 821 | << scprintf("OPT2 second order correction [au]: %17.12lf\n", ecorr_opt2);
|
---|
| 822 | ExEnv::out0() << indent
|
---|
| 823 | << scprintf("OPT2 energy [au]: %17.12lf\n", eopt2);
|
---|
| 824 | ExEnv::out0() << indent
|
---|
| 825 | << scprintf("ZAPT2 correlation energy [au]: %17.12lf\n", ecorr_zapt2);
|
---|
| 826 | ExEnv::out0() << indent
|
---|
| 827 | << scprintf("ZAPT2 energy [au]: %17.12lf\n", ezapt2);
|
---|
| 828 | }
|
---|
| 829 | msg_->bcast(eopt1);
|
---|
| 830 | msg_->bcast(eopt2);
|
---|
| 831 | msg_->bcast(ezapt2);
|
---|
| 832 |
|
---|
| 833 | if (method_ && !strcmp(method_,"opt1")) {
|
---|
| 834 | set_energy(eopt1);
|
---|
| 835 | set_actual_value_accuracy(reference_->actual_value_accuracy()
|
---|
| 836 | *ref_to_mp2_acc);
|
---|
| 837 | }
|
---|
| 838 | else if (method_ && !strcmp(method_,"opt2")) {
|
---|
| 839 | set_energy(eopt2);
|
---|
| 840 | set_actual_value_accuracy(reference_->actual_value_accuracy()
|
---|
| 841 | *ref_to_mp2_acc);
|
---|
| 842 | }
|
---|
| 843 | else if (method_ && nsocc == 0 && !strcmp(method_,"mp")) {
|
---|
| 844 | set_energy(ezapt2);
|
---|
| 845 | set_actual_value_accuracy(reference_->actual_value_accuracy()
|
---|
| 846 | *ref_to_mp2_acc);
|
---|
| 847 | }
|
---|
| 848 | else {
|
---|
| 849 | if (!(!method_ || !strcmp(method_,"zapt"))) {
|
---|
| 850 | ExEnv::out0() << indent
|
---|
| 851 | << "MBPT2: bad method: " << method_ << ", using zapt" << endl;
|
---|
| 852 | }
|
---|
| 853 | set_energy(ezapt2);
|
---|
| 854 | set_actual_value_accuracy(reference_->actual_value_accuracy()
|
---|
| 855 | *ref_to_mp2_acc);
|
---|
| 856 | }
|
---|
| 857 |
|
---|
| 858 | free(trans_int1);
|
---|
| 859 | free(trans_int2);
|
---|
| 860 | free(trans_int3);
|
---|
| 861 | free(trans_int4_node);
|
---|
| 862 | free(trans_int4);
|
---|
| 863 | free(a_vector);
|
---|
| 864 | if (nsocc) free(socc_sum);
|
---|
| 865 | if (nsocc) free(mo_int_do_so_vir);
|
---|
| 866 | if (nsocc) free(mo_int_tmp);
|
---|
| 867 | free(evals_open);
|
---|
| 868 |
|
---|
| 869 | delete[] scf_vector;
|
---|
| 870 | delete[] scf_vector_dat;
|
---|
| 871 | }
|
---|
| 872 |
|
---|
| 873 | ////////////////////////////////////////////////////////////////////////////
|
---|
| 874 |
|
---|
| 875 | // Local Variables:
|
---|
| 876 | // mode: c++
|
---|
| 877 | // c-file-style: "CLJ-CONDENSED"
|
---|
| 878 | // End:
|
---|