1 | /*
|
---|
2 | * macros.h
|
---|
3 | *
|
---|
4 | * Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | *
|
---|
6 | * Author: Curtis Janssen <cljanss@ca.sandia.gov>
|
---|
7 | * Maintainer: LPS
|
---|
8 | *
|
---|
9 | * This file is part of the SC Toolkit.
|
---|
10 | *
|
---|
11 | * The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | * it under the terms of the GNU Library General Public License as published by
|
---|
13 | * the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | * any later version.
|
---|
15 | *
|
---|
16 | * The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | * GNU Library General Public License for more details.
|
---|
20 | *
|
---|
21 | * You should have received a copy of the GNU Library General Public License
|
---|
22 | * along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | *
|
---|
25 | * The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | */
|
---|
27 |
|
---|
28 | /* True if the integral is nonzero. */
|
---|
29 | #define INT_NONZERO(x) (((x)< -1.0e-10)||((x)> 1.0e-10))
|
---|
30 |
|
---|
31 | /* Computes an index to a Cartesian function within a shell given
|
---|
32 | * am = total angular momentum
|
---|
33 | * i = the exponent of x (i is used twice in the macro--beware side effects)
|
---|
34 | * j = the exponent of y
|
---|
35 | * formula: am*(i+1) - (i*(i+1))/2 + i+1 - j - 1
|
---|
36 | * The following loop will generate indices in the proper order:
|
---|
37 | * cartindex = 0;
|
---|
38 | * for (i=0; i<=am; i++) {
|
---|
39 | * for (k=0; k<=am-i; k++) {
|
---|
40 | * j = am - i - k;
|
---|
41 | * do_it_with(cartindex); // cartindex == INT_CARTINDEX(am,i,j)
|
---|
42 | * cartindex++;
|
---|
43 | * }
|
---|
44 | * }
|
---|
45 | */
|
---|
46 | #define INT_CARTINDEX(am,i,j) (((((((am)+1)<<1)-(i))*((i)+1))>>1)-(j)-1)
|
---|
47 |
|
---|
48 | /* This sets up the above loop over cartesian exponents as follows
|
---|
49 | * FOR_CART(i,j,k,am)
|
---|
50 | * Stuff using i,j,k.
|
---|
51 | * END_FOR_CART
|
---|
52 | */
|
---|
53 | #define FOR_CART(i,j,k,am) for((i)=0;(i)<=(am);(i)++) {\
|
---|
54 | for((k)=0;(k)<=(am)-(i);(k)++) \
|
---|
55 | { (j) = (am) - (i) - (k);
|
---|
56 | #define END_FOR_CART }}
|
---|
57 |
|
---|
58 | /* This sets up a loop over all of the generalized contractions
|
---|
59 | * and all of the cartesian exponents.
|
---|
60 | * gc is the number of the gen con
|
---|
61 | * index is the index within the current gen con.
|
---|
62 | * i,j,k are the angular momentum for x,y,z
|
---|
63 | * sh is the shell pointer
|
---|
64 | */
|
---|
65 | #define FOR_GCCART(gc,index,i,j,k,sh)\
|
---|
66 | for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
|
---|
67 | (index)=0;\
|
---|
68 | FOR_CART(i,j,k,(sh)->type[gc].am)
|
---|
69 |
|
---|
70 | #define FOR_GCCART_GS(gc,index,i,j,k,sh)\
|
---|
71 | for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\
|
---|
72 | (index)=0;\
|
---|
73 | FOR_CART(i,j,k,(sh)->am(gc))
|
---|
74 |
|
---|
75 | #define END_FOR_GCCART(index)\
|
---|
76 | (index)++;\
|
---|
77 | END_FOR_CART\
|
---|
78 | }
|
---|
79 |
|
---|
80 | #define END_FOR_GCCART_GS(index)\
|
---|
81 | (index)++;\
|
---|
82 | END_FOR_CART\
|
---|
83 | }
|
---|
84 |
|
---|
85 | /* These are like the above except no index is kept track of. */
|
---|
86 | #define FOR_GCCART2(gc,i,j,k,sh)\
|
---|
87 | for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
|
---|
88 | FOR_CART(i,j,k,(sh)->type[gc].am)
|
---|
89 |
|
---|
90 | #define END_FOR_GCCART2\
|
---|
91 | END_FOR_CART\
|
---|
92 | }
|
---|
93 |
|
---|
94 | /* These are used to loop over shells, given the centers structure
|
---|
95 | * and the center index, and shell index. */
|
---|
96 | #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\
|
---|
97 | for((j)=0;(j)<(c)->center[(i)].basis.n;j++) {
|
---|
98 | #define END_FOR_SHELLS }}
|
---|
99 |
|
---|
100 | /* Computes the number of Cartesian function in a shell given
|
---|
101 | * am = total angular momentum
|
---|
102 | * formula: (am*(am+1))/2 + am+1;
|
---|
103 | */
|
---|
104 | #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0)
|
---|
105 |
|
---|
106 | /* Like INT_NCART, but only for nonnegative arguments. */
|
---|
107 | #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1)
|
---|
108 |
|
---|
109 | /* For a given ang. mom., am, with n cartesian functions, compute the
|
---|
110 | * number of cartesian functions for am+1 or am-1
|
---|
111 | */
|
---|
112 | #define INT_NCART_DEC(am,n) ((n)-(am)-1)
|
---|
113 | #define INT_NCART_INC(am,n) ((n)+(am)+2)
|
---|
114 |
|
---|
115 | /* Computes the number of pure angular momentum functions in a shell
|
---|
116 | * given am = total angular momentum
|
---|
117 | */
|
---|
118 | #define INT_NPURE(am) (2*(am)+1)
|
---|
119 |
|
---|
120 | /* Computes the number of functions in a shell given
|
---|
121 | * pu = pure angular momentum boolean
|
---|
122 | * am = total angular momentum
|
---|
123 | */
|
---|
124 | #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))
|
---|
125 |
|
---|
126 | /* Given a centers pointer and a shell number, this evaluates the
|
---|
127 | * pointer to that shell. */
|
---|
128 | #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]])
|
---|
129 |
|
---|
130 | /* Given a centers pointer and a shell number, get the angular momentum
|
---|
131 | * of that shell. */
|
---|
132 | #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am)
|
---|
133 |
|
---|
134 | /* Given a centers pointer and a shell number, get pure angular momentum
|
---|
135 | * boolean for that shell. */
|
---|
136 | #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream)
|
---|
137 |
|
---|
138 | /* Given a centers pointer, a center number, and a shell number,
|
---|
139 | * get the angular momentum of that shell. */
|
---|
140 | #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am)
|
---|
141 |
|
---|
142 | /* Given a centers pointer, a center number, and a shell number,
|
---|
143 | * get pure angular momentum boolean for that shell. */
|
---|
144 | #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream)
|
---|
145 |
|
---|
146 | /* Given a centers pointer and a shell number, compute the number
|
---|
147 | * of functions in that shell. */
|
---|
148 | /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */
|
---|
149 | #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc)
|
---|
150 |
|
---|
151 | /* These macros assist in looping over the unique integrals
|
---|
152 | * in a shell quartet. The exy variables are booleans giving
|
---|
153 | * information about the equivalence between shells x and y. The nx
|
---|
154 | * variables give the number of functions in each shell, x. The
|
---|
155 | * i,j,k are the current values of the looping indices for shells 1, 2, and 3.
|
---|
156 | * The macros return the maximum index to be included in a summation
|
---|
157 | * over indices 1, 2, 3, and 4.
|
---|
158 | * These macros require canonical integrals. This requirement comes
|
---|
159 | * from the need that integrals of the shells (1 2|2 1) are not
|
---|
160 | * used. The integrals (1 2|1 2) must be used with these macros to
|
---|
161 | * get the right nonredundant integrals.
|
---|
162 | */
|
---|
163 | #define INT_MAX1(n1) ((n1)-1)
|
---|
164 | #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1))
|
---|
165 | #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1))
|
---|
166 | #define INT_MAX4(e13e24,e34,i,j,k,n4) \
|
---|
167 | ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \
|
---|
168 | :((e13e24)&&((k)==(i)))?(j):(n4)-1)
|
---|
169 | /* A note on integral symmetries:
|
---|
170 | * There are 15 ways of having equivalent indices.
|
---|
171 | * There are 8 of these which are important for determining the
|
---|
172 | * nonredundant integrals (that is there are only 8 ways of counting
|
---|
173 | * the number of nonredundant integrals in a shell quartet)
|
---|
174 | * Integral type Integral Counting Type
|
---|
175 | * 1 (1 2|3 4) 1
|
---|
176 | * 2 (1 1|3 4) 2
|
---|
177 | * 3 (1 2|1 4) ->1
|
---|
178 | * 4 (1 2|3 1) ->1
|
---|
179 | * 5 (1 1|1 4) 3
|
---|
180 | * 6 (1 1|3 1) ->2
|
---|
181 | * 7 (1 2|1 1) ->5
|
---|
182 | * 8 (1 1|1 1) 4
|
---|
183 | * 9 (1 2|2 4) ->1
|
---|
184 | * 10 (1 2|3 2) ->1
|
---|
185 | * 11 (1 2|3 3) 5
|
---|
186 | * 12 (1 1|3 3) 6
|
---|
187 | * 13 (1 2|1 2) 7
|
---|
188 | * 14 (1 2|2 1) 8 reduces to 7 thru canonicalization
|
---|
189 | * 15 (1 2|2 2) ->5
|
---|
190 | */
|
---|