[0b990d] | 1 | //
|
---|
| 2 | // init2e.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #include <stdlib.h>
|
---|
| 29 | #include <math.h>
|
---|
| 30 |
|
---|
| 31 | #include <util/misc/formio.h>
|
---|
| 32 | #include <chemistry/qc/intv3/flags.h>
|
---|
| 33 | #include <chemistry/qc/intv3/macros.h>
|
---|
| 34 | #include <chemistry/qc/intv3/types.h>
|
---|
| 35 | #include <chemistry/qc/intv3/int2e.h>
|
---|
| 36 | #include <chemistry/qc/intv3/utils.h>
|
---|
| 37 |
|
---|
| 38 | using namespace std;
|
---|
| 39 | using namespace sc;
|
---|
| 40 |
|
---|
| 41 | static void
|
---|
| 42 | fail()
|
---|
| 43 | {
|
---|
| 44 | ExEnv::errn() << scprintf("failing module:\n%s",__FILE__) << endl;
|
---|
| 45 | abort();
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | /* Initialize the 2e integral computation routines.
|
---|
| 49 | * storage = the amount of storage available in bytes
|
---|
| 50 | * order = order of derivative, must be zero or one
|
---|
| 51 | * cs1 = center structure for center 1
|
---|
| 52 | * cs2 = center structure for center 2
|
---|
| 53 | * cs3 = center structure for center 3
|
---|
| 54 | * cs4 = center structure for center 4
|
---|
| 55 | * The integrals which will be computed are (cs1 cs2|cs3 cs4).
|
---|
| 56 | * This function returns the pointer to the buffer where the
|
---|
| 57 | * integrals are stored.
|
---|
| 58 | */
|
---|
| 59 | double *
|
---|
| 60 | Int2eV3::int_initialize_erep(size_t storage, int order,
|
---|
| 61 | const Ref<GaussianBasisSet> &cs1,
|
---|
| 62 | const Ref<GaussianBasisSet> &cs2,
|
---|
| 63 | const Ref<GaussianBasisSet> &cs3,
|
---|
| 64 | const Ref<GaussianBasisSet> &cs4)
|
---|
| 65 | {
|
---|
| 66 | int nc1,nc2,nc3,nc4;
|
---|
| 67 | int jmax,jmax1,jmax2,jmax3,jmax4;
|
---|
| 68 |
|
---|
| 69 | redundant_ = 1;
|
---|
| 70 | permute_ = 0;
|
---|
| 71 |
|
---|
| 72 | int_unit_shell = 0;
|
---|
| 73 |
|
---|
| 74 | /* Reset the integral storage variables. */
|
---|
| 75 | int_integral_storage = 0;
|
---|
| 76 | used_storage_ = 0;
|
---|
| 77 |
|
---|
| 78 | /* Turn off exponent weighted contractions. */
|
---|
| 79 | int_expweight1 = 0;
|
---|
| 80 | int_expweight2 = 0;
|
---|
| 81 | int_expweight3 = 0;
|
---|
| 82 | int_expweight4 = 0;
|
---|
| 83 |
|
---|
| 84 | /* See if the order of derivative needed is allowed. */
|
---|
| 85 | if (order > 1) {
|
---|
| 86 | ExEnv::errn() << scprintf("int_initialize_erep cannot handle order>1, yet\n");
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | if (order > 0) {
|
---|
| 90 | int_derivative_bounds = 1;
|
---|
| 91 | }
|
---|
| 92 | else {
|
---|
| 93 | int_derivative_bounds = 0;
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | /* Put the center pointers into the global centers pointers. */
|
---|
| 97 | int_cs1 = cs1;
|
---|
| 98 | int_cs2 = cs2;
|
---|
| 99 | int_cs3 = cs3;
|
---|
| 100 | int_cs4 = cs4;
|
---|
| 101 |
|
---|
| 102 | /* Find the max angular momentum on each center. */
|
---|
| 103 | jmax1 = cs1->max_angular_momentum();
|
---|
| 104 | if (!int_unit2) jmax2 = cs2->max_angular_momentum();
|
---|
| 105 | else jmax2 = 0;
|
---|
| 106 | jmax3 = cs3->max_angular_momentum();
|
---|
| 107 | if (!int_unit4) jmax4 = cs4->max_angular_momentum();
|
---|
| 108 | else jmax4 = 0;
|
---|
| 109 |
|
---|
| 110 | /* Find the maximum number of contractions in a shell on each center. */
|
---|
| 111 | nc1 = cs1->max_ncontraction();
|
---|
| 112 | if (!int_unit2) nc2 = cs2->max_ncontraction();
|
---|
| 113 | else nc2 = 1;
|
---|
| 114 | nc3 = cs3->max_ncontraction();
|
---|
| 115 | if (!int_unit4) nc4 = cs4->max_ncontraction();
|
---|
| 116 | else nc4 = 1;
|
---|
| 117 |
|
---|
| 118 | /* Initialize the Fj(T) routine. */
|
---|
| 119 | jmax = jmax1+jmax2+jmax3+jmax4;
|
---|
| 120 | if (int_derivative_bounds) {
|
---|
| 121 | fjt_ = new FJT(jmax + 2*order); /* The 2 is for bounds checking */
|
---|
| 122 | }
|
---|
| 123 | else {
|
---|
| 124 | fjt_ = new FJT(jmax + order);
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | /* Initialize the build and shift routines. */
|
---|
| 128 | int_init_buildgc(order,jmax1,jmax2,jmax3,jmax4,nc1,nc2,nc3,nc4);
|
---|
| 129 | int_init_shiftgc(order,jmax1,jmax2,jmax3,jmax4);
|
---|
| 130 |
|
---|
| 131 | /* Allocate storage for the integral buffer. */
|
---|
| 132 | int maxsize = cs1->max_ncartesian_in_shell()
|
---|
| 133 | *(int_unit2?1:cs2->max_ncartesian_in_shell())
|
---|
| 134 | *cs3->max_ncartesian_in_shell()
|
---|
| 135 | *(int_unit4?1:cs4->max_ncartesian_in_shell());
|
---|
| 136 | if (order==0) {
|
---|
| 137 | int_buffer = (double *) malloc(sizeof(double) * maxsize);
|
---|
| 138 | int_derint_buffer = 0;
|
---|
| 139 | }
|
---|
| 140 | else if (order==1) {
|
---|
| 141 | int nderint;
|
---|
| 142 | nderint = cs1->max_ncartesian_in_shell(1)
|
---|
| 143 | *(int_unit2?1:cs2->max_ncartesian_in_shell(1))
|
---|
| 144 | *cs3->max_ncartesian_in_shell(1)
|
---|
| 145 | *(int_unit4?1:cs4->max_ncartesian_in_shell(1));
|
---|
| 146 |
|
---|
| 147 | /* Allocate the integral buffers. */
|
---|
| 148 | int_buffer = (double *) malloc(sizeof(double) * 9*maxsize);
|
---|
| 149 | int_derint_buffer = (double *) malloc(sizeof(double) * nderint);
|
---|
| 150 | if (!int_derint_buffer) {
|
---|
| 151 | ExEnv::errn() << scprintf("couldn't malloc intermed storage for derivative ints\n");
|
---|
| 152 | fail();
|
---|
| 153 | }
|
---|
| 154 | }
|
---|
| 155 |
|
---|
| 156 | if (!int_buffer) {
|
---|
| 157 | ExEnv::errn() << scprintf("couldn't allocate integrals\n");
|
---|
| 158 | fail();
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | /* See if the intermediates are to be computed and set global variables
|
---|
| 162 | * accordingly. */
|
---|
| 163 |
|
---|
| 164 | // this size estimate is only accurate if all centers are the same
|
---|
| 165 | int size_inter_1 = cs1->nshell() * (sizeof(double*)+sizeof(int));
|
---|
| 166 | if (storage - used_storage_ >= size_inter_1) {
|
---|
| 167 | int_store1 = 1;
|
---|
| 168 | used_storage_ += size_inter_1;
|
---|
| 169 | }
|
---|
| 170 | else {
|
---|
| 171 | ExEnv::out0() << indent
|
---|
| 172 | << "Int2eV3: not storing O(N) intemediates due to lack of memory"
|
---|
| 173 | << endl;
|
---|
| 174 | int_store1 = 0;
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 | // this size estimate is only accurate if all centers are the same
|
---|
| 178 | int size_inter_2 = cs1->nprimitive() * cs1->nprimitive() * (7*sizeof(double));
|
---|
| 179 | if (storage - used_storage_ >= size_inter_2) {
|
---|
| 180 | int_store2 = 1;
|
---|
| 181 | used_storage_ += size_inter_2;
|
---|
| 182 | }
|
---|
| 183 | else {
|
---|
| 184 | ExEnv::out0() << indent
|
---|
| 185 | << "Int2eV3: not storing O(N^2) intermediates due to lack of memory"
|
---|
| 186 | << endl;
|
---|
| 187 | int_store2 = 0;
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | if (used_storage_ > storage || !int_store1 || !int_store2) {
|
---|
| 191 | ExEnv::out0()
|
---|
| 192 | << indent << "Int2eV3: wanted more storage than given" << endl
|
---|
| 193 | << indent << " given storage = " << storage << endl
|
---|
| 194 | << indent << " build storage = " << used_storage_build_ << endl
|
---|
| 195 | << indent << " shift storage = " << used_storage_shift_ << endl
|
---|
| 196 | << indent << " used storage = " << used_storage_ << endl
|
---|
| 197 | << indent << " O(N) storage = " << size_inter_1
|
---|
| 198 | << (int_store1?"":" (not used)") << endl
|
---|
| 199 | << indent << " O(N^2) storage = " << size_inter_2
|
---|
| 200 | << (int_store2?"":" (not used)") << endl
|
---|
| 201 | << endl;
|
---|
| 202 | }
|
---|
| 203 |
|
---|
| 204 | int prim_inter_size = bs1_prim_offset_ + cs1->nprimitive();
|
---|
| 205 | int shell_inter_size = bs1_shell_offset_ + cs1->nshell();
|
---|
| 206 | if (bs2_prim_offset_ + (int_unit2?1:cs2->nprimitive()) > prim_inter_size) {
|
---|
| 207 | prim_inter_size = bs2_prim_offset_ + (int_unit2?1:cs2->nprimitive());
|
---|
| 208 | shell_inter_size = bs2_shell_offset_ + (int_unit2?1:cs2->nshell());
|
---|
| 209 | }
|
---|
| 210 | if (bs3_prim_offset_ + cs3->nprimitive() > prim_inter_size) {
|
---|
| 211 | prim_inter_size = bs3_prim_offset_ + cs3->nprimitive();
|
---|
| 212 | shell_inter_size = bs3_shell_offset_ + cs3->nshell();
|
---|
| 213 | }
|
---|
| 214 | if (bs4_prim_offset_ + (int_unit4?1:cs4->nprimitive()) > prim_inter_size) {
|
---|
| 215 | prim_inter_size = bs4_prim_offset_ + (int_unit4?1:cs4->nprimitive());
|
---|
| 216 | shell_inter_size = bs4_shell_offset_ + (int_unit4?1:cs4->nshell());
|
---|
| 217 | }
|
---|
| 218 |
|
---|
| 219 | /* Allocate storage for the intermediates. */
|
---|
| 220 | alloc_inter(prim_inter_size, shell_inter_size);
|
---|
| 221 |
|
---|
| 222 | /* Set up the one shell intermediates, block by block. */
|
---|
| 223 | if (int_store1) {
|
---|
| 224 | compute_shell_1(cs1, bs1_shell_offset_, bs1_prim_offset_);
|
---|
| 225 | if (cs2.operator!=(cs1))
|
---|
| 226 | compute_shell_1(cs2, bs2_shell_offset_, bs2_prim_offset_);
|
---|
| 227 | if (cs3.operator!=(cs2) && cs3.operator!=(cs1))
|
---|
| 228 | compute_shell_1(cs3, bs3_shell_offset_, bs3_prim_offset_);
|
---|
| 229 | if (cs4.operator!=(cs3) && cs4.operator!=(cs2)&& cs4.operator!=(cs1))
|
---|
| 230 | compute_shell_1(cs4, bs4_shell_offset_, bs4_prim_offset_);
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | /* Compute the two shell intermediates, block by block. */
|
---|
| 234 | if (int_store2) {
|
---|
| 235 | /* Compute the two primitive intermediates, block by block. */
|
---|
| 236 | // Some unnecessary pairs of intermediates are avoided, but
|
---|
| 237 | // some unnecessary pairs are still being computed.
|
---|
| 238 | compute_prim_2(cs1,bs1_shell_offset_,bs1_prim_offset_,
|
---|
| 239 | cs1,bs1_shell_offset_,bs1_prim_offset_);
|
---|
| 240 | if (cs2.operator!=(cs1)) {
|
---|
| 241 | compute_prim_2(cs1,bs1_shell_offset_,bs1_prim_offset_,
|
---|
| 242 | cs2,bs2_shell_offset_,bs2_prim_offset_);
|
---|
| 243 | compute_prim_2(cs2,bs2_shell_offset_,bs2_prim_offset_,
|
---|
| 244 | cs1,bs1_shell_offset_,bs1_prim_offset_);
|
---|
| 245 | // cs2 cs2 terms are not needed since cs1 != cs2
|
---|
| 246 | //compute_prim_2(cs2,bs2_shell_offset_,bs2_prim_offset_,
|
---|
| 247 | // cs2,bs2_shell_offset_,bs2_prim_offset_);
|
---|
| 248 | }
|
---|
| 249 | if (cs3.operator!=(cs2) && cs3.operator!=(cs1)) {
|
---|
| 250 | compute_prim_2(cs1,bs1_shell_offset_,bs1_prim_offset_,
|
---|
| 251 | cs3,bs3_shell_offset_,bs3_prim_offset_);
|
---|
| 252 | compute_prim_2(cs3,bs3_shell_offset_,bs3_prim_offset_,
|
---|
| 253 | cs1,bs1_shell_offset_,bs1_prim_offset_);
|
---|
| 254 | compute_prim_2(cs2,bs2_shell_offset_,bs2_prim_offset_,
|
---|
| 255 | cs3,bs3_shell_offset_,bs3_prim_offset_);
|
---|
| 256 | compute_prim_2(cs3,bs3_shell_offset_,bs3_prim_offset_,
|
---|
| 257 | cs2,bs2_shell_offset_,bs2_prim_offset_);
|
---|
| 258 | compute_prim_2(cs3,bs3_shell_offset_,bs3_prim_offset_,
|
---|
| 259 | cs3,bs3_shell_offset_,bs3_prim_offset_);
|
---|
| 260 | }
|
---|
| 261 | if (cs4.operator!=(cs3) && cs4.operator!=(cs2) && cs4.operator!=(cs1)) {
|
---|
| 262 | compute_prim_2(cs1,bs1_shell_offset_,bs1_prim_offset_,
|
---|
| 263 | cs4,bs4_shell_offset_,bs4_prim_offset_);
|
---|
| 264 | compute_prim_2(cs4,bs4_shell_offset_,bs4_prim_offset_,
|
---|
| 265 | cs1,bs1_shell_offset_,bs1_prim_offset_);
|
---|
| 266 | compute_prim_2(cs2,bs2_shell_offset_,bs2_prim_offset_,
|
---|
| 267 | cs4,bs4_shell_offset_,bs4_prim_offset_);
|
---|
| 268 | compute_prim_2(cs4,bs4_shell_offset_,bs4_prim_offset_,
|
---|
| 269 | cs2,bs2_shell_offset_,bs2_prim_offset_);
|
---|
| 270 | compute_prim_2(cs3,bs3_shell_offset_,bs3_prim_offset_,
|
---|
| 271 | cs4,bs4_shell_offset_,bs4_prim_offset_);
|
---|
| 272 | compute_prim_2(cs4,bs4_shell_offset_,bs4_prim_offset_,
|
---|
| 273 | cs3,bs3_shell_offset_,bs3_prim_offset_);
|
---|
| 274 | // cs4 cs4 terms are never needed since cs4 != cs3
|
---|
| 275 | //compute_prim_2(cs4,bs4_shell_offset_,bs_prim_offset_,
|
---|
| 276 | // cs4,bs4_shell_offset_,bs_prim_offset_);
|
---|
| 277 | }
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | return int_buffer;
|
---|
| 281 | }
|
---|
| 282 |
|
---|
| 283 | /* This is called when no more 2 electron integrals are needed.
|
---|
| 284 | * It will free the intermediates. */
|
---|
| 285 | void
|
---|
| 286 | Int2eV3::int_done_erep()
|
---|
| 287 | {
|
---|
| 288 | if (int_unit_shell) delete_int_unit_shell();
|
---|
| 289 | if (int_derint_buffer) free(int_derint_buffer);
|
---|
| 290 | free(int_buffer);
|
---|
| 291 | if (int_store1) {
|
---|
| 292 | delete[] int_shell_to_prim;
|
---|
| 293 | }
|
---|
| 294 | int_done_buildgc();
|
---|
| 295 | int_done_shiftgc();
|
---|
| 296 | }
|
---|
| 297 |
|
---|
| 298 | /* Allocates storage for the intermediates. The arguments are the
|
---|
| 299 | * total number of unique primitive and shells. */
|
---|
| 300 | void
|
---|
| 301 | Int2eV3::alloc_inter(int nprim,int nshell)
|
---|
| 302 | {
|
---|
| 303 | if (int_store1) {
|
---|
| 304 | int_shell_r.set_dim(nshell,3);
|
---|
| 305 | int_shell_to_prim = new int[nshell];
|
---|
| 306 | if (int_shell_to_prim == 0) {
|
---|
| 307 | ExEnv::errn() << "problem allocating O(n) integral intermediates for";
|
---|
| 308 | ExEnv::errn() << scprintf(" %d shells and %d primitives",nshell,nprim);
|
---|
| 309 | ExEnv::errn() << endl;
|
---|
| 310 | fail();
|
---|
| 311 | }
|
---|
| 312 | }
|
---|
| 313 | if (int_store2) {
|
---|
| 314 | int_prim_zeta.set_dim(nprim,nprim);
|
---|
| 315 | int_prim_oo2zeta.set_dim(nprim,nprim);
|
---|
| 316 | int_prim_k.set_dim(nprim,nprim);
|
---|
| 317 | int_prim_p.set_dim(nprim,nprim,3);
|
---|
| 318 | }
|
---|
| 319 | }
|
---|
| 320 |
|
---|
| 321 | void
|
---|
| 322 | Int2eV3::compute_shell_1(Ref<GaussianBasisSet> cs,
|
---|
| 323 | int shell_offset, int prim_offset)
|
---|
| 324 | {
|
---|
| 325 | if (cs.null()) {
|
---|
| 326 | for (int i=0; i<3; i++) {
|
---|
| 327 | int_shell_r(shell_offset,i) = 0.0;
|
---|
| 328 | }
|
---|
| 329 | int_shell_to_prim[shell_offset] = prim_offset;
|
---|
| 330 | return;
|
---|
| 331 | }
|
---|
| 332 |
|
---|
| 333 | int i,j;
|
---|
| 334 | int offset;
|
---|
| 335 | int iprim;
|
---|
| 336 |
|
---|
| 337 | offset = shell_offset;
|
---|
| 338 | iprim = prim_offset;
|
---|
| 339 | for (i=0; i<cs->ncenter(); i++) {
|
---|
| 340 | for (j=0; j<cs->nshell_on_center(i); j++) {
|
---|
| 341 |
|
---|
| 342 | /* The offset shell geometry vectors. */
|
---|
| 343 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 344 | int_shell_r(offset,xyz) = cs->molecule()->r(i,xyz);
|
---|
| 345 | }
|
---|
| 346 |
|
---|
| 347 | /* The number of the first offset primitive in a offset shell. */
|
---|
| 348 | int_shell_to_prim[offset] = iprim;
|
---|
| 349 |
|
---|
| 350 | offset++;
|
---|
| 351 | iprim += cs->shell(i,j).nprimitive();
|
---|
| 352 | }
|
---|
| 353 | }
|
---|
| 354 | }
|
---|
| 355 |
|
---|
| 356 | /* The 2 primitive intermediates. */
|
---|
| 357 | void
|
---|
| 358 | Int2eV3::compute_prim_2(Ref<GaussianBasisSet> cs1,
|
---|
| 359 | int shell_offset1, int prim_offset1,
|
---|
| 360 | Ref<GaussianBasisSet> cs2,
|
---|
| 361 | int shell_offset2, int prim_offset2)
|
---|
| 362 | {
|
---|
| 363 | int offset1, offset2;
|
---|
| 364 | int i1,j1,k1,i2,j2,k2;
|
---|
| 365 | GaussianShell *shell1,*shell2;
|
---|
| 366 | int i;
|
---|
| 367 | /* This is 2^(1/2) * pi^(5/4) */
|
---|
| 368 | const double sqrt2pi54 = 5.9149671727956129;
|
---|
| 369 | double AmB,AmB2;
|
---|
| 370 |
|
---|
| 371 | if (cs2.null() && !int_unit_shell) make_int_unit_shell();
|
---|
| 372 |
|
---|
| 373 | offset1 = prim_offset1;
|
---|
| 374 | int cs1_ncenter = (cs1.null()?1:cs1->ncenter());
|
---|
| 375 | for (i1=0; i1<cs1_ncenter; i1++) {
|
---|
| 376 | int cs1_nshell_on_center = (cs1.null()?1:cs1->nshell_on_center(i1));
|
---|
| 377 | for (j1=0; j1<cs1_nshell_on_center; j1++) {
|
---|
| 378 | if (cs1.nonnull()) shell1 = &cs1->shell(i1,j1);
|
---|
| 379 | else shell1 = int_unit_shell;
|
---|
| 380 | for (k1=0; k1<shell1->nprimitive(); k1++) {
|
---|
| 381 | offset2 = prim_offset2;
|
---|
| 382 | int cs2_ncenter = (cs2.null()?1:cs2->ncenter());
|
---|
| 383 | for (i2=0; i2<cs2_ncenter; i2++) {
|
---|
| 384 | int cs2_nshell_on_center = (cs2.null()?1:cs2->nshell_on_center(i2));
|
---|
| 385 | for (j2=0; j2<cs2_nshell_on_center; j2++) {
|
---|
| 386 | if (cs2.nonnull()) shell2 = &cs2->shell(i2,j2);
|
---|
| 387 | else shell2 = int_unit_shell;
|
---|
| 388 | for (k2=0; k2<shell2->nprimitive(); k2++) {
|
---|
| 389 |
|
---|
| 390 | /* The zeta = alpha + beta intermediate. */
|
---|
| 391 | int_prim_zeta(offset1,offset2) =
|
---|
| 392 | shell1->exponent(k1) + shell2->exponent(k2);
|
---|
| 393 |
|
---|
| 394 | /* The 1/(2 zeta) intermediate times 2.0. */
|
---|
| 395 | int_prim_oo2zeta(offset1,offset2) =
|
---|
| 396 | 1.0/int_prim_zeta(offset1,offset2);
|
---|
| 397 |
|
---|
| 398 | /* The p = (alpha A + beta B) / zeta */
|
---|
| 399 | for (i=0; i<3; i++) {
|
---|
| 400 | int_prim_p(offset1,offset2,i) =
|
---|
| 401 | ( shell1->exponent(k1) * (cs1.null()?0.0
|
---|
| 402 | :cs1->molecule()->r(i1,i))
|
---|
| 403 | + shell2->exponent(k2) * (cs2.null()?0.0
|
---|
| 404 | :cs2->molecule()->r(i2,i)))
|
---|
| 405 | * int_prim_oo2zeta(offset1,offset2);
|
---|
| 406 | }
|
---|
| 407 |
|
---|
| 408 | /* Compute AmB^2 */
|
---|
| 409 | AmB2 = 0.0;
|
---|
| 410 | for (i=0; i<3; i++) {
|
---|
| 411 | AmB = (cs2.null()?0.0:cs2->molecule()->r(i2,i))
|
---|
| 412 | - (cs1.null()?0.0:cs1->molecule()->r(i1,i));
|
---|
| 413 | AmB2 += AmB*AmB;
|
---|
| 414 | }
|
---|
| 415 |
|
---|
| 416 | /* Compute the K intermediate. */
|
---|
| 417 | int_prim_k(offset1,offset2) =
|
---|
| 418 | sqrt2pi54
|
---|
| 419 | * int_prim_oo2zeta(offset1,offset2)
|
---|
| 420 | * exp( - shell1->exponent(k1) * shell2->exponent(k2)
|
---|
| 421 | * int_prim_oo2zeta(offset1,offset2)
|
---|
| 422 | * AmB2 );
|
---|
| 423 |
|
---|
| 424 | /* Finish the 1/(2 zeta) intermediate. */
|
---|
| 425 | int_prim_oo2zeta(offset1,offset2) =
|
---|
| 426 | 0.5 * int_prim_oo2zeta(offset1,offset2);
|
---|
| 427 |
|
---|
| 428 | offset2++;
|
---|
| 429 | }
|
---|
| 430 | }
|
---|
| 431 | }
|
---|
| 432 | offset1++;
|
---|
| 433 | }
|
---|
| 434 | }
|
---|
| 435 | }
|
---|
| 436 | }
|
---|
| 437 |
|
---|
| 438 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 439 |
|
---|
| 440 | // Local Variables:
|
---|
| 441 | // mode: c++
|
---|
| 442 | // c-file-style: "CLJ-CONDENSED"
|
---|
| 443 | // End:
|
---|