1 | //
|
---|
2 | // comp1e.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #include <stdlib.h>
|
---|
29 | #include <math.h>
|
---|
30 |
|
---|
31 | #include <util/misc/formio.h>
|
---|
32 | #include <util/misc/math.h>
|
---|
33 | #include <chemistry/qc/intv3/macros.h>
|
---|
34 | #include <chemistry/qc/intv3/fjt.h>
|
---|
35 | #include <chemistry/qc/intv3/utils.h>
|
---|
36 | #include <chemistry/qc/intv3/int1e.h>
|
---|
37 | #include <chemistry/qc/intv3/tformv3.h>
|
---|
38 |
|
---|
39 | using namespace std;
|
---|
40 | using namespace sc;
|
---|
41 |
|
---|
42 | #define IN(i,j) ((i)==(j)?1:0)
|
---|
43 | #define SELECT(x1,x2,x3,s) (((s)==0)?x1:(((s)==1)?(x2):(x3)))
|
---|
44 |
|
---|
45 | #define DEBUG_NUC_SHELL_DER 0
|
---|
46 | #define DEBUG_NUC_PRIM 0
|
---|
47 | #define DEBUG_NUC_SHELL 0
|
---|
48 |
|
---|
49 | #define DEBUG_EFIELD_PRIM 0
|
---|
50 |
|
---|
51 | /* ------------ Initialization of 1e routines. ------------------- */
|
---|
52 | /* This routine returns a buffer large enough to hold a shell doublet
|
---|
53 | * of integrals (if order == 0) or derivative integrals (if order == 1).
|
---|
54 | */
|
---|
55 | void
|
---|
56 | Int1eV3::int_initialize_1e(int flags, int order)
|
---|
57 | {
|
---|
58 | int jmax1,jmax2,jmax;
|
---|
59 | int scratchsize=0,nshell2;
|
---|
60 |
|
---|
61 | /* The efield routines look like derivatives so bump up order if
|
---|
62 | * it is zero to allow efield integrals to be computed.
|
---|
63 | */
|
---|
64 | if (order == 0) order = 1;
|
---|
65 |
|
---|
66 | jmax1 = bs1_->max_angular_momentum();
|
---|
67 | jmax2 = bs2_->max_angular_momentum();
|
---|
68 | jmax = jmax1 + jmax2;
|
---|
69 |
|
---|
70 | fjt_ = new FJT(jmax + 2*order);
|
---|
71 |
|
---|
72 | nshell2 = bs1_->max_ncartesian_in_shell()*bs2_->max_ncartesian_in_shell();
|
---|
73 |
|
---|
74 | if (order == 0) {
|
---|
75 | init_order = 0;
|
---|
76 | scratchsize = nshell2;
|
---|
77 | }
|
---|
78 | else if (order == 1) {
|
---|
79 | init_order = 1;
|
---|
80 | scratchsize = nshell2*3;
|
---|
81 | }
|
---|
82 | else {
|
---|
83 | ExEnv::errn() << scprintf("int_initialize_1e: invalid order: %d\n",order);
|
---|
84 | exit(1);
|
---|
85 | }
|
---|
86 |
|
---|
87 | buff = new double[scratchsize];
|
---|
88 | cartesianbuffer = new double[scratchsize];
|
---|
89 | cartesianbuffer_scratch = new double[scratchsize];
|
---|
90 |
|
---|
91 | inter.set_dim(jmax1+order+1,jmax2+order+1,jmax+2*order+1);
|
---|
92 | efield_inter.set_dim(jmax1+order+1,jmax2+order+1,jmax+2*order+1);
|
---|
93 | int i,j,m;
|
---|
94 | for (i=0; i<=jmax1+order; i++) {
|
---|
95 | int sizei = INT_NCART_NN(i);
|
---|
96 | for (j=0; j<=jmax2+order; j++) {
|
---|
97 | int sizej = INT_NCART_NN(j);
|
---|
98 | for (m=0; m<=jmax+2*order-i-j; m++) {
|
---|
99 | inter(i,j,m) = new double[sizei*sizej];
|
---|
100 | efield_inter(i,j,m) = new double[sizei*sizej*3];
|
---|
101 | }
|
---|
102 | for (; m<=jmax+2*order; m++) {
|
---|
103 | inter(i,j,m) = 0;
|
---|
104 | efield_inter(i,j,m) = 0;
|
---|
105 | }
|
---|
106 | }
|
---|
107 | }
|
---|
108 |
|
---|
109 | }
|
---|
110 |
|
---|
111 | void
|
---|
112 | Int1eV3::int_done_1e()
|
---|
113 | {
|
---|
114 | init_order = -1;
|
---|
115 | delete[] buff;
|
---|
116 | delete[] cartesianbuffer;
|
---|
117 | delete[] cartesianbuffer_scratch;
|
---|
118 | buff = 0;
|
---|
119 | cartesianbuffer = 0;
|
---|
120 | inter.delete_data();
|
---|
121 | efield_inter.delete_data();
|
---|
122 | }
|
---|
123 |
|
---|
124 |
|
---|
125 | /* --------------------------------------------------------------- */
|
---|
126 | /* ------------- Routines for the overlap matrix ----------------- */
|
---|
127 | /* --------------------------------------------------------------- */
|
---|
128 |
|
---|
129 | /* This computes the overlap integrals between functions in two shells.
|
---|
130 | * The result is placed in the buffer.
|
---|
131 | */
|
---|
132 | void
|
---|
133 | Int1eV3::overlap(int ish, int jsh)
|
---|
134 | {
|
---|
135 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
136 | int gc1,gc2;
|
---|
137 | int index,index1,index2;
|
---|
138 |
|
---|
139 | c1 = bs1_->shell_to_center(ish);
|
---|
140 | c2 = bs2_->shell_to_center(jsh);
|
---|
141 | for (int xyz=0; xyz<3; xyz++) {
|
---|
142 | A[xyz] = bs1_->r(c1,xyz);
|
---|
143 | B[xyz] = bs2_->r(c2,xyz);
|
---|
144 | }
|
---|
145 | gshell1 = &bs1_->shell(ish);
|
---|
146 | gshell2 = &bs2_->shell(jsh);
|
---|
147 | index = 0;
|
---|
148 | FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
|
---|
149 | FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
|
---|
150 | cartesianbuffer[index] = comp_shell_overlap(gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
151 | index++;
|
---|
152 | END_FOR_GCCART_GS(index2)
|
---|
153 | END_FOR_GCCART_GS(index1)
|
---|
154 |
|
---|
155 | transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2);
|
---|
156 | }
|
---|
157 |
|
---|
158 | /* This computes the overlap ints between functions in two shells.
|
---|
159 | * The result is placed in the buffer.
|
---|
160 | */
|
---|
161 | void
|
---|
162 | Int1eV3::overlap_1der(int ish, int jsh,
|
---|
163 | int idercs, int centernum)
|
---|
164 | {
|
---|
165 | int i;
|
---|
166 | int c1,c2;
|
---|
167 | int ni,nj;
|
---|
168 |
|
---|
169 | if (!(init_order >= 0)) {
|
---|
170 | ExEnv::errn() << scprintf("int_shell_overlap: one electron routines are not init'ed\n");
|
---|
171 | exit(1);
|
---|
172 | }
|
---|
173 |
|
---|
174 | Ref<GaussianBasisSet> dercs;
|
---|
175 | if (idercs == 0) dercs = bs1_;
|
---|
176 | else dercs = bs2_;
|
---|
177 |
|
---|
178 | c1 = bs1_->shell_to_center(ish);
|
---|
179 | c2 = bs2_->shell_to_center(jsh);
|
---|
180 | for (int xyz=0; xyz<3; xyz++) {
|
---|
181 | A[xyz] = bs1_->r(c1,xyz);
|
---|
182 | B[xyz] = bs2_->r(c2,xyz);
|
---|
183 | }
|
---|
184 | gshell1 = &bs1_->shell(ish);
|
---|
185 | gshell2 = &bs2_->shell(jsh);
|
---|
186 |
|
---|
187 | ni = gshell1->nfunction();
|
---|
188 | nj = gshell2->nfunction();
|
---|
189 |
|
---|
190 | #if 0
|
---|
191 | ExEnv::outn() << scprintf("zeroing %d*%d*3 elements of buff\n",ni,nj);
|
---|
192 | #endif
|
---|
193 | for (i=0; i<ni*nj*3; i++) {
|
---|
194 | buff[i] = 0.0;
|
---|
195 | }
|
---|
196 |
|
---|
197 | int_accum_shell_overlap_1der(ish,jsh,dercs,centernum);
|
---|
198 | }
|
---|
199 |
|
---|
200 | /* This computes the overlap derivative integrals between functions
|
---|
201 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
202 | * atom 0 x, y, z, atom 1, ... .
|
---|
203 | */
|
---|
204 | void
|
---|
205 | Int1eV3::int_accum_shell_overlap_1der(int ish, int jsh,
|
---|
206 | Ref<GaussianBasisSet> dercs, int centernum)
|
---|
207 | {
|
---|
208 | accum_shell_1der(buff,ish,jsh,dercs,centernum,&Int1eV3::comp_shell_overlap);
|
---|
209 | }
|
---|
210 |
|
---|
211 | /* Compute the overlap for the shell. The arguments are the
|
---|
212 | * cartesian exponents for centers 1 and 2. The shell1 and shell2
|
---|
213 | * globals are used. */
|
---|
214 | double
|
---|
215 | Int1eV3::comp_shell_overlap(int gc1, int i1, int j1, int k1,
|
---|
216 | int gc2, int i2, int j2, int k2)
|
---|
217 | {
|
---|
218 | double exp1,exp2;
|
---|
219 | int i,j,xyz;
|
---|
220 | double result;
|
---|
221 | double Pi;
|
---|
222 | double oozeta;
|
---|
223 | double AmB,AmB2;
|
---|
224 | double tmp;
|
---|
225 |
|
---|
226 | if ((i1<0)||(j1<0)||(k1<0)||(i2<0)||(j2<0)||(k2<0)) return 0.0;
|
---|
227 |
|
---|
228 | /* Loop over the primitives in the shells. */
|
---|
229 | result = 0.0;
|
---|
230 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
231 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
232 |
|
---|
233 | /* Compute the intermediates. */
|
---|
234 | exp1 = gshell1->exponent(i);
|
---|
235 | exp2 = gshell2->exponent(j);
|
---|
236 | oozeta = 1.0/(exp1 + exp2);
|
---|
237 | oo2zeta = 0.5*oozeta;
|
---|
238 | AmB2 = 0.0;
|
---|
239 | for (xyz=0; xyz<3; xyz++) {
|
---|
240 | Pi = oozeta*(exp1 * A[xyz] + exp2 * B[xyz]);
|
---|
241 | PmA[xyz] = Pi - A[xyz];
|
---|
242 | PmB[xyz] = Pi - B[xyz];
|
---|
243 | AmB = A[xyz] - B[xyz];
|
---|
244 | AmB2 += AmB*AmB;
|
---|
245 | }
|
---|
246 | ss = pow(M_PI/(exp1+exp2),1.5)
|
---|
247 | * exp(- oozeta * exp1 * exp2 * AmB2);
|
---|
248 | tmp = gshell1->coefficient_unnorm(gc1,i)
|
---|
249 | * gshell2->coefficient_unnorm(gc2,j)
|
---|
250 | * comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
251 | if (exponent_weighted == 0) tmp *= exp1;
|
---|
252 | else if (exponent_weighted == 1) tmp *= exp2;
|
---|
253 | result += tmp;
|
---|
254 | }
|
---|
255 | }
|
---|
256 |
|
---|
257 | return result;
|
---|
258 | }
|
---|
259 |
|
---|
260 | /* Compute the overlap between two primitive functions. */
|
---|
261 | #if 0
|
---|
262 | double
|
---|
263 | Int1eV3::int_prim_overlap(shell_t *pshell1, shell_t *pshell2,
|
---|
264 | double *pA, double *pB,
|
---|
265 | int prim1, int prim2,
|
---|
266 | int i1, int j1, int k1,
|
---|
267 | int i2, int j2, int k2)
|
---|
268 | {
|
---|
269 | int xyz;
|
---|
270 | double Pi;
|
---|
271 | double oozeta;
|
---|
272 | double AmB,AmB2;
|
---|
273 |
|
---|
274 | /* Compute the intermediates. */
|
---|
275 | oozeta = 1.0/(gshell1->exponent(prim1) + gshell2->exponent(prim2));
|
---|
276 | oo2zeta = 0.5*oozeta;
|
---|
277 | AmB2 = 0.0;
|
---|
278 | for (xyz=0; xyz<3; xyz++) {
|
---|
279 | Pi = oozeta*(gshell1->exponent(prim1) * A[xyz]
|
---|
280 | + gshell2->exponent(prim2) * B[xyz]);
|
---|
281 | PmA[xyz] = Pi - A[xyz];
|
---|
282 | PmB[xyz] = Pi - B[xyz];
|
---|
283 | AmB = A[xyz] - B[xyz];
|
---|
284 | AmB2 += AmB*AmB;
|
---|
285 | }
|
---|
286 | ss = pow(M_PI/(gshell1->exponent(prim1)
|
---|
287 | +gshell2->exponent(prim2)),1.5)
|
---|
288 | * exp(- oozeta * gshell1->exponent(prim1)
|
---|
289 | * gshell2->exponent(prim2) * AmB2);
|
---|
290 | return comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
291 | }
|
---|
292 | #endif
|
---|
293 |
|
---|
294 | double
|
---|
295 | Int1eV3::comp_prim_overlap(int i1, int j1, int k1,
|
---|
296 | int i2, int j2, int k2)
|
---|
297 | {
|
---|
298 | double result;
|
---|
299 |
|
---|
300 | if (i1) {
|
---|
301 | result = PmA[0] * comp_prim_overlap(i1-1,j1,k1,i2,j2,k2);
|
---|
302 | if (i1>1) result += oo2zeta*(i1-1) * comp_prim_overlap(i1-2,j1,k1,i2,j2,k2);
|
---|
303 | if (i2>0) result += oo2zeta*i2 * comp_prim_overlap(i1-1,j1,k1,i2-1,j2,k2);
|
---|
304 | return result;
|
---|
305 | }
|
---|
306 | if (j1) {
|
---|
307 | result = PmA[1] * comp_prim_overlap(i1,j1-1,k1,i2,j2,k2);
|
---|
308 | if (j1>1) result += oo2zeta*(j1-1) * comp_prim_overlap(i1,j1-2,k1,i2,j2,k2);
|
---|
309 | if (j2>0) result += oo2zeta*j2 * comp_prim_overlap(i1,j1-1,k1,i2,j2-1,k2);
|
---|
310 | return result;
|
---|
311 | }
|
---|
312 | if (k1) {
|
---|
313 | result = PmA[2] * comp_prim_overlap(i1,j1,k1-1,i2,j2,k2);
|
---|
314 | if (k1>1) result += oo2zeta*(k1-1) * comp_prim_overlap(i1,j1,k1-2,i2,j2,k2);
|
---|
315 | if (k2>0) result += oo2zeta*k2 * comp_prim_overlap(i1,j1,k1-1,i2,j2,k2-1);
|
---|
316 | return result;
|
---|
317 | }
|
---|
318 |
|
---|
319 | if (i2) {
|
---|
320 | result = PmB[0] * comp_prim_overlap(i1,j1,k1,i2-1,j2,k2);
|
---|
321 | if (i2>1) result += oo2zeta*(i2-1) * comp_prim_overlap(i1,j1,k1,i2-2,j2,k2);
|
---|
322 | if (i1>0) result += oo2zeta*i1 * comp_prim_overlap(i1-1,j1,k1,i2-1,j2,k2);
|
---|
323 | return result;
|
---|
324 | }
|
---|
325 | if (j2) {
|
---|
326 | result = PmB[1] * comp_prim_overlap(i1,j1,k1,i2,j2-1,k2);
|
---|
327 | if (j2>1) result += oo2zeta*(j2-1) * comp_prim_overlap(i1,j1,k1,i2,j2-2,k2);
|
---|
328 | if (j1>0) result += oo2zeta*j1 * comp_prim_overlap(i1,j1-1,k1,i2,j2-1,k2);
|
---|
329 | return result;
|
---|
330 | }
|
---|
331 | if (k2) {
|
---|
332 | result = PmB[2] * comp_prim_overlap(i1,j1,k1,i2,j2,k2-1);
|
---|
333 | if (k2>1) result += oo2zeta*(k2-1) * comp_prim_overlap(i1,j1,k1,i2,j2,k2-2);
|
---|
334 | if (k1>0) result += oo2zeta*k1 * comp_prim_overlap(i1,j1,k1-1,i2,j2,k2-1);
|
---|
335 | return result;
|
---|
336 | }
|
---|
337 |
|
---|
338 | return ss;
|
---|
339 | }
|
---|
340 |
|
---|
341 | /* --------------------------------------------------------------- */
|
---|
342 | /* ------------- Routines for the kinetic energy ----------------- */
|
---|
343 | /* --------------------------------------------------------------- */
|
---|
344 |
|
---|
345 | /* This computes the kinetic energy integrals between functions in two shells.
|
---|
346 | * The result is placed in the buffer.
|
---|
347 | */
|
---|
348 | void
|
---|
349 | Int1eV3::kinetic(int ish, int jsh)
|
---|
350 | {
|
---|
351 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
352 | int cart1,cart2;
|
---|
353 | int index;
|
---|
354 | int gc1,gc2;
|
---|
355 |
|
---|
356 | c1 = bs1_->shell_to_center(ish);
|
---|
357 | c2 = bs2_->shell_to_center(jsh);
|
---|
358 | for (int xyz=0; xyz<3; xyz++) {
|
---|
359 | A[xyz] = bs1_->r(c1,xyz);
|
---|
360 | B[xyz] = bs2_->r(c2,xyz);
|
---|
361 | }
|
---|
362 | gshell1 = &bs1_->shell(ish);
|
---|
363 | gshell2 = &bs2_->shell(jsh);
|
---|
364 | index = 0;
|
---|
365 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
|
---|
366 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
|
---|
367 | cartesianbuffer[index] = comp_shell_kinetic(gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
368 | index++;
|
---|
369 | END_FOR_GCCART_GS(cart2)
|
---|
370 | END_FOR_GCCART_GS(cart1)
|
---|
371 |
|
---|
372 | transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2);
|
---|
373 | }
|
---|
374 |
|
---|
375 | void
|
---|
376 | Int1eV3::int_accum_shell_kinetic(int ish, int jsh)
|
---|
377 | {
|
---|
378 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
379 | int cart1,cart2;
|
---|
380 | int index;
|
---|
381 | int gc1,gc2;
|
---|
382 |
|
---|
383 | c1 = bs1_->shell_to_center(ish);
|
---|
384 | c2 = bs2_->shell_to_center(jsh);
|
---|
385 | for (int xyz=0; xyz<3; xyz++) {
|
---|
386 | A[xyz] = bs1_->r(c1,xyz);
|
---|
387 | B[xyz] = bs2_->r(c2,xyz);
|
---|
388 | }
|
---|
389 | gshell1 = &bs1_->shell(ish);
|
---|
390 | gshell2 = &bs2_->shell(jsh);
|
---|
391 | index = 0;
|
---|
392 |
|
---|
393 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
|
---|
394 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
|
---|
395 | cartesianbuffer[index] = comp_shell_kinetic(gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
396 | index++;
|
---|
397 | END_FOR_GCCART_GS(cart2)
|
---|
398 | END_FOR_GCCART_GS(cart1)
|
---|
399 | accum_transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2);
|
---|
400 | }
|
---|
401 |
|
---|
402 | /* This computes the kinetic energy derivative integrals between functions
|
---|
403 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
404 | * atom 0 x, y, z, atom 1, ... .
|
---|
405 | */
|
---|
406 | void
|
---|
407 | Int1eV3::int_accum_shell_kinetic_1der(int ish, int jsh,
|
---|
408 | Ref<GaussianBasisSet> dercs, int centernum)
|
---|
409 | {
|
---|
410 | accum_shell_1der(buff,ish,jsh,dercs,centernum,&Int1eV3::comp_shell_kinetic);
|
---|
411 | }
|
---|
412 |
|
---|
413 | /* This computes the basis function part of
|
---|
414 | * generic derivative integrals between functions
|
---|
415 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
416 | * atom 0 x, y, z, atom 1, ... .
|
---|
417 | * The function used to compute the nonderivative integrals is shell_function.
|
---|
418 | */
|
---|
419 | void
|
---|
420 | Int1eV3::accum_shell_1der(double *buff, int ish, int jsh,
|
---|
421 | Ref<GaussianBasisSet> dercs, int centernum,
|
---|
422 | double (Int1eV3::*shell_function)
|
---|
423 | (int,int,int,int,int,int,int,int))
|
---|
424 | {
|
---|
425 | int i;
|
---|
426 | int gc1,gc2;
|
---|
427 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
428 | int index1,index2;
|
---|
429 | double tmp[3];
|
---|
430 | double *ctmp = cartesianbuffer;
|
---|
431 |
|
---|
432 | c1 = bs1_->shell_to_center(ish);
|
---|
433 | c2 = bs2_->shell_to_center(jsh);
|
---|
434 | for (int xyz=0; xyz<3; xyz++) {
|
---|
435 | A[xyz] = bs1_->r(c1,xyz);
|
---|
436 | B[xyz] = bs2_->r(c2,xyz);
|
---|
437 | }
|
---|
438 | gshell1 = &bs1_->shell(ish);
|
---|
439 | gshell2 = &bs2_->shell(jsh);
|
---|
440 | FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
|
---|
441 | FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
|
---|
442 | if ((bs1_==bs2_)&&(c1==c2)) {
|
---|
443 | if ( three_center
|
---|
444 | && !((bs1_==third_centers)&&(c1==third_centernum))
|
---|
445 | && ((bs1_==dercs)&&(c1==centernum))) {
|
---|
446 | for (i=0; i<3; i++) {
|
---|
447 | /* Derivative wrt first shell. */
|
---|
448 | exponent_weighted = 0;
|
---|
449 | tmp[i] = 2.0 *
|
---|
450 | (this->*shell_function)(gc1,i1+IN(i,0),j1+IN(i,1),k1+IN(i,2),gc2,i2,j2,k2);
|
---|
451 | exponent_weighted = -1;
|
---|
452 | if (SELECT(i1,j1,k1,i)) {
|
---|
453 | tmp[i] -= SELECT(i1,j1,k1,i) *
|
---|
454 | (this->*shell_function)(gc1,i1-IN(i,0),j1-IN(i,1),k1-IN(i,2),gc2,i2,j2,k2);
|
---|
455 | }
|
---|
456 | /* Derviative wrt second shell. */
|
---|
457 | exponent_weighted = 1;
|
---|
458 | tmp[i] += 2.0 *
|
---|
459 | (this->*shell_function)(gc1,i1,j1,k1,gc2,i2+IN(i,0),j2+IN(i,1),k2+IN(i,2));
|
---|
460 | exponent_weighted = -1;
|
---|
461 | if (SELECT(i2,j2,k2,i)) {
|
---|
462 | tmp[i] -= SELECT(i2,j2,k2,i) *
|
---|
463 | (this->*shell_function)(gc1,i1,j1,k1,gc2,i2-IN(i,0),j2-IN(i,1),k2-IN(i,2));
|
---|
464 | }
|
---|
465 | }
|
---|
466 | }
|
---|
467 | else {
|
---|
468 | /* If there are two centers and they are the same, then we
|
---|
469 | * use translational invariance to get a net contrib of 0.0 */
|
---|
470 | for (i=0; i<3; i++) tmp[i] = 0.0;
|
---|
471 | }
|
---|
472 | }
|
---|
473 | else if ((bs1_==dercs)&&(c1==centernum)) {
|
---|
474 | for (i=0; i<3; i++) {
|
---|
475 | exponent_weighted = 0;
|
---|
476 | tmp[i] = 2.0 *
|
---|
477 | (this->*shell_function)(gc1,i1+IN(i,0),j1+IN(i,1),k1+IN(i,2),gc2,i2,j2,k2);
|
---|
478 | exponent_weighted = -1;
|
---|
479 | if (SELECT(i1,j1,k1,i)) {
|
---|
480 | tmp[i] -= SELECT(i1,j1,k1,i) *
|
---|
481 | (this->*shell_function)(gc1,i1-IN(i,0),j1-IN(i,1),k1-IN(i,2),gc2,i2,j2,k2);
|
---|
482 | }
|
---|
483 | }
|
---|
484 | }
|
---|
485 | else if ((bs2_==dercs)&&(c2==centernum)) {
|
---|
486 | for (i=0; i<3; i++) {
|
---|
487 | exponent_weighted = 1;
|
---|
488 | tmp[i] = 2.0 *
|
---|
489 | (this->*shell_function)(gc1,i1,j1,k1,gc2,i2+IN(i,0),j2+IN(i,1),k2+IN(i,2));
|
---|
490 | exponent_weighted = -1;
|
---|
491 | if (SELECT(i2,j2,k2,i)) {
|
---|
492 | tmp[i] -= SELECT(i2,j2,k2,i) *
|
---|
493 | (this->*shell_function)(gc1,i1,j1,k1,gc2,i2-IN(i,0),j2-IN(i,1),k2-IN(i,2));
|
---|
494 | }
|
---|
495 | }
|
---|
496 | }
|
---|
497 | else {
|
---|
498 | for (i=0; i<3; i++) tmp[i] = 0.0;
|
---|
499 | }
|
---|
500 |
|
---|
501 | if (scale_shell_result) {
|
---|
502 | for (i=0; i<3; i++) tmp[i] *= result_scale_factor;
|
---|
503 | }
|
---|
504 |
|
---|
505 | for (i=0; i<3; i++) ctmp[i] = tmp[i];
|
---|
506 |
|
---|
507 | /* Increment the pointer to the xyz for the next atom. */
|
---|
508 | ctmp += 3;
|
---|
509 | END_FOR_GCCART_GS(index2)
|
---|
510 | END_FOR_GCCART_GS(index1)
|
---|
511 |
|
---|
512 | accum_transform_1e_xyz(integral_,
|
---|
513 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
514 | }
|
---|
515 |
|
---|
516 | /* This computes the basis function part of
|
---|
517 | * generic derivative integrals between functions
|
---|
518 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
519 | * atom 0 x, y, z, atom 1, ... .
|
---|
520 | * The function used to compute the nonderivative integrals is shell_function.
|
---|
521 | */
|
---|
522 | void
|
---|
523 | Int1eV3::accum_shell_block_1der(double *buff, int ish, int jsh,
|
---|
524 | Ref<GaussianBasisSet> dercs, int centernum,
|
---|
525 | void (Int1eV3::*shell_block_function)
|
---|
526 | (int gc1, int a, int gc2, int b,
|
---|
527 | int gcsize2, int gcoff1, int gcoff2,
|
---|
528 | double coef, double *buffer))
|
---|
529 | {
|
---|
530 | int i;
|
---|
531 | int gc1,gc2;
|
---|
532 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
533 | int index1,index2;
|
---|
534 |
|
---|
535 | c1 = bs1_->shell_to_center(ish);
|
---|
536 | c2 = bs2_->shell_to_center(jsh);
|
---|
537 |
|
---|
538 | int docenter1=0, docenter2=0;
|
---|
539 | int equiv12 = (bs1_==bs2_)&&(c1==c2);
|
---|
540 | int der1 = (bs1_==dercs)&&(c1==centernum);
|
---|
541 | int der2 = (bs2_==dercs)&&(c2==centernum);
|
---|
542 | if (!equiv12) {
|
---|
543 | docenter1 = der1;
|
---|
544 | docenter2 = der2;
|
---|
545 | }
|
---|
546 | else if (three_center) {
|
---|
547 | int equiv123 = (bs1_==third_centers)&&(c1==third_centernum);
|
---|
548 | if (!equiv123) {
|
---|
549 | docenter1 = der1;
|
---|
550 | docenter2 = der2;
|
---|
551 | }
|
---|
552 | }
|
---|
553 |
|
---|
554 | gshell1 = &bs1_->shell(ish);
|
---|
555 | gshell2 = &bs2_->shell(jsh);
|
---|
556 | int gcsize1 = gshell1->ncartesian();
|
---|
557 | int gcsize2 = gshell2->ncartesian();
|
---|
558 | memset(cartesianbuffer,0,sizeof(double)*gcsize1*gcsize2*3);
|
---|
559 |
|
---|
560 | if (!docenter1 && !docenter2) return;
|
---|
561 |
|
---|
562 | double coef;
|
---|
563 | if (scale_shell_result) {
|
---|
564 | coef = result_scale_factor;
|
---|
565 | }
|
---|
566 | else coef = 1.0;
|
---|
567 |
|
---|
568 | for (int xyz=0; xyz<3; xyz++) {
|
---|
569 | A[xyz] = bs1_->r(c1,xyz);
|
---|
570 | B[xyz] = bs2_->r(c2,xyz);
|
---|
571 | }
|
---|
572 | int gcoff1 = 0;
|
---|
573 | for (gc1=0; gc1<gshell1->ncontraction(); gc1++) {
|
---|
574 | int a = gshell1->am(gc1);
|
---|
575 | int sizea = INT_NCART_NN(a);
|
---|
576 | int sizeap1 = INT_NCART_NN(a+1);
|
---|
577 | int sizeam1 = INT_NCART(a-1);
|
---|
578 | int gcoff2 = 0;
|
---|
579 | for (gc2=0; gc2<gshell2->ncontraction(); gc2++) {
|
---|
580 | int b = gshell2->am(gc2);
|
---|
581 | int sizeb = INT_NCART_NN(b);
|
---|
582 | int sizebp1 = INT_NCART_NN(b+1);
|
---|
583 | int sizebm1 = INT_NCART(b-1);
|
---|
584 | /* Derivative wrt first shell. */
|
---|
585 | if (docenter1) {
|
---|
586 | exponent_weighted = 0;
|
---|
587 | memset(cartesianbuffer_scratch,0,sizeof(double)*sizeap1*sizeb);
|
---|
588 | (this->*shell_block_function)(gc1, a+1, gc2, b,
|
---|
589 | sizeb, 0, 0,
|
---|
590 | coef, cartesianbuffer_scratch);
|
---|
591 | index1=0;
|
---|
592 | FOR_CART(i1,j1,k1,a) {
|
---|
593 | index2=0;
|
---|
594 | FOR_CART(i2,j2,k2,b) {
|
---|
595 | double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2
|
---|
596 | +index2+gcoff2)*3];
|
---|
597 | for (i=0; i<3; i++) {
|
---|
598 | int ind = INT_CARTINDEX(a+1,i1+IN(i,0),j1+IN(i,1));
|
---|
599 | *ctmp++ += 2.0*cartesianbuffer_scratch[ind*sizeb+index2];
|
---|
600 | }
|
---|
601 | index2++;
|
---|
602 | } END_FOR_CART;
|
---|
603 | index1++;
|
---|
604 | } END_FOR_CART;
|
---|
605 |
|
---|
606 | if (a) {
|
---|
607 | exponent_weighted = -1;
|
---|
608 | memset(cartesianbuffer_scratch,0,sizeof(double)*sizeam1*sizeb);
|
---|
609 | (this->*shell_block_function)(gc1, a-1, gc2, b,
|
---|
610 | sizeb, 0, 0,
|
---|
611 | coef, cartesianbuffer_scratch);
|
---|
612 | index1=0;
|
---|
613 | FOR_CART(i1,j1,k1,a) {
|
---|
614 | index2=0;
|
---|
615 | FOR_CART(i2,j2,k2,b) {
|
---|
616 | double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2
|
---|
617 | +index2+gcoff2)*3];
|
---|
618 | for (i=0; i<3; i++) {
|
---|
619 | int sel = SELECT(i1,j1,k1,i);
|
---|
620 | if (sel) {
|
---|
621 | int ind = INT_CARTINDEX(a-1,i1-IN(i,0),j1-IN(i,1));
|
---|
622 | ctmp[i] -= sel * cartesianbuffer_scratch[ind*sizeb+index2];
|
---|
623 | }
|
---|
624 | }
|
---|
625 | index2++;
|
---|
626 | } END_FOR_CART;
|
---|
627 | index1++;
|
---|
628 | } END_FOR_CART;
|
---|
629 | }
|
---|
630 | }
|
---|
631 | if (docenter2) {
|
---|
632 | /* Derviative wrt second shell. */
|
---|
633 | exponent_weighted = 1;
|
---|
634 | memset(cartesianbuffer_scratch,0,sizeof(double)*sizea*sizebp1);
|
---|
635 | (this->*shell_block_function)(gc1, a, gc2, b+1,
|
---|
636 | sizebp1, 0, 0,
|
---|
637 | coef, cartesianbuffer_scratch);
|
---|
638 | index1=0;
|
---|
639 | FOR_CART(i1,j1,k1,a) {
|
---|
640 | index2=0;
|
---|
641 | FOR_CART(i2,j2,k2,b) {
|
---|
642 | double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2
|
---|
643 | +index2+gcoff2)*3];
|
---|
644 | for (i=0; i<3; i++) {
|
---|
645 | int ind = INT_CARTINDEX(b+1,i2+IN(i,0),j2+IN(i,1));
|
---|
646 | *ctmp++ += 2.0*cartesianbuffer_scratch[index1*sizebp1+ind];
|
---|
647 | }
|
---|
648 | index2++;
|
---|
649 | } END_FOR_CART;
|
---|
650 | index1++;
|
---|
651 | } END_FOR_CART;
|
---|
652 |
|
---|
653 | if (b) {
|
---|
654 | exponent_weighted = -1;
|
---|
655 | memset(cartesianbuffer_scratch,0,sizeof(double)*sizea*sizebm1);
|
---|
656 | (this->*shell_block_function)(gc1, a, gc2, b-1,
|
---|
657 | sizebm1, 0, 0,
|
---|
658 | coef, cartesianbuffer_scratch);
|
---|
659 | index1=0;
|
---|
660 | FOR_CART(i1,j1,k1,a) {
|
---|
661 | index2=0;
|
---|
662 | FOR_CART(i2,j2,k2,b) {
|
---|
663 | double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2
|
---|
664 | +index2+gcoff2)*3];
|
---|
665 | for (i=0; i<3; i++) {
|
---|
666 | int sel = SELECT(i2,j2,k2,i);
|
---|
667 | if (sel) {
|
---|
668 | int ind = INT_CARTINDEX(b-1,i2-IN(i,0),j2-IN(i,1));
|
---|
669 | ctmp[i] -= sel * cartesianbuffer_scratch[index1*sizebm1+ind];
|
---|
670 | }
|
---|
671 | }
|
---|
672 | index2++;
|
---|
673 | } END_FOR_CART;
|
---|
674 | index1++;
|
---|
675 | } END_FOR_CART;
|
---|
676 | }
|
---|
677 | }
|
---|
678 | gcoff2 += INT_NCART_NN(b);
|
---|
679 | }
|
---|
680 | gcoff1 += INT_NCART_NN(a);
|
---|
681 | }
|
---|
682 |
|
---|
683 | accum_transform_1e_xyz(integral_,
|
---|
684 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
685 |
|
---|
686 | #if DEBUG_NUC_SHELL_DER
|
---|
687 | double *fastbuff = cartesianbuffer;
|
---|
688 | cartesianbuffer = new double[gcsize1*gcsize2*3];
|
---|
689 | double *junkbuff = new double[gcsize1*gcsize2*3];
|
---|
690 | memset(junkbuff,0,sizeof(double)*gcsize1*gcsize2*3);
|
---|
691 | accum_shell_1der(junkbuff,ish,jsh,dercs,centernum,
|
---|
692 | &Int1eV3::comp_shell_nuclear);
|
---|
693 | delete[] junkbuff;
|
---|
694 | int index = 0;
|
---|
695 | for (i=0; i<gcsize1; i++) {
|
---|
696 | for (int j=0; j<gcsize2; j++, index++) {
|
---|
697 | ExEnv::outn() << scprintf(" (%d %d): % 18.15f % 18.15f",
|
---|
698 | i,j,cartesianbuffer[index],fastbuff[index]);
|
---|
699 | if (fabs(cartesianbuffer[index]-fastbuff[index])>1.0e-12) {
|
---|
700 | ExEnv::outn() << " **";
|
---|
701 | }
|
---|
702 | ExEnv::outn() << endl;
|
---|
703 | }
|
---|
704 | }
|
---|
705 | delete[] cartesianbuffer;
|
---|
706 | cartesianbuffer = fastbuff;
|
---|
707 | #endif
|
---|
708 | }
|
---|
709 |
|
---|
710 | /* Compute the kinetic energy for the shell. The arguments are the
|
---|
711 | * cartesian exponents for centers 1 and 2. The shell1 and shell2
|
---|
712 | * globals are used. */
|
---|
713 | double
|
---|
714 | Int1eV3::comp_shell_kinetic(int gc1, int i1, int j1, int k1,
|
---|
715 | int gc2, int i2, int j2, int k2)
|
---|
716 | {
|
---|
717 | int i,j,xyz;
|
---|
718 | double result;
|
---|
719 | double Pi;
|
---|
720 | double oozeta;
|
---|
721 | double AmB,AmB2;
|
---|
722 | double tmp;
|
---|
723 |
|
---|
724 | /* Loop over the primitives in the shells. */
|
---|
725 | result = 0.0;
|
---|
726 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
727 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
728 |
|
---|
729 | /* Compute the intermediates. */
|
---|
730 | oo2zeta_a = 0.5/gshell1->exponent(i);
|
---|
731 | oo2zeta_b = 0.5/gshell2->exponent(j);
|
---|
732 | oozeta = 1.0/(gshell1->exponent(i) + gshell2->exponent(j));
|
---|
733 | oo2zeta = 0.5*oozeta;
|
---|
734 | xi = oozeta * gshell1->exponent(i) * gshell2->exponent(j);
|
---|
735 | AmB2 = 0.0;
|
---|
736 | for (xyz=0; xyz<3; xyz++) {
|
---|
737 | Pi = oozeta*(gshell1->exponent(i) * A[xyz]
|
---|
738 | + gshell2->exponent(j) * B[xyz]);
|
---|
739 | PmA[xyz] = Pi - A[xyz];
|
---|
740 | PmB[xyz] = Pi - B[xyz];
|
---|
741 | AmB = A[xyz] - B[xyz];
|
---|
742 | AmB2 += AmB*AmB;
|
---|
743 | }
|
---|
744 | /* The s integral kinetic energy. */
|
---|
745 | ss = pow(M_PI/(gshell1->exponent(i)
|
---|
746 | +gshell2->exponent(j)),1.5)
|
---|
747 | * exp(- xi * AmB2);
|
---|
748 | sTs = ss
|
---|
749 | * xi
|
---|
750 | * (3.0 - 2.0 * xi * AmB2);
|
---|
751 | tmp = gshell1->coefficient_unnorm(gc1,i)
|
---|
752 | * gshell2->coefficient_unnorm(gc2,j)
|
---|
753 | * comp_prim_kinetic(i1,j1,k1,i2,j2,k2);
|
---|
754 | if (exponent_weighted == 0) tmp *= gshell1->exponent(i);
|
---|
755 | else if (exponent_weighted == 1) tmp *= gshell2->exponent(j);
|
---|
756 | result += tmp;
|
---|
757 | }
|
---|
758 | }
|
---|
759 |
|
---|
760 | return result;
|
---|
761 | }
|
---|
762 |
|
---|
763 | double
|
---|
764 | Int1eV3::comp_prim_kinetic(int i1, int j1, int k1,
|
---|
765 | int i2, int j2, int k2)
|
---|
766 | {
|
---|
767 | double tmp;
|
---|
768 | double result;
|
---|
769 |
|
---|
770 | if (i1) {
|
---|
771 | result = PmA[0] * comp_prim_kinetic(i1-1,j1,k1,i2,j2,k2);
|
---|
772 | if (i1>1) result += oo2zeta*(i1-1)*comp_prim_kinetic(i1-2,j1,k1,i2,j2,k2);
|
---|
773 | if (i2) result += oo2zeta*i2*comp_prim_kinetic(i1-1,j1,k1,i2-1,j2,k2);
|
---|
774 | tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
775 | if (i1>1) tmp -= oo2zeta_a*(i1-1)*comp_prim_overlap(i1-2,j1,k1,i2,j2,k2);
|
---|
776 | result += 2.0 * xi * tmp;
|
---|
777 | return result;
|
---|
778 | }
|
---|
779 | if (j1) {
|
---|
780 | result = PmA[1] * comp_prim_kinetic(i1,j1-1,k1,i2,j2,k2);
|
---|
781 | if (j1>1) result += oo2zeta*(j1-1)*comp_prim_kinetic(i1,j1-2,k1,i2,j2,k2);
|
---|
782 | if (j2) result += oo2zeta*j2*comp_prim_kinetic(i1,j1-1,k1,i2,j2-1,k2);
|
---|
783 | tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
784 | if (j1>1) tmp -= oo2zeta_a*(j1-1)*comp_prim_overlap(i1,j1-2,k1,i2,j2,k2);
|
---|
785 | result += 2.0 * xi * tmp;
|
---|
786 | return result;
|
---|
787 | }
|
---|
788 | if (k1) {
|
---|
789 | result = PmA[2] * comp_prim_kinetic(i1,j1,k1-1,i2,j2,k2);
|
---|
790 | if (k1>1) result += oo2zeta*(k1-1)*comp_prim_kinetic(i1,j1,k1-2,i2,j2,k2);
|
---|
791 | if (k2) result += oo2zeta*k2*comp_prim_kinetic(i1,j1,k1-1,i2,j2,k2-1);
|
---|
792 | tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
793 | if (k1>1) tmp -= oo2zeta_a*(k1-1)*comp_prim_overlap(i1,j1,k1-2,i2,j2,k2);
|
---|
794 | result += 2.0 * xi * tmp;
|
---|
795 | return result;
|
---|
796 | }
|
---|
797 | if (i2) {
|
---|
798 | result = PmB[0] * comp_prim_kinetic(i1,j1,k1,i2-1,j2,k2);
|
---|
799 | if (i2>1) result += oo2zeta*(i2-1)*comp_prim_kinetic(i1,j1,k1,i2-2,j2,k2);
|
---|
800 | if (i1) result += oo2zeta*i1*comp_prim_kinetic(i1-1,j1,k1,i2-1,j2,k2);
|
---|
801 | tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
802 | if (i2>1) tmp -= oo2zeta_b*(i2-1)*comp_prim_overlap(i1,j1,k1,i2-2,j2,k2);
|
---|
803 | result += 2.0 * xi * tmp;
|
---|
804 | return result;
|
---|
805 | }
|
---|
806 | if (j2) {
|
---|
807 | result = PmB[1] * comp_prim_kinetic(i1,j1,k1,i2,j2-1,k2);
|
---|
808 | if (j2>1) result += oo2zeta*(j2-1)*comp_prim_kinetic(i1,j1,k1,i2,j2-2,k2);
|
---|
809 | if (j1) result += oo2zeta*i1*comp_prim_kinetic(i1,j1-1,k1,i2,j2-1,k2);
|
---|
810 | tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
811 | if (j2>1) tmp -= oo2zeta_b*(j2-1)*comp_prim_overlap(i1,j1,k1,i2,j2-2,k2);
|
---|
812 | result += 2.0 * xi * tmp;
|
---|
813 | return result;
|
---|
814 | }
|
---|
815 | if (k2) {
|
---|
816 | result = PmB[2] * comp_prim_kinetic(i1,j1,k1,i2,j2,k2-1);
|
---|
817 | if (k2>1) result += oo2zeta*(k2-1)*comp_prim_kinetic(i1,j1,k1,i2,j2,k2-2);
|
---|
818 | if (k1) result += oo2zeta*i1*comp_prim_kinetic(i1,j1,k1-1,i2,j2,k2-1);
|
---|
819 | tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
|
---|
820 | if (k2>1) tmp -= oo2zeta_b*(k2-1)*comp_prim_overlap(i1,j1,k1,i2,j2,k2-2);
|
---|
821 | result += 2.0 * xi * tmp;
|
---|
822 | return result;
|
---|
823 | }
|
---|
824 |
|
---|
825 | return sTs;
|
---|
826 | }
|
---|
827 |
|
---|
828 | /* --------------------------------------------------------------- */
|
---|
829 | /* ------------- Routines for the nuclear attraction ------------- */
|
---|
830 | /* --------------------------------------------------------------- */
|
---|
831 |
|
---|
832 | /* This computes the nuclear attraction derivative integrals between functions
|
---|
833 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
834 | * atom 0 x, y, z, atom 1, ... .
|
---|
835 | */
|
---|
836 | void
|
---|
837 | Int1eV3::int_accum_shell_nuclear_1der(int ish, int jsh,
|
---|
838 | Ref<GaussianBasisSet> dercs, int centernum)
|
---|
839 | {
|
---|
840 | int_accum_shell_nuclear_hf_1der(ish,jsh,dercs,centernum);
|
---|
841 | int_accum_shell_nuclear_nonhf_1der(ish,jsh,dercs,centernum);
|
---|
842 | }
|
---|
843 |
|
---|
844 | /* A correction to the Hellman-Feynman part is computed which
|
---|
845 | * is not included in the original HF routine. This is only needed
|
---|
846 | * if the real Hellman-Feynman forces are desired, because the sum
|
---|
847 | * of the hf_1der and nonhf_1der forces are still correct.
|
---|
848 | */
|
---|
849 | void
|
---|
850 | Int1eV3::int_accum_shell_nuclear_hfc_1der(int ish, int jsh,
|
---|
851 | Ref<GaussianBasisSet> dercs,
|
---|
852 | int centernum)
|
---|
853 | {
|
---|
854 | /* If both ish and jsh are not on the der center,
|
---|
855 | * then there's no correction. */
|
---|
856 | if (!( (bs1_==dercs)
|
---|
857 | &&(bs2_==dercs)
|
---|
858 | &&(bs1_->shell_to_center(ish)==centernum)
|
---|
859 | &&(bs2_->shell_to_center(jsh)==centernum))) {
|
---|
860 | return;
|
---|
861 | }
|
---|
862 |
|
---|
863 | /* Compute the nuc attr part of the nuclear derivative for three equal
|
---|
864 | * centers. */
|
---|
865 | scale_shell_result = 1;
|
---|
866 | result_scale_factor = -bs1_->molecule()->charge(centernum);
|
---|
867 | for (int xyz=0; xyz<3; xyz++) {
|
---|
868 | C[xyz] = bs1_->r(centernum,xyz);
|
---|
869 | }
|
---|
870 | accum_shell_efield(buff,ish,jsh);
|
---|
871 | scale_shell_result = 0;
|
---|
872 |
|
---|
873 | }
|
---|
874 |
|
---|
875 | /* This computes the nuclear attraction derivative integrals between functions
|
---|
876 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
877 | * atom 0 x, y, z, atom 1, ... . Only the Hellman-Feynman part is computed.
|
---|
878 | */
|
---|
879 | void
|
---|
880 | Int1eV3::int_accum_shell_nuclear_hf_1der(int ish, int jsh,
|
---|
881 | Ref<GaussianBasisSet> dercs,
|
---|
882 | int centernum)
|
---|
883 | {
|
---|
884 |
|
---|
885 | /* If both ish and jsh are on the der center, then the contrib is zero. */
|
---|
886 | if ( (bs1_==dercs)
|
---|
887 | &&(bs2_==dercs)
|
---|
888 | &&(bs1_->shell_to_center(ish)==centernum)
|
---|
889 | &&(bs2_->shell_to_center(jsh)==centernum)) {
|
---|
890 | return;
|
---|
891 | }
|
---|
892 |
|
---|
893 | /* Compute the nuc attr part of the nuclear derivative. */
|
---|
894 | if (bs1_ == dercs) {
|
---|
895 | scale_shell_result = 1;
|
---|
896 | result_scale_factor= -bs1_->molecule()->charge(centernum);
|
---|
897 | for (int xyz=0; xyz<3; xyz++) {
|
---|
898 | C[xyz] = bs1_->r(centernum,xyz);
|
---|
899 | }
|
---|
900 | //accum_shell_efield(buff,ish,jsh);
|
---|
901 | accum_shell_block_efield(buff,ish,jsh);
|
---|
902 | scale_shell_result = 0;
|
---|
903 | }
|
---|
904 | else if (bs2_ == dercs) {
|
---|
905 | scale_shell_result = 1;
|
---|
906 | result_scale_factor= -bs2_->molecule()->charge(centernum);
|
---|
907 | for (int xyz=0; xyz<3; xyz++) {
|
---|
908 | C[xyz] = bs2_->r(centernum,xyz);
|
---|
909 | }
|
---|
910 | //accum_shell_efield(buff,ish,jsh);
|
---|
911 | accum_shell_block_efield(buff,ish,jsh);
|
---|
912 | scale_shell_result = 0;
|
---|
913 | }
|
---|
914 |
|
---|
915 | }
|
---|
916 |
|
---|
917 | /* This computes the nuclear attraction derivative integrals between functions
|
---|
918 | * in two shells. The result is accumulated in the buffer which is ordered
|
---|
919 | * atom 0 x, y, z, atom 1, ... . Only the non Hellman-Feynman part is computed.
|
---|
920 | */
|
---|
921 | void
|
---|
922 | Int1eV3::int_accum_shell_nuclear_nonhf_1der(int ish, int jsh,
|
---|
923 | Ref<GaussianBasisSet> dercs,
|
---|
924 | int centernum)
|
---|
925 | {
|
---|
926 | int i;
|
---|
927 |
|
---|
928 | /* Get the basis function part of the nuclear derivative. */
|
---|
929 | three_center = 1;
|
---|
930 | third_centers = bs1_;
|
---|
931 | for (i=0; i<bs1_->ncenter(); i++) {
|
---|
932 | third_centernum = i;
|
---|
933 | for (int xyz=0; xyz<3; xyz++) {
|
---|
934 | C[xyz] = bs1_->r(i,xyz);
|
---|
935 | }
|
---|
936 | scale_shell_result = 1;
|
---|
937 | result_scale_factor = -bs1_->molecule()->charge(i);
|
---|
938 | //accum_shell_1der(buff,ish,jsh,dercs,centernum,
|
---|
939 | // &Int1eV3::comp_shell_nuclear);
|
---|
940 | accum_shell_block_1der(buff,ish,jsh,dercs,centernum,
|
---|
941 | &Int1eV3::comp_shell_block_nuclear);
|
---|
942 | scale_shell_result = 0;
|
---|
943 | }
|
---|
944 | if (bs2_!=bs1_) {
|
---|
945 | third_centers = bs2_;
|
---|
946 | for (i=0; i<bs2_->ncenter(); i++) {
|
---|
947 | third_centernum = i;
|
---|
948 | for (int xyz=0; xyz<3; xyz++) {
|
---|
949 | C[xyz] = bs2_->r(i,xyz);
|
---|
950 | }
|
---|
951 | scale_shell_result = 1;
|
---|
952 | result_scale_factor = -bs2_->molecule()->charge(i);
|
---|
953 | //accum_shell_1der(buff,ish,jsh,dercs,centernum,
|
---|
954 | // &Int1eV3::comp_shell_nuclear);
|
---|
955 | accum_shell_block_1der(buff,ish,jsh,dercs,centernum,
|
---|
956 | &Int1eV3::comp_shell_block_nuclear);
|
---|
957 | scale_shell_result = 0;
|
---|
958 | }
|
---|
959 | }
|
---|
960 | three_center = 0;
|
---|
961 |
|
---|
962 | }
|
---|
963 |
|
---|
964 | /* This computes the efield integrals between functions in two shells.
|
---|
965 | * The result is accumulated in the buffer in the form bf1 x y z, bf2
|
---|
966 | * x y z, etc.
|
---|
967 | */
|
---|
968 | void
|
---|
969 | Int1eV3::int_accum_shell_efield(int ish, int jsh,
|
---|
970 | double *position)
|
---|
971 | {
|
---|
972 | scale_shell_result = 0;
|
---|
973 | for (int xyz=0; xyz<3; xyz++) {
|
---|
974 | C[xyz] = position[xyz];
|
---|
975 | }
|
---|
976 | accum_shell_efield(buff,ish,jsh);
|
---|
977 | }
|
---|
978 |
|
---|
979 | /* This computes the efield integrals between functions in two shells.
|
---|
980 | * The result is accumulated in the buffer in the form bf1 x y z, bf2
|
---|
981 | * x y z, etc. The globals scale_shell_result, result_scale_factor,
|
---|
982 | * and C must be set before this is called.
|
---|
983 | */
|
---|
984 | void
|
---|
985 | Int1eV3::accum_shell_efield(double *buff, int ish, int jsh)
|
---|
986 | {
|
---|
987 | int i;
|
---|
988 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
989 | double efield[3];
|
---|
990 | int gc1,gc2;
|
---|
991 | int index1,index2;
|
---|
992 | double *tmp = cartesianbuffer;
|
---|
993 |
|
---|
994 | if (!(init_order >= 1)) {
|
---|
995 | ExEnv::errn() << scprintf("accum_shell_efield: one electron routines are not init'ed\n");
|
---|
996 | exit(1);
|
---|
997 | }
|
---|
998 |
|
---|
999 | c1 = bs1_->shell_to_center(ish);
|
---|
1000 | c2 = bs2_->shell_to_center(jsh);
|
---|
1001 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1002 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1003 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1004 | }
|
---|
1005 | gshell1 = &bs1_->shell(ish);
|
---|
1006 | gshell2 = &bs2_->shell(jsh);
|
---|
1007 |
|
---|
1008 | FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
|
---|
1009 | FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
|
---|
1010 | comp_shell_efield(efield,gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
1011 | if (scale_shell_result) {
|
---|
1012 | for (i=0; i<3; i++) efield[i] *= result_scale_factor;
|
---|
1013 | }
|
---|
1014 | for (i=0; i<3; i++) tmp[i] = efield[i];
|
---|
1015 | tmp += 3;
|
---|
1016 | END_FOR_GCCART_GS(index2)
|
---|
1017 | END_FOR_GCCART_GS(index1)
|
---|
1018 |
|
---|
1019 | accum_transform_1e_xyz(integral_,
|
---|
1020 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 | /* This computes the efield integrals between functions in two shells.
|
---|
1024 | * The result is accumulated in the buffer in the form bf1 x y z, bf2
|
---|
1025 | * x y z, etc. The globals scale_shell_result, result_scale_factor,
|
---|
1026 | * and C must be set before this is called.
|
---|
1027 | */
|
---|
1028 | void
|
---|
1029 | Int1eV3::accum_shell_block_efield(double *buff, int ish, int jsh)
|
---|
1030 | {
|
---|
1031 | int c1,c2;
|
---|
1032 | int gc1,gc2;
|
---|
1033 |
|
---|
1034 | if (!(init_order >= 1)) {
|
---|
1035 | ExEnv::errn() << scprintf("accum_shell_efield: one electron routines are not init'ed\n");
|
---|
1036 | exit(1);
|
---|
1037 | }
|
---|
1038 |
|
---|
1039 | c1 = bs1_->shell_to_center(ish);
|
---|
1040 | c2 = bs2_->shell_to_center(jsh);
|
---|
1041 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1042 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1043 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1044 | }
|
---|
1045 | gshell1 = &bs1_->shell(ish);
|
---|
1046 | gshell2 = &bs2_->shell(jsh);
|
---|
1047 |
|
---|
1048 | double coef;
|
---|
1049 | if (scale_shell_result) coef = result_scale_factor;
|
---|
1050 | else coef = 1.0;
|
---|
1051 |
|
---|
1052 | int gcsize1 = gshell1->ncartesian();
|
---|
1053 | int gcsize2 = gshell2->ncartesian();
|
---|
1054 | memset(cartesianbuffer,0,sizeof(double)*gcsize1*gcsize2*3);
|
---|
1055 | int gcoff1 = 0;
|
---|
1056 | for (gc1=0; gc1<gshell1->ncontraction(); gc1++) {
|
---|
1057 | int a = gshell1->am(gc1);
|
---|
1058 | int sizea = INT_NCART_NN(a);
|
---|
1059 | int gcoff2 = 0;
|
---|
1060 | for (gc2=0; gc2<gshell2->ncontraction(); gc2++) {
|
---|
1061 | int b = gshell2->am(gc2);
|
---|
1062 | int sizeb = INT_NCART_NN(b);
|
---|
1063 | comp_shell_block_efield(gc1,a,gc2,b,
|
---|
1064 | gcsize2, gcoff1, gcoff2,
|
---|
1065 | coef, cartesianbuffer);
|
---|
1066 | gcoff2 += sizeb;
|
---|
1067 | }
|
---|
1068 | gcoff1 += sizea;
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 | accum_transform_1e_xyz(integral_,
|
---|
1072 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
1073 | }
|
---|
1074 |
|
---|
1075 | /* This computes the efield integrals between functions in two shells.
|
---|
1076 | * The result is placed in the buffer in the form bf1 x y z, bf2
|
---|
1077 | * x y z, etc.
|
---|
1078 | */
|
---|
1079 | void
|
---|
1080 | Int1eV3::efield(int ish, int jsh, double *position)
|
---|
1081 | {
|
---|
1082 | scale_shell_result = 0;
|
---|
1083 | int xyz;
|
---|
1084 |
|
---|
1085 | for (xyz=0; xyz<3; xyz++) {
|
---|
1086 | C[xyz] = position[xyz];
|
---|
1087 | }
|
---|
1088 |
|
---|
1089 | int i;
|
---|
1090 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
1091 | double efield[3];
|
---|
1092 | int gc1,gc2;
|
---|
1093 | int index1,index2;
|
---|
1094 | double *tmp = cartesianbuffer;
|
---|
1095 |
|
---|
1096 | if (!(init_order >= 1)) {
|
---|
1097 | ExEnv::errn() << scprintf("Int1eV3::efield one electron routines are not ready\n");
|
---|
1098 | exit(1);
|
---|
1099 | }
|
---|
1100 |
|
---|
1101 | c1 = bs1_->shell_to_center(ish);
|
---|
1102 | c2 = bs2_->shell_to_center(jsh);
|
---|
1103 | for (xyz=0; xyz<3; xyz++) {
|
---|
1104 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1105 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1106 | }
|
---|
1107 | gshell1 = &bs1_->shell(ish);
|
---|
1108 | gshell2 = &bs2_->shell(jsh);
|
---|
1109 |
|
---|
1110 | FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
|
---|
1111 | FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
|
---|
1112 | comp_shell_efield(efield,gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
1113 | if (scale_shell_result) {
|
---|
1114 | for (i=0; i<3; i++) efield[i] *= result_scale_factor;
|
---|
1115 | }
|
---|
1116 | for (i=0; i<3; i++) tmp[i] = efield[i];
|
---|
1117 | tmp += 3;
|
---|
1118 | END_FOR_GCCART_GS(index2)
|
---|
1119 | END_FOR_GCCART_GS(index1)
|
---|
1120 |
|
---|
1121 | transform_1e_xyz(integral_,
|
---|
1122 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
1123 | }
|
---|
1124 |
|
---|
1125 | /* This slowly computes the nuc rep energy integrals between functions in
|
---|
1126 | * two shells. The result is placed in the buffer. */
|
---|
1127 | void
|
---|
1128 | Int1eV3::nuclear_slow(int ish, int jsh)
|
---|
1129 | {
|
---|
1130 | int i;
|
---|
1131 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
1132 | int index;
|
---|
1133 | int gc1,gc2;
|
---|
1134 | int cart1,cart2;
|
---|
1135 |
|
---|
1136 | if (!(init_order >= 0)) {
|
---|
1137 | ExEnv::errn() << scprintf("int_shell_nuclear: one electron routines are not init'ed\n");
|
---|
1138 | exit(1);
|
---|
1139 | }
|
---|
1140 |
|
---|
1141 | c1 = bs1_->shell_to_center(ish);
|
---|
1142 | c2 = bs2_->shell_to_center(jsh);
|
---|
1143 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1144 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1145 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1146 | }
|
---|
1147 | gshell1 = &bs1_->shell(ish);
|
---|
1148 | gshell2 = &bs2_->shell(jsh);
|
---|
1149 | index = 0;
|
---|
1150 |
|
---|
1151 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
|
---|
1152 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
|
---|
1153 | cartesianbuffer[index] = 0.0;
|
---|
1154 | /* Loop thru the centers on bs1_. */
|
---|
1155 | for (i=0; i<bs1_->ncenter(); i++) {
|
---|
1156 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1157 | C[xyz] = bs1_->r(i,xyz);
|
---|
1158 | }
|
---|
1159 | cartesianbuffer[index] -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
|
---|
1160 | * bs1_->molecule()->charge(i);
|
---|
1161 | }
|
---|
1162 | /* Loop thru the centers on bs2_ if necessary. */
|
---|
1163 | if (bs2_ != bs1_) {
|
---|
1164 | for (i=0; i<bs2_->ncenter(); i++) {
|
---|
1165 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1166 | C[xyz] = bs2_->r(i,xyz);
|
---|
1167 | }
|
---|
1168 | cartesianbuffer[index]-=comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
|
---|
1169 | * bs2_->molecule()->charge(i);
|
---|
1170 | }
|
---|
1171 | }
|
---|
1172 | index++;
|
---|
1173 | END_FOR_GCCART_GS(cart2)
|
---|
1174 | END_FOR_GCCART_GS(cart1)
|
---|
1175 |
|
---|
1176 | transform_1e(integral_,
|
---|
1177 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 | /* This computes the nuc rep energy integrals between functions in two
|
---|
1181 | * shells. The result is placed in the buffer. */
|
---|
1182 | void
|
---|
1183 | Int1eV3::nuclear(int ish, int jsh)
|
---|
1184 | {
|
---|
1185 | int i;
|
---|
1186 | int c1,c2;
|
---|
1187 | int gc1,gc2;
|
---|
1188 |
|
---|
1189 | if (!(init_order >= 0)) {
|
---|
1190 | ExEnv::errn() << scprintf("int_shell_nuclear: one electron routines are not init'ed\n");
|
---|
1191 | exit(1);
|
---|
1192 | }
|
---|
1193 |
|
---|
1194 | c1 = bs1_->shell_to_center(ish);
|
---|
1195 | c2 = bs2_->shell_to_center(jsh);
|
---|
1196 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1197 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1198 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1199 | }
|
---|
1200 | gshell1 = &bs1_->shell(ish);
|
---|
1201 | gshell2 = &bs2_->shell(jsh);
|
---|
1202 |
|
---|
1203 | int ni = gshell1->ncartesian();
|
---|
1204 | int nj = gshell2->ncartesian();
|
---|
1205 | memset(cartesianbuffer,0,sizeof(double)*ni*nj);
|
---|
1206 |
|
---|
1207 | int offi = 0;
|
---|
1208 | for (gc1=0; gc1<gshell1->ncontraction(); gc1++) {
|
---|
1209 | int a = gshell1->am(gc1);
|
---|
1210 | int offj = 0;
|
---|
1211 | for (gc2=0; gc2<gshell2->ncontraction(); gc2++) {
|
---|
1212 | int b = gshell2->am(gc2);
|
---|
1213 | /* Loop thru the centers on bs1_. */
|
---|
1214 | for (i=0; i<bs1_->ncenter(); i++) {
|
---|
1215 | double charge = bs1_->molecule()->charge(i);
|
---|
1216 | for (int xyz=0; xyz<3; xyz++) C[xyz] = bs1_->r(i,xyz);
|
---|
1217 | comp_shell_block_nuclear(gc1, a, gc2, b,
|
---|
1218 | nj, offi, offj,
|
---|
1219 | -charge, cartesianbuffer);
|
---|
1220 | }
|
---|
1221 | /* Loop thru the centers on bs2_ if necessary. */
|
---|
1222 | if (bs2_ != bs1_) {
|
---|
1223 | for (i=0; i<bs2_->ncenter(); i++) {
|
---|
1224 | double charge = bs2_->molecule()->charge(i);
|
---|
1225 | for (int xyz=0; xyz<3; xyz++) C[xyz] = bs2_->r(i,xyz);
|
---|
1226 | comp_shell_block_nuclear(gc1, a, gc2, b,
|
---|
1227 | nj, offi, offj,
|
---|
1228 | -charge, cartesianbuffer);
|
---|
1229 | }
|
---|
1230 | }
|
---|
1231 | offj += INT_NCART_NN(b);
|
---|
1232 | }
|
---|
1233 | offi += INT_NCART_NN(a);
|
---|
1234 | }
|
---|
1235 |
|
---|
1236 | #if DEBUG_NUC_SHELL
|
---|
1237 | double *fastbuf = new double[ni*nj];
|
---|
1238 | memcpy(fastbuf,cartesianbuffer,sizeof(double)*ni*nj);
|
---|
1239 | nuclear_slow(ish,jsh);
|
---|
1240 |
|
---|
1241 | index = 0;
|
---|
1242 | int cart1, cart2;
|
---|
1243 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1) {
|
---|
1244 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2) {
|
---|
1245 | double fast = fastbuf[index];
|
---|
1246 | double slow = cartesianbuffer[index];
|
---|
1247 | if (fabs(fast-slow)>1.0e-12) {
|
---|
1248 | ExEnv::outn() << scprintf("NUC SHELL FINAL: %d (%d %d %d) %d (%d %d %d): ",
|
---|
1249 | gc1, i1,j1,k1, gc2, i2,j2,k2)
|
---|
1250 | << scprintf(" % 20.15f % 20.15f",
|
---|
1251 | fast, slow)
|
---|
1252 | << endl;
|
---|
1253 | }
|
---|
1254 | index++;
|
---|
1255 | } END_FOR_GCCART_GS(cart2);
|
---|
1256 | } END_FOR_GCCART_GS(cart1);
|
---|
1257 |
|
---|
1258 | memcpy(cartesianbuffer,fastbuf,sizeof(double)*ni*nj);
|
---|
1259 | delete[] fastbuf;
|
---|
1260 | #endif
|
---|
1261 |
|
---|
1262 | transform_1e(integral_,
|
---|
1263 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
1264 | }
|
---|
1265 |
|
---|
1266 | /* This computes the integrals between functions in two shells for
|
---|
1267 | * a point charge interaction operator.
|
---|
1268 | * The result is placed in the buffer.
|
---|
1269 | */
|
---|
1270 | void
|
---|
1271 | Int1eV3::int_accum_shell_point_charge(int ish, int jsh,
|
---|
1272 | int ncharge, const double* charge,
|
---|
1273 | const double*const* position)
|
---|
1274 | {
|
---|
1275 | int i;
|
---|
1276 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
1277 | int index;
|
---|
1278 | int gc1,gc2;
|
---|
1279 | int cart1,cart2;
|
---|
1280 | double tmp;
|
---|
1281 |
|
---|
1282 | if (!(init_order >= 0)) {
|
---|
1283 | ExEnv::errn() << scprintf("int_shell_pointcharge: one electron routines are not init'ed\n");
|
---|
1284 | exit(1);
|
---|
1285 | }
|
---|
1286 |
|
---|
1287 | c1 = bs1_->shell_to_center(ish);
|
---|
1288 | c2 = bs2_->shell_to_center(jsh);
|
---|
1289 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1290 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1291 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1292 | }
|
---|
1293 | gshell1 = &bs1_->shell(ish);
|
---|
1294 | gshell2 = &bs2_->shell(jsh);
|
---|
1295 | index = 0;
|
---|
1296 |
|
---|
1297 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
|
---|
1298 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
|
---|
1299 | /* Loop thru the point charges. */
|
---|
1300 | tmp = 0.0;
|
---|
1301 | for (i=0; i<ncharge; i++) {
|
---|
1302 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1303 | C[xyz] = position[i][xyz];
|
---|
1304 | }
|
---|
1305 | tmp -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
|
---|
1306 | * charge[i];
|
---|
1307 | }
|
---|
1308 | cartesianbuffer[index] = tmp;
|
---|
1309 | index++;
|
---|
1310 | END_FOR_GCCART_GS(cart2)
|
---|
1311 | END_FOR_GCCART_GS(cart1)
|
---|
1312 |
|
---|
1313 | accum_transform_1e(integral_,
|
---|
1314 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
1315 | }
|
---|
1316 |
|
---|
1317 | /* This computes the integrals between functions in two shells for
|
---|
1318 | * a point charge interaction operator.
|
---|
1319 | * The result is placed in the buffer.
|
---|
1320 | */
|
---|
1321 | void
|
---|
1322 | Int1eV3::point_charge(int ish, int jsh,
|
---|
1323 | int ncharge,
|
---|
1324 | const double* charge, const double*const* position)
|
---|
1325 | {
|
---|
1326 | int i;
|
---|
1327 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
1328 | int index;
|
---|
1329 | int gc1,gc2;
|
---|
1330 | int cart1,cart2;
|
---|
1331 |
|
---|
1332 | if (!(init_order >= 0)) {
|
---|
1333 | ExEnv::errn() << scprintf("Int1eV3::point_charge: one electron routines are not init'ed\n");
|
---|
1334 | exit(1);
|
---|
1335 | }
|
---|
1336 |
|
---|
1337 | c1 = bs1_->shell_to_center(ish);
|
---|
1338 | c2 = bs2_->shell_to_center(jsh);
|
---|
1339 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1340 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1341 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1342 | }
|
---|
1343 | gshell1 = &bs1_->shell(ish);
|
---|
1344 | gshell2 = &bs2_->shell(jsh);
|
---|
1345 | index = 0;
|
---|
1346 |
|
---|
1347 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
|
---|
1348 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
|
---|
1349 | cartesianbuffer[index] = 0.0;
|
---|
1350 | /* Loop thru the point charges. */
|
---|
1351 | for (i=0; i<ncharge; i++) {
|
---|
1352 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1353 | C[xyz] = position[i][xyz];
|
---|
1354 | }
|
---|
1355 | cartesianbuffer[index] -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
|
---|
1356 | * charge[i];
|
---|
1357 | }
|
---|
1358 | index++;
|
---|
1359 | END_FOR_GCCART_GS(cart2)
|
---|
1360 | END_FOR_GCCART_GS(cart1)
|
---|
1361 |
|
---|
1362 | transform_1e(integral_,
|
---|
1363 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
1364 | }
|
---|
1365 |
|
---|
1366 |
|
---|
1367 | /* This computes the 1e Hamiltonian integrals between functions in two shells.
|
---|
1368 | * The result is placed in the buffer.
|
---|
1369 | */
|
---|
1370 | void
|
---|
1371 | Int1eV3::hcore(int ish, int jsh)
|
---|
1372 | {
|
---|
1373 | int i;
|
---|
1374 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
1375 | int index;
|
---|
1376 | int cart1,cart2;
|
---|
1377 | int gc1,gc2;
|
---|
1378 |
|
---|
1379 | if (!(init_order >= 0)) {
|
---|
1380 | ExEnv::errn() << scprintf("hcore: one electron routines are not init'ed\n");
|
---|
1381 | exit(1);
|
---|
1382 | }
|
---|
1383 |
|
---|
1384 | c1 = bs1_->shell_to_center(ish);
|
---|
1385 | c2 = bs2_->shell_to_center(jsh);
|
---|
1386 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1387 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1388 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1389 | }
|
---|
1390 | gshell1 = &bs1_->shell(ish);
|
---|
1391 | gshell2 = &bs2_->shell(jsh);
|
---|
1392 |
|
---|
1393 | index = 0;
|
---|
1394 | FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
|
---|
1395 | FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
|
---|
1396 | cartesianbuffer[index] = comp_shell_kinetic(gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
1397 | /* Loop thru the centers on bs1_. */
|
---|
1398 | for (i=0; i<bs1_->ncenter(); i++) {
|
---|
1399 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1400 | C[xyz] = bs1_->r(i,xyz);
|
---|
1401 | }
|
---|
1402 | cartesianbuffer[index] -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
|
---|
1403 | * bs1_->molecule()->charge(i);
|
---|
1404 | }
|
---|
1405 | /* Loop thru the centers on bs2_ if necessary. */
|
---|
1406 | if (bs2_ != bs1_) {
|
---|
1407 | for (i=0; i<bs2_->ncenter(); i++) {
|
---|
1408 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1409 | C[xyz] = bs2_->r(i,xyz);
|
---|
1410 | }
|
---|
1411 | cartesianbuffer[index]-=comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
|
---|
1412 | * bs2_->molecule()->charge(i);
|
---|
1413 | }
|
---|
1414 | }
|
---|
1415 | index++;
|
---|
1416 | END_FOR_GCCART_GS(cart2)
|
---|
1417 | END_FOR_GCCART_GS(cart1)
|
---|
1418 |
|
---|
1419 | transform_1e(integral_,
|
---|
1420 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
1421 | }
|
---|
1422 |
|
---|
1423 | /* This computes the 1e Hamiltonian deriv ints between functions in two shells.
|
---|
1424 | * The result is placed in the buffer.
|
---|
1425 | */
|
---|
1426 | void
|
---|
1427 | Int1eV3::hcore_1der(int ish, int jsh,
|
---|
1428 | int idercs, int centernum)
|
---|
1429 | {
|
---|
1430 | int i;
|
---|
1431 | int c1,c2;
|
---|
1432 | int ni,nj;
|
---|
1433 |
|
---|
1434 | if (!(init_order >= 0)) {
|
---|
1435 | ExEnv::errn() << scprintf("int_shell_hcore: one electron routines are not init'ed\n");
|
---|
1436 | exit(1);
|
---|
1437 | }
|
---|
1438 |
|
---|
1439 | Ref<GaussianBasisSet> dercs;
|
---|
1440 | if (idercs == 0) dercs = bs1_;
|
---|
1441 | else dercs = bs2_;
|
---|
1442 |
|
---|
1443 | c1 = bs1_->shell_to_center(ish);
|
---|
1444 | c2 = bs2_->shell_to_center(jsh);
|
---|
1445 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1446 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1447 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1448 | }
|
---|
1449 | gshell1 = &bs1_->shell(ish);
|
---|
1450 | gshell2 = &bs2_->shell(jsh);
|
---|
1451 |
|
---|
1452 | ni = gshell1->nfunction();
|
---|
1453 | nj = gshell2->nfunction();
|
---|
1454 |
|
---|
1455 | for (i=0; i<ni*nj*3; i++) {
|
---|
1456 | buff[i] = 0.0;
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 | int_accum_shell_nuclear_1der(ish,jsh,dercs,centernum);
|
---|
1460 | int_accum_shell_kinetic_1der(ish,jsh,dercs,centernum);
|
---|
1461 | }
|
---|
1462 |
|
---|
1463 | /* This computes the kinetic deriv ints between functions in two shells.
|
---|
1464 | * The result is placed in the buffer.
|
---|
1465 | */
|
---|
1466 | void
|
---|
1467 | Int1eV3::kinetic_1der(int ish, int jsh,
|
---|
1468 | int idercs, int centernum)
|
---|
1469 | {
|
---|
1470 | int i;
|
---|
1471 | int c1,c2;
|
---|
1472 | int ni,nj;
|
---|
1473 |
|
---|
1474 | if (!(init_order >= 0)) {
|
---|
1475 | ExEnv::errn() << scprintf("int_shell_kinetic: one electron routines are not init'ed\n");
|
---|
1476 | exit(1);
|
---|
1477 | }
|
---|
1478 |
|
---|
1479 | Ref<GaussianBasisSet> dercs;
|
---|
1480 | if (idercs == 0) dercs = bs1_;
|
---|
1481 | else dercs = bs2_;
|
---|
1482 |
|
---|
1483 | c1 = bs1_->shell_to_center(ish);
|
---|
1484 | c2 = bs2_->shell_to_center(jsh);
|
---|
1485 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1486 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1487 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1488 | }
|
---|
1489 | gshell1 = &bs1_->shell(ish);
|
---|
1490 | gshell2 = &bs2_->shell(jsh);
|
---|
1491 |
|
---|
1492 | ni = gshell1->nfunction();
|
---|
1493 | nj = gshell2->nfunction();
|
---|
1494 |
|
---|
1495 | for (i=0; i<ni*nj*3; i++) {
|
---|
1496 | buff[i] = 0.0;
|
---|
1497 | }
|
---|
1498 |
|
---|
1499 | int_accum_shell_kinetic_1der(ish,jsh,dercs,centernum);
|
---|
1500 | }
|
---|
1501 |
|
---|
1502 | /* This computes the nuclear deriv ints between functions in two shells.
|
---|
1503 | * The result is placed in the buffer.
|
---|
1504 | */
|
---|
1505 | void
|
---|
1506 | Int1eV3::nuclear_1der(int ish, int jsh, int idercs, int centernum)
|
---|
1507 | {
|
---|
1508 | int i;
|
---|
1509 | int c1,c2;
|
---|
1510 | int ni,nj;
|
---|
1511 |
|
---|
1512 | if (!(init_order >= 0)) {
|
---|
1513 | ExEnv::errn() << scprintf("int_shell_nuclear: one electron routines are not init'ed\n");
|
---|
1514 | exit(1);
|
---|
1515 | }
|
---|
1516 |
|
---|
1517 | Ref<GaussianBasisSet> dercs;
|
---|
1518 | if (idercs == 0) dercs = bs1_;
|
---|
1519 | else dercs = bs2_;
|
---|
1520 |
|
---|
1521 | c1 = bs1_->shell_to_center(ish);
|
---|
1522 | c2 = bs2_->shell_to_center(jsh);
|
---|
1523 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1524 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1525 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1526 | }
|
---|
1527 | gshell1 = &bs1_->shell(ish);
|
---|
1528 | gshell2 = &bs2_->shell(jsh);
|
---|
1529 |
|
---|
1530 | ni = gshell1->nfunction();
|
---|
1531 | nj = gshell2->nfunction();
|
---|
1532 |
|
---|
1533 | for (i=0; i<ni*nj*3; i++) {
|
---|
1534 | buff[i] = 0.0;
|
---|
1535 | }
|
---|
1536 |
|
---|
1537 | int_accum_shell_nuclear_1der(ish,jsh,dercs,centernum);
|
---|
1538 | }
|
---|
1539 |
|
---|
1540 | /* This computes the nuclear deriv ints between functions in two shells.
|
---|
1541 | * Only the Hellman-Feynman part is computed.
|
---|
1542 | * The result is placed in the buffer.
|
---|
1543 | */
|
---|
1544 | void
|
---|
1545 | Int1eV3::int_shell_nuclear_hf_1der(int ish, int jsh,
|
---|
1546 | Ref<GaussianBasisSet> dercs, int centernum)
|
---|
1547 | {
|
---|
1548 | int i;
|
---|
1549 | int c1,c2;
|
---|
1550 | int ni,nj;
|
---|
1551 |
|
---|
1552 | if (!(init_order >= 0)) {
|
---|
1553 | ExEnv::errn() << scprintf("int_shell_nuclear_hf_1der: one electron routines are not init'ed\n");
|
---|
1554 | exit(1);
|
---|
1555 | }
|
---|
1556 |
|
---|
1557 | c1 = bs1_->shell_to_center(ish);
|
---|
1558 | c2 = bs2_->shell_to_center(jsh);
|
---|
1559 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1560 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1561 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1562 | }
|
---|
1563 | gshell1 = &bs1_->shell(ish);
|
---|
1564 | gshell2 = &bs2_->shell(jsh);
|
---|
1565 |
|
---|
1566 | ni = gshell1->nfunction();
|
---|
1567 | nj = gshell2->nfunction();
|
---|
1568 |
|
---|
1569 | for (i=0; i<ni*nj*3; i++) {
|
---|
1570 | buff[i] = 0.0;
|
---|
1571 | }
|
---|
1572 |
|
---|
1573 | int_accum_shell_nuclear_hf_1der(ish,jsh,dercs,centernum);
|
---|
1574 | }
|
---|
1575 |
|
---|
1576 | /* This computes the nuclear deriv ints between functions in two shells.
|
---|
1577 | * Only the non Hellman-Feynman part is computed.
|
---|
1578 | * The result is placed in the buffer.
|
---|
1579 | */
|
---|
1580 | void
|
---|
1581 | Int1eV3::int_shell_nuclear_nonhf_1der(int ish, int jsh,
|
---|
1582 | Ref<GaussianBasisSet> dercs, int centernum)
|
---|
1583 | {
|
---|
1584 | int i;
|
---|
1585 | int c1,c2;
|
---|
1586 | int ni,nj;
|
---|
1587 |
|
---|
1588 | if (!(init_order >= 0)) {
|
---|
1589 | ExEnv::errn() << scprintf("int_shell_nuclear_nonhf_1der: one electron routines are not init'ed\n");
|
---|
1590 | exit(1);
|
---|
1591 | }
|
---|
1592 |
|
---|
1593 | c1 = bs1_->shell_to_center(ish);
|
---|
1594 | c2 = bs2_->shell_to_center(jsh);
|
---|
1595 | for (int xyz=0; xyz<3; xyz++) {
|
---|
1596 | A[xyz] = bs1_->r(c1,xyz);
|
---|
1597 | B[xyz] = bs2_->r(c2,xyz);
|
---|
1598 | }
|
---|
1599 | gshell1 = &bs1_->shell(ish);
|
---|
1600 | gshell2 = &bs2_->shell(jsh);
|
---|
1601 |
|
---|
1602 | ni = gshell1->nfunction();
|
---|
1603 | nj = gshell2->nfunction();
|
---|
1604 |
|
---|
1605 | #if 0
|
---|
1606 | ExEnv::outn() << scprintf("int_shell_nuclear_nonhf_1der: zeroing %d doubles in buff\n",ni*nj*3);
|
---|
1607 | #endif
|
---|
1608 | for (i=0; i<ni*nj*3; i++) {
|
---|
1609 | buff[i] = 0.0;
|
---|
1610 | }
|
---|
1611 |
|
---|
1612 | int_accum_shell_nuclear_nonhf_1der(ish,jsh,dercs,centernum);
|
---|
1613 | }
|
---|
1614 |
|
---|
1615 | /* Compute the nuclear attraction for the shell. The arguments are the
|
---|
1616 | * cartesian exponents for centers 1 and 2. The shell1 and shell2
|
---|
1617 | * globals are used. */
|
---|
1618 | double
|
---|
1619 | Int1eV3::comp_shell_nuclear(int gc1, int i1, int j1, int k1,
|
---|
1620 | int gc2, int i2, int j2, int k2)
|
---|
1621 | {
|
---|
1622 | int i,j,k,xyz;
|
---|
1623 | double result;
|
---|
1624 | double Pi;
|
---|
1625 | double oozeta;
|
---|
1626 | double AmB,AmB2;
|
---|
1627 | double PmC2;
|
---|
1628 | double auxcoef;
|
---|
1629 | int am;
|
---|
1630 | double tmp;
|
---|
1631 |
|
---|
1632 | am = i1+j1+k1+i2+j2+k2;
|
---|
1633 |
|
---|
1634 | /* Loop over the primitives in the shells. */
|
---|
1635 | result = 0.0;
|
---|
1636 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
1637 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
1638 |
|
---|
1639 | /* Compute the intermediates. */
|
---|
1640 | zeta = gshell1->exponent(i) + gshell2->exponent(j);
|
---|
1641 | oozeta = 1.0/zeta;
|
---|
1642 | oo2zeta = 0.5*oozeta;
|
---|
1643 | AmB2 = 0.0;
|
---|
1644 | PmC2 = 0.0;
|
---|
1645 | for (xyz=0; xyz<3; xyz++) {
|
---|
1646 | Pi = oozeta*(gshell1->exponent(i) * A[xyz]
|
---|
1647 | + gshell2->exponent(j) * B[xyz]);
|
---|
1648 | PmA[xyz] = Pi - A[xyz];
|
---|
1649 | PmB[xyz] = Pi - B[xyz];
|
---|
1650 | PmC[xyz] = Pi - C[xyz];
|
---|
1651 | AmB = A[xyz] - B[xyz];
|
---|
1652 | AmB2 += AmB*AmB;
|
---|
1653 | PmC2 += PmC[xyz]*PmC[xyz];
|
---|
1654 | }
|
---|
1655 |
|
---|
1656 | /* The auxillary integral coeficients. */
|
---|
1657 | auxcoef = 2.0 * M_PI/(gshell1->exponent(i)
|
---|
1658 | +gshell2->exponent(j))
|
---|
1659 | * exp(- oozeta * gshell1->exponent(i)
|
---|
1660 | * gshell2->exponent(j) * AmB2);
|
---|
1661 |
|
---|
1662 | /* The Fm(U) intermediates. */
|
---|
1663 | fjttable_ = fjt_->values(am,zeta*PmC2);
|
---|
1664 |
|
---|
1665 | /* Convert the Fm(U) intermediates into the auxillary
|
---|
1666 | * nuclear attraction integrals. */
|
---|
1667 | for (k=0; k<=am; k++) {
|
---|
1668 | fjttable_[k] *= auxcoef;
|
---|
1669 | }
|
---|
1670 |
|
---|
1671 | /* Compute the nuclear attraction integral. */
|
---|
1672 | tmp = gshell1->coefficient_unnorm(gc1,i)
|
---|
1673 | * gshell2->coefficient_unnorm(gc2,j)
|
---|
1674 | * comp_prim_nuclear(i1,j1,k1,i2,j2,k2,0);
|
---|
1675 |
|
---|
1676 | if (exponent_weighted == 0) tmp *= gshell1->exponent(i);
|
---|
1677 | else if (exponent_weighted == 1) tmp *= gshell2->exponent(j);
|
---|
1678 |
|
---|
1679 | result += tmp;
|
---|
1680 | }
|
---|
1681 | }
|
---|
1682 |
|
---|
1683 | /* printf("comp_shell_nuclear(%d,%d,%d,%d,%d,%d): result = % 12.8lf\n",
|
---|
1684 | * i1,j1,k1,i2,j2,k2,result);
|
---|
1685 | */
|
---|
1686 | return result;
|
---|
1687 | }
|
---|
1688 |
|
---|
1689 | /* Compute the nuclear attraction for the shell. The arguments are the
|
---|
1690 | * cartesian exponents for centers 1 and 2. The shell1 and shell2
|
---|
1691 | * globals are used. */
|
---|
1692 | void
|
---|
1693 | Int1eV3::comp_shell_block_nuclear(int gc1, int a, int gc2, int b,
|
---|
1694 | int gcsize2, int gcoff1, int gcoff2,
|
---|
1695 | double coef, double *buffer)
|
---|
1696 | {
|
---|
1697 | int i,j,k,xyz;
|
---|
1698 | double Pi;
|
---|
1699 | double oozeta;
|
---|
1700 | double AmB,AmB2;
|
---|
1701 | double PmC2;
|
---|
1702 | double auxcoef;
|
---|
1703 | double tmp;
|
---|
1704 | int am = a + b;
|
---|
1705 | int size1 = INT_NCART_NN(a);
|
---|
1706 | int size2 = INT_NCART_NN(b);
|
---|
1707 |
|
---|
1708 | #if DEBUG_NUC_SHELL
|
---|
1709 | double *shellints = new double[size1*size2];
|
---|
1710 | memset(shellints,0,sizeof(double)*size1*size2);
|
---|
1711 | #endif
|
---|
1712 |
|
---|
1713 | /* Loop over the primitives in the shells. */
|
---|
1714 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
1715 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
1716 |
|
---|
1717 | /* Compute the intermediates. */
|
---|
1718 | zeta = gshell1->exponent(i) + gshell2->exponent(j);
|
---|
1719 | oozeta = 1.0/zeta;
|
---|
1720 | oo2zeta = 0.5*oozeta;
|
---|
1721 | AmB2 = 0.0;
|
---|
1722 | PmC2 = 0.0;
|
---|
1723 | for (xyz=0; xyz<3; xyz++) {
|
---|
1724 | Pi = oozeta*(gshell1->exponent(i) * A[xyz]
|
---|
1725 | + gshell2->exponent(j) * B[xyz]);
|
---|
1726 | PmA[xyz] = Pi - A[xyz];
|
---|
1727 | PmB[xyz] = Pi - B[xyz];
|
---|
1728 | PmC[xyz] = Pi - C[xyz];
|
---|
1729 | AmB = A[xyz] - B[xyz];
|
---|
1730 | AmB2 += AmB*AmB;
|
---|
1731 | PmC2 += PmC[xyz]*PmC[xyz];
|
---|
1732 | }
|
---|
1733 |
|
---|
1734 | /* The auxillary integral coeficients. */
|
---|
1735 | auxcoef = 2.0 * M_PI/(gshell1->exponent(i)
|
---|
1736 | +gshell2->exponent(j))
|
---|
1737 | * exp(- oozeta * gshell1->exponent(i)
|
---|
1738 | * gshell2->exponent(j) * AmB2);
|
---|
1739 |
|
---|
1740 | /* The Fm(U) intermediates. */
|
---|
1741 | fjttable_ = fjt_->values(am,zeta*PmC2);
|
---|
1742 |
|
---|
1743 | /* Convert the Fm(U) intermediates into the auxillary
|
---|
1744 | * nuclear attraction integrals. */
|
---|
1745 | for (k=0; k<=am; k++) {
|
---|
1746 | fjttable_[k] *= auxcoef;
|
---|
1747 | }
|
---|
1748 |
|
---|
1749 | /* Compute the primitive nuclear attraction integral. */
|
---|
1750 | comp_prim_block_nuclear(a,b);
|
---|
1751 |
|
---|
1752 | tmp = gshell1->coefficient_unnorm(gc1,i)
|
---|
1753 | * gshell2->coefficient_unnorm(gc2,j)
|
---|
1754 | * coef;
|
---|
1755 |
|
---|
1756 | if (exponent_weighted == 0) tmp *= gshell1->exponent(i);
|
---|
1757 | else if (exponent_weighted == 1) tmp *= gshell2->exponent(j);
|
---|
1758 |
|
---|
1759 | #if DEBUG_NUC_SHELL
|
---|
1760 | double *tprimbuffer = inter(a,b,0);
|
---|
1761 | double *tmpshellints = shellints;
|
---|
1762 | for (int ip=0; ip<size1; ip++) {
|
---|
1763 | for (int jp=0; jp<size2; jp++) {
|
---|
1764 | *tmpshellints++ += tmp * *tprimbuffer++ / coef;
|
---|
1765 | }
|
---|
1766 | }
|
---|
1767 | #endif
|
---|
1768 | double *primbuffer = inter(a,b,0);
|
---|
1769 | for (int ip=0; ip<size1; ip++) {
|
---|
1770 | for (int jp=0; jp<size2; jp++) {
|
---|
1771 | //ExEnv::outn() << scprintf("buffer[%d] += %18.15f",
|
---|
1772 | // (ip+gcoff1)*gcsize2+jp+gcoff2,
|
---|
1773 | // tmp * *primbuffer)
|
---|
1774 | // << endl;
|
---|
1775 | buffer[(ip+gcoff1)*gcsize2+jp+gcoff2] += tmp * *primbuffer++;
|
---|
1776 | }
|
---|
1777 | }
|
---|
1778 | }
|
---|
1779 | }
|
---|
1780 |
|
---|
1781 | #if DEBUG_NUC_SHELL
|
---|
1782 | # if DEBUG_NUC_SHELL > 1
|
---|
1783 | ExEnv::outn() << scprintf("GC = (%d %d), A = %d, B = %d", gc1, gc2, a, b)
|
---|
1784 | << endl;
|
---|
1785 | # endif
|
---|
1786 | int i1,j1,k1;
|
---|
1787 | int i2,j2,k2;
|
---|
1788 | int ip = 0;
|
---|
1789 | double *tmpshellints = shellints;
|
---|
1790 | FOR_CART(i1,j1,k1,a) {
|
---|
1791 | int jp = 0;
|
---|
1792 | FOR_CART(i2,j2,k2,b) {
|
---|
1793 | double fast = *tmpshellints++;
|
---|
1794 | double slow = comp_shell_nuclear(gc1, i1, j1, k1,
|
---|
1795 | gc2, i2, j2, k2);
|
---|
1796 | int bad = fabs(fast-slow)>1.0e-12;
|
---|
1797 | if (DEBUG_NUC_SHELL > 1 || bad) {
|
---|
1798 | ExEnv::outn() << scprintf("NUC SHELL: (%d %d %d) (%d %d %d): ",
|
---|
1799 | i1,j1,k1, i2,j2,k2)
|
---|
1800 | << scprintf(" % 20.15f % 20.15f",
|
---|
1801 | fast, slow);
|
---|
1802 | }
|
---|
1803 | if (bad) {
|
---|
1804 | ExEnv::outn() << " ****" << endl;
|
---|
1805 | }
|
---|
1806 | else if (DEBUG_NUC_SHELL > 1) {
|
---|
1807 | ExEnv::outn() << endl;
|
---|
1808 | }
|
---|
1809 | jp++;
|
---|
1810 | } END_FOR_CART;
|
---|
1811 | ip++;
|
---|
1812 | } END_FOR_CART;
|
---|
1813 | delete[] shellints;
|
---|
1814 | #endif
|
---|
1815 | }
|
---|
1816 |
|
---|
1817 | void
|
---|
1818 | Int1eV3::comp_prim_block_nuclear(int a, int b)
|
---|
1819 | {
|
---|
1820 | int im, ia, ib;
|
---|
1821 | int l = a + b;
|
---|
1822 |
|
---|
1823 | // fill in the ia+ib=0 integrals
|
---|
1824 | for (im=0; im<=l; im++) {
|
---|
1825 | #if DEBUG_NUC_PRIM > 1
|
---|
1826 | ExEnv::outn() << "BUILD: M = " << im
|
---|
1827 | << " A = " << 0
|
---|
1828 | << " B = " << 0
|
---|
1829 | << endl;
|
---|
1830 | #endif
|
---|
1831 | inter(0,0,im)[0] = fjttable_[im];
|
---|
1832 | }
|
---|
1833 |
|
---|
1834 | for (im=l-1; im>=0; im--) {
|
---|
1835 | int lm = l-im;
|
---|
1836 | // build the integrals for a = 0
|
---|
1837 | for (ib=1; ib<=lm && ib<=b; ib++) {
|
---|
1838 | #if DEBUG_NUC_PRIM > 1
|
---|
1839 | ExEnv::outn() << "BUILD: M = " << im
|
---|
1840 | << " A = " << 0
|
---|
1841 | << " B = " << ib
|
---|
1842 | << endl;
|
---|
1843 | #endif
|
---|
1844 | comp_prim_block_nuclear_build_b(ib,im);
|
---|
1845 | }
|
---|
1846 | for (ia=1; ia<=lm && ia<=a; ia++) {
|
---|
1847 | for (ib=0; ib<=lm-ia && ib<=b; ib++) {
|
---|
1848 | #if DEBUG_NUC_PRIM > 1
|
---|
1849 | ExEnv::outn() << "BUILD: M = " << im
|
---|
1850 | << " A = " << ia
|
---|
1851 | << " B = " << ib
|
---|
1852 | << endl;
|
---|
1853 | #endif
|
---|
1854 | comp_prim_block_nuclear_build_a(ia,ib,im);
|
---|
1855 | }
|
---|
1856 | }
|
---|
1857 | }
|
---|
1858 |
|
---|
1859 | #if DEBUG_NUC_PRIM
|
---|
1860 | for (im=0; im<=l; im++) {
|
---|
1861 | int lm = l-im;
|
---|
1862 | for (ia=0; ia<=lm && ia<=a; ia++) {
|
---|
1863 | int na = INT_NCART_NN(a);
|
---|
1864 | for (ib=0; ib<=lm-ia && ib<=b; ib++) {
|
---|
1865 | int nb = INT_NCART_NN(b);
|
---|
1866 | #if DEBUG_NUC_PRIM > 1
|
---|
1867 | ExEnv::outn() << "M = " << im
|
---|
1868 | << " A = " << ia
|
---|
1869 | << " B = " << ib
|
---|
1870 | << endl;
|
---|
1871 | #endif
|
---|
1872 | double *buf = inter(ia,ib,im);
|
---|
1873 | int i1,j1,k1, i2,j2,k2;
|
---|
1874 | FOR_CART(i1,j1,k1,ia) {
|
---|
1875 | FOR_CART(i2,j2,k2,ib) {
|
---|
1876 | double fast = *buf++;
|
---|
1877 | double slow = comp_prim_nuclear(i1, j1, k1,
|
---|
1878 | i2, j2, k2, im);
|
---|
1879 | if (fast > 999.0) fast = 999.0;
|
---|
1880 | if (fast < -999.0) fast = -999.0;
|
---|
1881 | if (fabs(fast-slow)>1.0e-12) {
|
---|
1882 | ExEnv::outn() << scprintf("(%d %d %d) (%d %d %d) (%d): ",
|
---|
1883 | i1,j1,k1, i2,j2,k2, im)
|
---|
1884 | << scprintf(" % 20.15f % 20.15f",
|
---|
1885 | fast, slow)
|
---|
1886 | << endl;
|
---|
1887 | }
|
---|
1888 | } END_FOR_CART;
|
---|
1889 | } END_FOR_CART;
|
---|
1890 | }
|
---|
1891 | }
|
---|
1892 | }
|
---|
1893 | #endif
|
---|
1894 | }
|
---|
1895 |
|
---|
1896 | void
|
---|
1897 | Int1eV3::comp_prim_block_nuclear_build_a(int a, int b, int m)
|
---|
1898 | {
|
---|
1899 | double *I000 = inter(a,b,m);
|
---|
1900 | double *I100 = inter(a-1,b,m);
|
---|
1901 | double *I101 = inter(a-1,b,m+1);
|
---|
1902 | double *I200 = (a>1?inter(a-2,b,m):0);
|
---|
1903 | double *I201 = (a>1?inter(a-2,b,m+1):0);
|
---|
1904 | double *I110 = (b?inter(a-1,b-1,m):0);
|
---|
1905 | double *I111 = (b?inter(a-1,b-1,m+1):0);
|
---|
1906 | int i1,j1,k1;
|
---|
1907 | int i2,j2,k2;
|
---|
1908 | int carta=0;
|
---|
1909 | int sizeb = INT_NCART_NN(b);
|
---|
1910 | int sizebm1 = INT_NCART_DEC(b,sizeb);
|
---|
1911 | FOR_CART(i1,j1,k1,a) {
|
---|
1912 | int cartb=0;
|
---|
1913 | FOR_CART(i2,j2,k2,b) {
|
---|
1914 | double result = 0.0;
|
---|
1915 | if (i1) {
|
---|
1916 | int am1 = INT_CARTINDEX(a-1,i1-1,j1);
|
---|
1917 | result = PmA[0] * I100[am1*sizeb+cartb];
|
---|
1918 | result -= PmC[0] * I101[am1*sizeb+cartb];
|
---|
1919 | if (i1>1) {
|
---|
1920 | int am2 = INT_CARTINDEX(a-2,i1-2,j1);
|
---|
1921 | result += oo2zeta * (i1-1)
|
---|
1922 | *(I200[am2*sizeb+cartb] - I201[am2*sizeb+cartb]);
|
---|
1923 | }
|
---|
1924 | if (i2) {
|
---|
1925 | int bm1 = INT_CARTINDEX(b-1,i2-1,j2);
|
---|
1926 | result += oo2zeta * i2
|
---|
1927 | *(I110[am1*sizebm1+bm1] - I111[am1*sizebm1+bm1]);
|
---|
1928 | }
|
---|
1929 | }
|
---|
1930 | else if (j1) {
|
---|
1931 | int am1 = INT_CARTINDEX(a-1,i1,j1-1);
|
---|
1932 | result = PmA[1] * I100[am1*sizeb+cartb];
|
---|
1933 | result -= PmC[1] * I101[am1*sizeb+cartb];
|
---|
1934 | if (j1>1) {
|
---|
1935 | int am2 = INT_CARTINDEX(a-2,i1,j1-2);
|
---|
1936 | result += oo2zeta * (j1-1)
|
---|
1937 | *(I200[am2*sizeb+cartb] - I201[am2*sizeb+cartb]);
|
---|
1938 | }
|
---|
1939 | if (j2) {
|
---|
1940 | int bm1 = INT_CARTINDEX(b-1,i2,j2-1);
|
---|
1941 | result += oo2zeta * j2
|
---|
1942 | *(I110[am1*sizebm1+bm1] - I111[am1*sizebm1+bm1]);
|
---|
1943 | }
|
---|
1944 | }
|
---|
1945 | else if (k1) {
|
---|
1946 | int am1 = INT_CARTINDEX(a-1,i1,j1);
|
---|
1947 | result = PmA[2] * I100[am1*sizeb+cartb];
|
---|
1948 | result -= PmC[2] * I101[am1*sizeb+cartb];
|
---|
1949 | if (k1>1) {
|
---|
1950 | int am2 = INT_CARTINDEX(a-2,i1,j1);
|
---|
1951 | result += oo2zeta * (k1-1)
|
---|
1952 | *(I200[am2*sizeb+cartb] - I201[am2*sizeb+cartb]);
|
---|
1953 | }
|
---|
1954 | if (k2) {
|
---|
1955 | int bm1 = INT_CARTINDEX(b-1,i2,j2);
|
---|
1956 | result += oo2zeta * k2
|
---|
1957 | *(I110[am1*sizebm1+bm1] - I111[am1*sizebm1+bm1]);
|
---|
1958 | }
|
---|
1959 | }
|
---|
1960 | I000[carta*sizeb+cartb] = result;
|
---|
1961 | cartb++;
|
---|
1962 | } END_FOR_CART;
|
---|
1963 | carta++;
|
---|
1964 | } END_FOR_CART;
|
---|
1965 | }
|
---|
1966 |
|
---|
1967 | void
|
---|
1968 | Int1eV3::comp_prim_block_nuclear_build_b(int b, int m)
|
---|
1969 | {
|
---|
1970 | double *I000 = inter(0,b,m);
|
---|
1971 | double *I010 = inter(0,b-1,m);
|
---|
1972 | double *I011 = inter(0,b-1,m+1);
|
---|
1973 | double *I020 = (b>1?inter(0,b-2,m):0);
|
---|
1974 | double *I021 = (b>1?inter(0,b-2,m+1):0);
|
---|
1975 | int i2,j2,k2;
|
---|
1976 | int cartb=0;
|
---|
1977 | FOR_CART(i2,j2,k2,b) {
|
---|
1978 | double result = 0.0;
|
---|
1979 |
|
---|
1980 | if (i2) {
|
---|
1981 | int bm1 = INT_CARTINDEX(b-1,i2-1,j2);
|
---|
1982 | result = PmB[0] * I010[bm1];
|
---|
1983 | result -= PmC[0] * I011[bm1];
|
---|
1984 | if (i2>1) {
|
---|
1985 | int bm2 = INT_CARTINDEX(b-2,i2-2,j2);
|
---|
1986 | result += oo2zeta * (i2-1) * (I020[bm2] - I021[bm2]);
|
---|
1987 | }
|
---|
1988 | }
|
---|
1989 | else if (j2) {
|
---|
1990 | int bm1 = INT_CARTINDEX(b-1,i2,j2-1);
|
---|
1991 | result = PmB[1] * I010[bm1];
|
---|
1992 | result -= PmC[1] * I011[bm1];
|
---|
1993 | if (j2>1) {
|
---|
1994 | int bm2 = INT_CARTINDEX(b-2,i2,j2-2);
|
---|
1995 | result += oo2zeta * (j2-1) * (I020[bm2] - I021[bm2]);
|
---|
1996 | }
|
---|
1997 | }
|
---|
1998 | else if (k2) {
|
---|
1999 | int bm1 = INT_CARTINDEX(b-1,i2,j2);
|
---|
2000 | result = PmB[2] * I010[bm1];
|
---|
2001 | result -= PmC[2] * I011[bm1];
|
---|
2002 | if (k2>1) {
|
---|
2003 | int bm2 = INT_CARTINDEX(b-2,i2,j2);
|
---|
2004 | result += oo2zeta * (k2-1) * (I020[bm2] - I021[bm2]);
|
---|
2005 | }
|
---|
2006 | }
|
---|
2007 |
|
---|
2008 | I000[cartb] = result;
|
---|
2009 | cartb++;
|
---|
2010 | } END_FOR_CART;
|
---|
2011 | }
|
---|
2012 |
|
---|
2013 | double
|
---|
2014 | Int1eV3::comp_prim_nuclear(int i1, int j1, int k1,
|
---|
2015 | int i2, int j2, int k2, int m)
|
---|
2016 | {
|
---|
2017 | double result;
|
---|
2018 |
|
---|
2019 | if (i1) {
|
---|
2020 | result = PmA[0] * comp_prim_nuclear(i1-1,j1,k1,i2,j2,k2,m);
|
---|
2021 | result -= PmC[0] * comp_prim_nuclear(i1-1,j1,k1,i2,j2,k2,m+1);
|
---|
2022 | if (i1>1) result += oo2zeta * (i1-1)
|
---|
2023 | * ( comp_prim_nuclear(i1-2,j1,k1,i2,j2,k2,m)
|
---|
2024 | - comp_prim_nuclear(i1-2,j1,k1,i2,j2,k2,m+1));
|
---|
2025 | if (i2) result += oo2zeta * i2
|
---|
2026 | * ( comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m)
|
---|
2027 | - comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m+1));
|
---|
2028 | }
|
---|
2029 | else if (j1) {
|
---|
2030 | result = PmA[1] * comp_prim_nuclear(i1,j1-1,k1,i2,j2,k2,m);
|
---|
2031 | result -= PmC[1] * comp_prim_nuclear(i1,j1-1,k1,i2,j2,k2,m+1);
|
---|
2032 | if (j1>1) result += oo2zeta * (j1-1)
|
---|
2033 | * ( comp_prim_nuclear(i1,j1-2,k1,i2,j2,k2,m)
|
---|
2034 | - comp_prim_nuclear(i1,j1-2,k1,i2,j2,k2,m+1));
|
---|
2035 | if (j2) result += oo2zeta * j2
|
---|
2036 | * ( comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m)
|
---|
2037 | - comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m+1));
|
---|
2038 | }
|
---|
2039 | else if (k1) {
|
---|
2040 | result = PmA[2] * comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2,m);
|
---|
2041 | result -= PmC[2] * comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2,m+1);
|
---|
2042 | if (k1>1) result += oo2zeta * (k1-1)
|
---|
2043 | * ( comp_prim_nuclear(i1,j1,k1-2,i2,j2,k2,m)
|
---|
2044 | - comp_prim_nuclear(i1,j1,k1-2,i2,j2,k2,m+1));
|
---|
2045 | if (k2) result += oo2zeta * k2
|
---|
2046 | * ( comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m)
|
---|
2047 | - comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m+1));
|
---|
2048 | }
|
---|
2049 | else if (i2) {
|
---|
2050 | result = PmB[0] * comp_prim_nuclear(i1,j1,k1,i2-1,j2,k2,m);
|
---|
2051 | result -= PmC[0] * comp_prim_nuclear(i1,j1,k1,i2-1,j2,k2,m+1);
|
---|
2052 | if (i2>1) result += oo2zeta * (i2-1)
|
---|
2053 | * ( comp_prim_nuclear(i1,j1,k1,i2-2,j2,k2,m)
|
---|
2054 | - comp_prim_nuclear(i1,j1,k1,i2-2,j2,k2,m+1));
|
---|
2055 | if (i1) result += oo2zeta * i1
|
---|
2056 | * ( comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m)
|
---|
2057 | - comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m+1));
|
---|
2058 | }
|
---|
2059 | else if (j2) {
|
---|
2060 | result = PmB[1] * comp_prim_nuclear(i1,j1,k1,i2,j2-1,k2,m);
|
---|
2061 | result -= PmC[1] * comp_prim_nuclear(i1,j1,k1,i2,j2-1,k2,m+1);
|
---|
2062 | if (j2>1) result += oo2zeta * (j2-1)
|
---|
2063 | * ( comp_prim_nuclear(i1,j1,k1,i2,j2-2,k2,m)
|
---|
2064 | - comp_prim_nuclear(i1,j1,k1,i2,j2-2,k2,m+1));
|
---|
2065 | if (j1) result += oo2zeta * j1
|
---|
2066 | * ( comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m)
|
---|
2067 | - comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m+1));
|
---|
2068 | }
|
---|
2069 | else if (k2) {
|
---|
2070 | result = PmB[2] * comp_prim_nuclear(i1,j1,k1,i2,j2,k2-1,m);
|
---|
2071 | result -= PmC[2] * comp_prim_nuclear(i1,j1,k1,i2,j2,k2-1,m+1);
|
---|
2072 | if (k2>1) result += oo2zeta * (k2-1)
|
---|
2073 | * ( comp_prim_nuclear(i1,j1,k1,i2,j2,k2-2,m)
|
---|
2074 | - comp_prim_nuclear(i1,j1,k1,i2,j2,k2-2,m+1));
|
---|
2075 | if (k1) result += oo2zeta * k1
|
---|
2076 | * ( comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m)
|
---|
2077 | - comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m+1));
|
---|
2078 | }
|
---|
2079 | else result = fjttable_[m];
|
---|
2080 |
|
---|
2081 | return result;
|
---|
2082 | }
|
---|
2083 |
|
---|
2084 | /* Compute the electric field integral for the shell. The arguments are the
|
---|
2085 | * the electric field vector, the
|
---|
2086 | * cartesian exponents for centers 1 and 2. The shell1 and shell2
|
---|
2087 | * globals are used. */
|
---|
2088 | void
|
---|
2089 | Int1eV3::comp_shell_efield(double *efield,
|
---|
2090 | int gc1, int i1, int j1, int k1,
|
---|
2091 | int gc2, int i2, int j2, int k2)
|
---|
2092 | {
|
---|
2093 | int i,j,k,xyz;
|
---|
2094 | double result[3];
|
---|
2095 | double Pi;
|
---|
2096 | double oozeta;
|
---|
2097 | double AmB,AmB2;
|
---|
2098 | double PmC2;
|
---|
2099 | double auxcoef;
|
---|
2100 | int am;
|
---|
2101 |
|
---|
2102 | am = i1+j1+k1+i2+j2+k2;
|
---|
2103 |
|
---|
2104 | /* Loop over the primitives in the shells. */
|
---|
2105 | for (xyz=0; xyz<3; xyz++) result[xyz] = 0.0;
|
---|
2106 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
2107 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
2108 |
|
---|
2109 | /* Compute the intermediates. */
|
---|
2110 | zeta = gshell1->exponent(i) + gshell2->exponent(j);
|
---|
2111 | oozeta = 1.0/zeta;
|
---|
2112 | oo2zeta = 0.5*oozeta;
|
---|
2113 | AmB2 = 0.0;
|
---|
2114 | PmC2 = 0.0;
|
---|
2115 | for (xyz=0; xyz<3; xyz++) {
|
---|
2116 | Pi = oozeta*(gshell1->exponent(i) * A[xyz] + gshell2->exponent(j) * B[xyz]);
|
---|
2117 | PmA[xyz] = Pi - A[xyz];
|
---|
2118 | PmB[xyz] = Pi - B[xyz];
|
---|
2119 | PmC[xyz] = Pi - C[xyz];
|
---|
2120 | AmB = A[xyz] - B[xyz];
|
---|
2121 | AmB2 += AmB*AmB;
|
---|
2122 | PmC2 += PmC[xyz]*PmC[xyz];
|
---|
2123 | }
|
---|
2124 |
|
---|
2125 | /* The auxillary integral coeficients. */
|
---|
2126 | auxcoef = 2.0 * M_PI/(gshell1->exponent(i)
|
---|
2127 | +gshell2->exponent(j))
|
---|
2128 | * exp(- oozeta * gshell1->exponent(i)
|
---|
2129 | * gshell2->exponent(j) * AmB2);
|
---|
2130 |
|
---|
2131 | /* The Fm(U) intermediates. */
|
---|
2132 | fjttable_ = fjt_->values(am+1,zeta*PmC2);
|
---|
2133 |
|
---|
2134 | /* Convert the Fm(U) intermediates into the auxillary
|
---|
2135 | * nuclear attraction integrals. */
|
---|
2136 | for (k=0; k<=am+1; k++) {
|
---|
2137 | fjttable_[k] *= auxcoef;
|
---|
2138 | }
|
---|
2139 |
|
---|
2140 | /* Compute the nuclear attraction integral. */
|
---|
2141 | for (xyz=0; xyz<3; xyz++) {
|
---|
2142 | result[xyz] += gshell1->coefficient_unnorm(gc1,i)
|
---|
2143 | * gshell2->coefficient_unnorm(gc2,j)
|
---|
2144 | * comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2,0);
|
---|
2145 | }
|
---|
2146 | }
|
---|
2147 | }
|
---|
2148 |
|
---|
2149 | for (xyz=0; xyz<3; xyz++) efield[xyz] = result[xyz];
|
---|
2150 |
|
---|
2151 | }
|
---|
2152 |
|
---|
2153 | /* Compute the electric field integral for the shell. The arguments are the
|
---|
2154 | * the electric field vector, the
|
---|
2155 | * cartesian exponents for centers 1 and 2. The shell1 and shell2
|
---|
2156 | * globals are used. */
|
---|
2157 | void
|
---|
2158 | Int1eV3::comp_shell_block_efield(int gc1, int a, int gc2, int b,
|
---|
2159 | int gcsize2, int gcoff1, int gcoff2,
|
---|
2160 | double coef, double *buffer)
|
---|
2161 | {
|
---|
2162 | int i,j,k,xyz;
|
---|
2163 | double Pi;
|
---|
2164 | double oozeta;
|
---|
2165 | double AmB,AmB2;
|
---|
2166 | double PmC2;
|
---|
2167 | double auxcoef;
|
---|
2168 | int am = a + b;
|
---|
2169 | int size1 = INT_NCART_NN(a);
|
---|
2170 | int size2 = INT_NCART_NN(b);
|
---|
2171 |
|
---|
2172 | /* Loop over the primitives in the shells. */
|
---|
2173 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
2174 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
2175 |
|
---|
2176 | /* Compute the intermediates. */
|
---|
2177 | zeta = gshell1->exponent(i) + gshell2->exponent(j);
|
---|
2178 | oozeta = 1.0/zeta;
|
---|
2179 | oo2zeta = 0.5*oozeta;
|
---|
2180 | AmB2 = 0.0;
|
---|
2181 | PmC2 = 0.0;
|
---|
2182 | for (xyz=0; xyz<3; xyz++) {
|
---|
2183 | Pi = oozeta*(gshell1->exponent(i) * A[xyz]
|
---|
2184 | + gshell2->exponent(j) * B[xyz]);
|
---|
2185 | PmA[xyz] = Pi - A[xyz];
|
---|
2186 | PmB[xyz] = Pi - B[xyz];
|
---|
2187 | PmC[xyz] = Pi - C[xyz];
|
---|
2188 | AmB = A[xyz] - B[xyz];
|
---|
2189 | AmB2 += AmB*AmB;
|
---|
2190 | PmC2 += PmC[xyz]*PmC[xyz];
|
---|
2191 | }
|
---|
2192 |
|
---|
2193 | /* The auxillary integral coeficients. */
|
---|
2194 | auxcoef = 2.0 * M_PI/(gshell1->exponent(i)
|
---|
2195 | +gshell2->exponent(j))
|
---|
2196 | * exp(- oozeta * gshell1->exponent(i)
|
---|
2197 | * gshell2->exponent(j) * AmB2);
|
---|
2198 |
|
---|
2199 | /* The Fm(U) intermediates. */
|
---|
2200 | fjttable_ = fjt_->values(am+1,zeta*PmC2);
|
---|
2201 |
|
---|
2202 | /* Convert the Fm(U) intermediates into the auxillary
|
---|
2203 | * nuclear attraction integrals. */
|
---|
2204 | for (k=0; k<=am+1; k++) {
|
---|
2205 | fjttable_[k] *= auxcoef;
|
---|
2206 | }
|
---|
2207 |
|
---|
2208 | double tmp = gshell1->coefficient_unnorm(gc1,i)
|
---|
2209 | * gshell2->coefficient_unnorm(gc2,j)
|
---|
2210 | * coef;
|
---|
2211 |
|
---|
2212 | /* Compute the nuclear attraction integral. */
|
---|
2213 | comp_prim_block_efield(a,b);
|
---|
2214 |
|
---|
2215 | double *primbuffer = efield_inter(a,b,0);
|
---|
2216 | for (int ip=0; ip<size1; ip++) {
|
---|
2217 | for (int jp=0; jp<size2; jp++) {
|
---|
2218 | for (xyz=0; xyz<3; xyz++) {
|
---|
2219 | buffer[((ip+gcoff1)*gcsize2+jp+gcoff2)*3+xyz]
|
---|
2220 | += tmp * *primbuffer++;
|
---|
2221 | }
|
---|
2222 | }
|
---|
2223 | }
|
---|
2224 | }
|
---|
2225 | }
|
---|
2226 |
|
---|
2227 | }
|
---|
2228 |
|
---|
2229 | void
|
---|
2230 | Int1eV3::comp_prim_block_efield(int a, int b)
|
---|
2231 | {
|
---|
2232 | int xyz;
|
---|
2233 | int im, ia, ib;
|
---|
2234 | int l = a + b;
|
---|
2235 |
|
---|
2236 | // Fill in the nuclear integrals which are needed as intermediates.
|
---|
2237 | // m=0 is not needed.
|
---|
2238 |
|
---|
2239 | // fill in the ia+ib=0 integrals, skipping m=0
|
---|
2240 | for (im=1; im<=l; im++) {
|
---|
2241 | #if DEBUG_EFIELD_PRIM > 1
|
---|
2242 | ExEnv::outn() << "BUILD NUC: M = " << im
|
---|
2243 | << " A = " << 0
|
---|
2244 | << " B = " << 0
|
---|
2245 | << endl;
|
---|
2246 | #endif
|
---|
2247 | inter(0,0,im)[0] = fjttable_[im];
|
---|
2248 | }
|
---|
2249 |
|
---|
2250 | // skipping m=0
|
---|
2251 | for (im=l-1; im>0; im--) {
|
---|
2252 | int lm = l-im;
|
---|
2253 | // build the integrals for a = 0
|
---|
2254 | for (ib=1; ib<=lm && ib<=b; ib++) {
|
---|
2255 | #if DEBUG_EFIELD_PRIM > 1
|
---|
2256 | ExEnv::outn() << "BUILD NUC: M = " << im
|
---|
2257 | << " A = " << 0
|
---|
2258 | << " B = " << ib
|
---|
2259 | << endl;
|
---|
2260 | #endif
|
---|
2261 | comp_prim_block_nuclear_build_b(ib,im);
|
---|
2262 | }
|
---|
2263 | for (ia=1; ia<=lm && ia<=a; ia++) {
|
---|
2264 | for (ib=0; ib<=lm-ia && ib<=b; ib++) {
|
---|
2265 | #if DEBUG_EFIELD_PRIM > 1
|
---|
2266 | ExEnv::outn() << "BUILD NUC: M = " << im
|
---|
2267 | << " A = " << ia
|
---|
2268 | << " B = " << ib
|
---|
2269 | << endl;
|
---|
2270 | #endif
|
---|
2271 | comp_prim_block_nuclear_build_a(ia,ib,im);
|
---|
2272 | }
|
---|
2273 | }
|
---|
2274 | }
|
---|
2275 |
|
---|
2276 | // now complete the efield integrals
|
---|
2277 |
|
---|
2278 | // fill in the ia+ib=0 integrals
|
---|
2279 | for (im=0; im<=l; im++) {
|
---|
2280 | #if DEBUG_EFIELD_PRIM > 1
|
---|
2281 | ExEnv::outn() << "BUILD EFIELD: M = " << im
|
---|
2282 | << " A = " << 0
|
---|
2283 | << " B = " << 0
|
---|
2284 | << endl;
|
---|
2285 | #endif
|
---|
2286 | double *tmp = efield_inter(0,0,im);
|
---|
2287 | for (xyz=0; xyz<3; xyz++) {
|
---|
2288 | *tmp++ = 2.0 * zeta * PmC[xyz] * fjttable_[im+1];
|
---|
2289 | }
|
---|
2290 | }
|
---|
2291 |
|
---|
2292 | for (im=l-1; im>=0; im--) {
|
---|
2293 | int lm = l-im;
|
---|
2294 | // build the integrals for a = 0
|
---|
2295 | for (ib=1; ib<=lm && ib<=b; ib++) {
|
---|
2296 | #if DEBUG_EFIELD_PRIM > 1
|
---|
2297 | ExEnv::outn() << "BUILD EFIELD: M = " << im
|
---|
2298 | << " A = " << 0
|
---|
2299 | << " B = " << ib
|
---|
2300 | << endl;
|
---|
2301 | #endif
|
---|
2302 | comp_prim_block_efield_build_b(ib,im);
|
---|
2303 | }
|
---|
2304 | for (ia=1; ia<=lm && ia<=a; ia++) {
|
---|
2305 | for (ib=0; ib<=lm-ia && ib<=b; ib++) {
|
---|
2306 | #if DEBUG_EFIELD_PRIM > 1
|
---|
2307 | ExEnv::outn() << "BUILD EFIELD: M = " << im
|
---|
2308 | << " A = " << ia
|
---|
2309 | << " B = " << ib
|
---|
2310 | << endl;
|
---|
2311 | #endif
|
---|
2312 | comp_prim_block_efield_build_a(ia,ib,im);
|
---|
2313 | }
|
---|
2314 | }
|
---|
2315 | }
|
---|
2316 |
|
---|
2317 | #if DEBUG_EFIELD_PRIM
|
---|
2318 | for (im=0; im<=l; im++) {
|
---|
2319 | int lm = l-im;
|
---|
2320 | for (ia=0; ia<=lm && ia<=a; ia++) {
|
---|
2321 | int na = INT_NCART_NN(a);
|
---|
2322 | for (ib=0; ib<=lm-ia && ib<=b; ib++) {
|
---|
2323 | int nb = INT_NCART_NN(b);
|
---|
2324 | #if DEBUG_EFIELD_PRIM > 1
|
---|
2325 | ExEnv::outn() << "M = " << im
|
---|
2326 | << " A = " << ia
|
---|
2327 | << " B = " << ib
|
---|
2328 | << endl;
|
---|
2329 | #endif
|
---|
2330 | double *buf = efield_inter(ia,ib,im);
|
---|
2331 | int i1,j1,k1, i2,j2,k2;
|
---|
2332 | FOR_CART(i1,j1,k1,ia) {
|
---|
2333 | FOR_CART(i2,j2,k2,ib) {
|
---|
2334 | for (xyz=0; xyz<3; xyz++) {
|
---|
2335 | double fast = *buf++;
|
---|
2336 | double slow = comp_prim_efield(xyz, i1, j1, k1,
|
---|
2337 | i2, j2, k2, im);
|
---|
2338 | if (fast > 999.0) fast = 999.0;
|
---|
2339 | if (fast < -999.0) fast = -999.0;
|
---|
2340 | if (fabs(fast-slow)>1.0e-12) {
|
---|
2341 | ExEnv::outn() << scprintf("(%d %d %d) (%d %d %d) (%d): ",
|
---|
2342 | i1,j1,k1, i2,j2,k2, im)
|
---|
2343 | << scprintf(" % 20.15f % 20.15f",
|
---|
2344 | fast, slow)
|
---|
2345 | << endl;
|
---|
2346 | }
|
---|
2347 | }
|
---|
2348 | } END_FOR_CART;
|
---|
2349 | } END_FOR_CART;
|
---|
2350 | }
|
---|
2351 | }
|
---|
2352 | }
|
---|
2353 | #endif
|
---|
2354 | }
|
---|
2355 |
|
---|
2356 | void
|
---|
2357 | Int1eV3::comp_prim_block_efield_build_a(int a, int b, int m)
|
---|
2358 | {
|
---|
2359 | double *I000 = efield_inter(a,b,m);
|
---|
2360 | double *I100 = efield_inter(a-1,b,m);
|
---|
2361 | double *I101 = efield_inter(a-1,b,m+1);
|
---|
2362 | double *I200 = (a>1?efield_inter(a-2,b,m):0);
|
---|
2363 | double *I201 = (a>1?efield_inter(a-2,b,m+1):0);
|
---|
2364 | double *I110 = (b?efield_inter(a-1,b-1,m):0);
|
---|
2365 | double *I111 = (b?efield_inter(a-1,b-1,m+1):0);
|
---|
2366 | double *nucI101 = inter(a-1,b,m+1);
|
---|
2367 | int i1,j1,k1;
|
---|
2368 | int i2,j2,k2;
|
---|
2369 | int xyz;
|
---|
2370 | int carta=0;
|
---|
2371 | int sizeb = INT_NCART_NN(b);
|
---|
2372 | int sizebm1 = INT_NCART_DEC(b,sizeb);
|
---|
2373 | FOR_CART(i1,j1,k1,a) {
|
---|
2374 | int cartb=0;
|
---|
2375 | FOR_CART(i2,j2,k2,b) {
|
---|
2376 | for (xyz=0; xyz<3; xyz++) {
|
---|
2377 | double result = 0.0;
|
---|
2378 | if (i1) {
|
---|
2379 | int am1 = INT_CARTINDEX(a-1,i1-1,j1);
|
---|
2380 | result = PmA[0] * I100[(am1*sizeb+cartb)*3+xyz];
|
---|
2381 | result -= PmC[0] * I101[(am1*sizeb+cartb)*3+xyz];
|
---|
2382 | if (i1>1) {
|
---|
2383 | int am2 = INT_CARTINDEX(a-2,i1-2,j1);
|
---|
2384 | result += oo2zeta * (i1-1)
|
---|
2385 | *(I200[(am2*sizeb+cartb)*3+xyz]
|
---|
2386 | - I201[(am2*sizeb+cartb)*3+xyz]);
|
---|
2387 | }
|
---|
2388 | if (i2) {
|
---|
2389 | int bm1 = INT_CARTINDEX(b-1,i2-1,j2);
|
---|
2390 | result += oo2zeta * i2
|
---|
2391 | *(I110[(am1*sizebm1+bm1)*3+xyz]
|
---|
2392 | - I111[(am1*sizebm1+bm1)*3+xyz]);
|
---|
2393 | }
|
---|
2394 | if (xyz==0) result += nucI101[am1*sizeb+cartb];
|
---|
2395 | }
|
---|
2396 | else if (j1) {
|
---|
2397 | int am1 = INT_CARTINDEX(a-1,i1,j1-1);
|
---|
2398 | result = PmA[1] * I100[(am1*sizeb+cartb)*3+xyz];
|
---|
2399 | result -= PmC[1] * I101[(am1*sizeb+cartb)*3+xyz];
|
---|
2400 | if (j1>1) {
|
---|
2401 | int am2 = INT_CARTINDEX(a-2,i1,j1-2);
|
---|
2402 | result += oo2zeta * (j1-1)
|
---|
2403 | *(I200[(am2*sizeb+cartb)*3+xyz]
|
---|
2404 | - I201[(am2*sizeb+cartb)*3+xyz]);
|
---|
2405 | }
|
---|
2406 | if (j2) {
|
---|
2407 | int bm1 = INT_CARTINDEX(b-1,i2,j2-1);
|
---|
2408 | result += oo2zeta * j2
|
---|
2409 | *(I110[(am1*sizebm1+bm1)*3+xyz]
|
---|
2410 | - I111[(am1*sizebm1+bm1)*3+xyz]);
|
---|
2411 | }
|
---|
2412 | if (xyz==1) result += nucI101[am1*sizeb+cartb];
|
---|
2413 | }
|
---|
2414 | else if (k1) {
|
---|
2415 | int am1 = INT_CARTINDEX(a-1,i1,j1);
|
---|
2416 | result = PmA[2] * I100[(am1*sizeb+cartb)*3+xyz];
|
---|
2417 | result -= PmC[2] * I101[(am1*sizeb+cartb)*3+xyz];
|
---|
2418 | if (k1>1) {
|
---|
2419 | int am2 = INT_CARTINDEX(a-2,i1,j1);
|
---|
2420 | result += oo2zeta * (k1-1)
|
---|
2421 | *(I200[(am2*sizeb+cartb)*3+xyz]
|
---|
2422 | - I201[(am2*sizeb+cartb)*3+xyz]);
|
---|
2423 | }
|
---|
2424 | if (k2) {
|
---|
2425 | int bm1 = INT_CARTINDEX(b-1,i2,j2);
|
---|
2426 | result += oo2zeta * k2
|
---|
2427 | *(I110[(am1*sizebm1+bm1)*3+xyz]
|
---|
2428 | - I111[(am1*sizebm1+bm1)*3+xyz]);
|
---|
2429 | }
|
---|
2430 | if (xyz==2) result += nucI101[am1*sizeb+cartb];
|
---|
2431 | }
|
---|
2432 | I000[(carta*sizeb+cartb)*3+xyz] = result;
|
---|
2433 | }
|
---|
2434 | cartb++;
|
---|
2435 | } END_FOR_CART;
|
---|
2436 | carta++;
|
---|
2437 | } END_FOR_CART;
|
---|
2438 | }
|
---|
2439 |
|
---|
2440 | void
|
---|
2441 | Int1eV3::comp_prim_block_efield_build_b(int b, int m)
|
---|
2442 | {
|
---|
2443 | double *I000 = efield_inter(0,b,m);
|
---|
2444 | double *I010 = efield_inter(0,b-1,m);
|
---|
2445 | double *I011 = efield_inter(0,b-1,m+1);
|
---|
2446 | double *I020 = (b>1?efield_inter(0,b-2,m):0);
|
---|
2447 | double *I021 = (b>1?efield_inter(0,b-2,m+1):0);
|
---|
2448 | double *nucI011 = inter(0,b-1,m+1);
|
---|
2449 | int xyz;
|
---|
2450 | int i2,j2,k2;
|
---|
2451 | int cartb=0;
|
---|
2452 | FOR_CART(i2,j2,k2,b) {
|
---|
2453 | for (xyz=0; xyz<3; xyz++) {
|
---|
2454 | double result = 0.0;
|
---|
2455 |
|
---|
2456 | if (i2) {
|
---|
2457 | int bm1 = INT_CARTINDEX(b-1,i2-1,j2);
|
---|
2458 | result = PmB[0] * I010[(bm1)*3+xyz];
|
---|
2459 | result -= PmC[0] * I011[(bm1)*3+xyz];
|
---|
2460 | if (i2>1) {
|
---|
2461 | int bm2 = INT_CARTINDEX(b-2,i2-2,j2);
|
---|
2462 | result += oo2zeta * (i2-1) * (I020[(bm2)*3+xyz]
|
---|
2463 | - I021[(bm2)*3+xyz]);
|
---|
2464 | }
|
---|
2465 | if (xyz==0) result += nucI011[bm1];
|
---|
2466 | }
|
---|
2467 | else if (j2) {
|
---|
2468 | int bm1 = INT_CARTINDEX(b-1,i2,j2-1);
|
---|
2469 | result = PmB[1] * I010[(bm1)*3+xyz];
|
---|
2470 | result -= PmC[1] * I011[(bm1)*3+xyz];
|
---|
2471 | if (j2>1) {
|
---|
2472 | int bm2 = INT_CARTINDEX(b-2,i2,j2-2);
|
---|
2473 | result += oo2zeta * (j2-1) * (I020[(bm2)*3+xyz]
|
---|
2474 | - I021[(bm2)*3+xyz]);
|
---|
2475 | }
|
---|
2476 | if (xyz==1) result += nucI011[bm1];
|
---|
2477 | }
|
---|
2478 | else if (k2) {
|
---|
2479 | int bm1 = INT_CARTINDEX(b-1,i2,j2);
|
---|
2480 | result = PmB[2] * I010[(bm1)*3+xyz];
|
---|
2481 | result -= PmC[2] * I011[(bm1)*3+xyz];
|
---|
2482 | if (k2>1) {
|
---|
2483 | int bm2 = INT_CARTINDEX(b-2,i2,j2);
|
---|
2484 | result += oo2zeta * (k2-1) * (I020[(bm2)*3+xyz]
|
---|
2485 | - I021[(bm2)*3+xyz]);
|
---|
2486 | }
|
---|
2487 | if (xyz==2) result += nucI011[bm1];
|
---|
2488 | }
|
---|
2489 |
|
---|
2490 | I000[(cartb)*3+xyz] = result;
|
---|
2491 | }
|
---|
2492 | cartb++;
|
---|
2493 | } END_FOR_CART;
|
---|
2494 | }
|
---|
2495 |
|
---|
2496 | double
|
---|
2497 | Int1eV3::comp_prim_efield(int xyz, int i1, int j1, int k1,
|
---|
2498 | int i2, int j2, int k2, int m)
|
---|
2499 | {
|
---|
2500 | double result;
|
---|
2501 |
|
---|
2502 | /* if ((xyz != 0) || (i1 != 1)) return 0.0; */
|
---|
2503 |
|
---|
2504 | if (i1) {
|
---|
2505 | result = PmA[0] * comp_prim_efield(xyz,i1-1,j1,k1,i2,j2,k2,m);
|
---|
2506 | result -= PmC[0] * comp_prim_efield(xyz,i1-1,j1,k1,i2,j2,k2,m+1);
|
---|
2507 | if (i1>1) result += oo2zeta * (i1-1)
|
---|
2508 | * ( comp_prim_efield(xyz,i1-2,j1,k1,i2,j2,k2,m)
|
---|
2509 | - comp_prim_efield(xyz,i1-2,j1,k1,i2,j2,k2,m+1));
|
---|
2510 | if (i2) result += oo2zeta * i2
|
---|
2511 | * ( comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m)
|
---|
2512 | - comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m+1));
|
---|
2513 | if (xyz==0) result += comp_prim_nuclear(i1-1,j1,k1,i2,j2,k2,m+1);
|
---|
2514 | }
|
---|
2515 | else if (j1) {
|
---|
2516 | result = PmA[1] * comp_prim_efield(xyz,i1,j1-1,k1,i2,j2,k2,m);
|
---|
2517 | result -= PmC[1] * comp_prim_efield(xyz,i1,j1-1,k1,i2,j2,k2,m+1);
|
---|
2518 | if (j1>1) result += oo2zeta * (j1-1)
|
---|
2519 | * ( comp_prim_efield(xyz,i1,j1-2,k1,i2,j2,k2,m)
|
---|
2520 | - comp_prim_efield(xyz,i1,j1-2,k1,i2,j2,k2,m+1));
|
---|
2521 | if (j2) result += oo2zeta * j2
|
---|
2522 | * ( comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m)
|
---|
2523 | - comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m+1));
|
---|
2524 | if (xyz==1) result += comp_prim_nuclear(i1,j1-1,k1,i2,j2,k2,m+1);
|
---|
2525 | }
|
---|
2526 | else if (k1) {
|
---|
2527 | result = PmA[2] * comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2,m);
|
---|
2528 | result -= PmC[2] * comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2,m+1);
|
---|
2529 | if (k1>1) result += oo2zeta * (k1-1)
|
---|
2530 | * ( comp_prim_efield(xyz,i1,j1,k1-2,i2,j2,k2,m)
|
---|
2531 | - comp_prim_efield(xyz,i1,j1,k1-2,i2,j2,k2,m+1));
|
---|
2532 | if (k2) result += oo2zeta * k2
|
---|
2533 | * ( comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m)
|
---|
2534 | - comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m+1));
|
---|
2535 | if (xyz==2) result += comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2,m+1);
|
---|
2536 | }
|
---|
2537 | else if (i2) {
|
---|
2538 | result = PmB[0] * comp_prim_efield(xyz,i1,j1,k1,i2-1,j2,k2,m);
|
---|
2539 | result -= PmC[0] * comp_prim_efield(xyz,i1,j1,k1,i2-1,j2,k2,m+1);
|
---|
2540 | if (i2>1) result += oo2zeta * (i2-1)
|
---|
2541 | * ( comp_prim_efield(xyz,i1,j1,k1,i2-2,j2,k2,m)
|
---|
2542 | - comp_prim_efield(xyz,i1,j1,k1,i2-2,j2,k2,m+1));
|
---|
2543 | if (i1) result += oo2zeta * i1
|
---|
2544 | * ( comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m)
|
---|
2545 | - comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m+1));
|
---|
2546 | if (xyz==0) result += comp_prim_nuclear(i1,j1,k1,i2-1,j2,k2,m+1);
|
---|
2547 | }
|
---|
2548 | else if (j2) {
|
---|
2549 | result = PmB[1] * comp_prim_efield(xyz,i1,j1,k1,i2,j2-1,k2,m);
|
---|
2550 | result -= PmC[1] * comp_prim_efield(xyz,i1,j1,k1,i2,j2-1,k2,m+1);
|
---|
2551 | if (j2>1) result += oo2zeta * (j2-1)
|
---|
2552 | * ( comp_prim_efield(xyz,i1,j1,k1,i2,j2-2,k2,m)
|
---|
2553 | - comp_prim_efield(xyz,i1,j1,k1,i2,j2-2,k2,m+1));
|
---|
2554 | if (j1) result += oo2zeta * j1
|
---|
2555 | * ( comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m)
|
---|
2556 | - comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m+1));
|
---|
2557 | if (xyz==1) result += comp_prim_nuclear(i1,j1,k1,i2,j2-1,k2,m+1);
|
---|
2558 | }
|
---|
2559 | else if (k2) {
|
---|
2560 | result = PmB[2] * comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-1,m);
|
---|
2561 | result -= PmC[2] * comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-1,m+1);
|
---|
2562 | if (k2>1) result += oo2zeta * (k2-1)
|
---|
2563 | * ( comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-2,m)
|
---|
2564 | - comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-2,m+1));
|
---|
2565 | if (k1) result += oo2zeta * k1
|
---|
2566 | * ( comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m)
|
---|
2567 | - comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m+1));
|
---|
2568 | if (xyz==2) result += comp_prim_nuclear(i1,j1,k1,i2,j2,k2-1,m+1);
|
---|
2569 | }
|
---|
2570 | else {
|
---|
2571 | /* We arrive here if we have a (s| |s) type efield integral.
|
---|
2572 | * The fjttable contains the standard (s| |s) nuc attr integrals.
|
---|
2573 | */
|
---|
2574 | result = 2.0 * zeta * PmC[xyz] * fjttable_[m+1];
|
---|
2575 | }
|
---|
2576 |
|
---|
2577 | return result;
|
---|
2578 | }
|
---|
2579 |
|
---|
2580 |
|
---|
2581 | /* --------------------------------------------------------------- */
|
---|
2582 | /* ------------- Routines for dipole moment integrals ------------ */
|
---|
2583 | /* --------------------------------------------------------------- */
|
---|
2584 |
|
---|
2585 | /* This computes the dipole integrals between functions in two shells.
|
---|
2586 | * The result is accumulated in the buffer in the form bf1 x y z, bf2
|
---|
2587 | * x y z, etc. The last arg, com, is the origin of the coordinate
|
---|
2588 | * system used to compute the dipole moment.
|
---|
2589 | */
|
---|
2590 | void
|
---|
2591 | Int1eV3::int_accum_shell_dipole(int ish, int jsh,
|
---|
2592 | double *com)
|
---|
2593 | {
|
---|
2594 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
2595 | int gc1,gc2;
|
---|
2596 | int index,index1,index2;
|
---|
2597 | double dipole[3];
|
---|
2598 | int xyz;
|
---|
2599 |
|
---|
2600 | for (xyz=0; xyz<3; xyz++) C[xyz] = com[xyz];
|
---|
2601 |
|
---|
2602 | c1 = bs1_->shell_to_center(ish);
|
---|
2603 | c2 = bs2_->shell_to_center(jsh);
|
---|
2604 | for (xyz=0; xyz<3; xyz++) {
|
---|
2605 | A[xyz] = bs1_->r(c1,xyz);
|
---|
2606 | B[xyz] = bs2_->r(c2,xyz);
|
---|
2607 | }
|
---|
2608 | gshell1 = &bs1_->shell(ish);
|
---|
2609 | gshell2 = &bs2_->shell(jsh);
|
---|
2610 | index = 0;
|
---|
2611 | FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
|
---|
2612 | FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
|
---|
2613 | comp_shell_dipole(dipole,gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
2614 | for(mu=0; mu < 3; mu++) {
|
---|
2615 | cartesianbuffer[index] = dipole[mu];
|
---|
2616 | index++;
|
---|
2617 | }
|
---|
2618 | END_FOR_GCCART_GS(index2)
|
---|
2619 | END_FOR_GCCART_GS(index1)
|
---|
2620 | accum_transform_1e_xyz(integral_,
|
---|
2621 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
2622 | }
|
---|
2623 |
|
---|
2624 | /* This computes the dipole integrals between functions in two shells.
|
---|
2625 | * The result is placed in the buffer in the form bf1 x y z, bf2
|
---|
2626 | * x y z, etc. The last arg, com, is the origin of the coordinate
|
---|
2627 | * system used to compute the dipole moment.
|
---|
2628 | */
|
---|
2629 | void
|
---|
2630 | Int1eV3::dipole(int ish, int jsh, double *com)
|
---|
2631 | {
|
---|
2632 | int c1,i1,j1,k1,c2,i2,j2,k2;
|
---|
2633 | int gc1,gc2;
|
---|
2634 | int index,index1,index2;
|
---|
2635 | double dipole[3];
|
---|
2636 | int xyz;
|
---|
2637 |
|
---|
2638 | for (xyz=0; xyz<3; xyz++) C[xyz] = com[xyz];
|
---|
2639 |
|
---|
2640 | c1 = bs1_->shell_to_center(ish);
|
---|
2641 | c2 = bs2_->shell_to_center(jsh);
|
---|
2642 | for (xyz=0; xyz<3; xyz++) {
|
---|
2643 | A[xyz] = bs1_->r(c1,xyz);
|
---|
2644 | B[xyz] = bs2_->r(c2,xyz);
|
---|
2645 | }
|
---|
2646 | gshell1 = &bs1_->shell(ish);
|
---|
2647 | gshell2 = &bs2_->shell(jsh);
|
---|
2648 | index = 0;
|
---|
2649 | FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
|
---|
2650 | FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
|
---|
2651 | comp_shell_dipole(dipole,gc1,i1,j1,k1,gc2,i2,j2,k2);
|
---|
2652 | for(mu=0; mu < 3; mu++) {
|
---|
2653 | cartesianbuffer[index] = dipole[mu];
|
---|
2654 | index++;
|
---|
2655 | }
|
---|
2656 | END_FOR_GCCART_GS(index2)
|
---|
2657 | END_FOR_GCCART_GS(index1)
|
---|
2658 | transform_1e_xyz(integral_,
|
---|
2659 | cartesianbuffer, buff, gshell1, gshell2);
|
---|
2660 | }
|
---|
2661 |
|
---|
2662 | void
|
---|
2663 | Int1eV3::comp_shell_dipole(double* dipole,
|
---|
2664 | int gc1, int i1, int j1, int k1,
|
---|
2665 | int gc2, int i2, int j2, int k2)
|
---|
2666 | {
|
---|
2667 | double exp1,exp2;
|
---|
2668 | int i,j,xyz;
|
---|
2669 | double Pi;
|
---|
2670 | double oozeta;
|
---|
2671 | double AmB,AmB2;
|
---|
2672 | double tmp;
|
---|
2673 |
|
---|
2674 | dipole[0] = dipole[1] = dipole[2] = 0.0;
|
---|
2675 |
|
---|
2676 | if ((i1<0)||(j1<0)||(k1<0)||(i2<0)||(j2<0)||(k2<0)) return;
|
---|
2677 |
|
---|
2678 | /* Loop over the primitives in the shells. */
|
---|
2679 | for (i=0; i<gshell1->nprimitive(); i++) {
|
---|
2680 | for (j=0; j<gshell2->nprimitive(); j++) {
|
---|
2681 |
|
---|
2682 | /* Compute the intermediates. */
|
---|
2683 | exp1 = gshell1->exponent(i);
|
---|
2684 | exp2 = gshell2->exponent(j);
|
---|
2685 | oozeta = 1.0/(exp1 + exp2);
|
---|
2686 | oo2zeta = 0.5*oozeta;
|
---|
2687 | AmB2 = 0.0;
|
---|
2688 | for (xyz=0; xyz<3; xyz++) {
|
---|
2689 | Pi = oozeta*(exp1 * A[xyz] + exp2 * B[xyz]);
|
---|
2690 | PmA[xyz] = Pi - A[xyz];
|
---|
2691 | PmB[xyz] = Pi - B[xyz];
|
---|
2692 | PmC[xyz] = Pi - C[xyz];
|
---|
2693 | AmB = A[xyz] - B[xyz];
|
---|
2694 | AmB2 += AmB*AmB;
|
---|
2695 | }
|
---|
2696 | ss = pow(M_PI/(exp1+exp2),1.5)
|
---|
2697 | * exp(- oozeta * exp1 * exp2 * AmB2);
|
---|
2698 | for (mu=0; mu<3; mu++) sMus[mu] = ss * PmC[mu];
|
---|
2699 | tmp = gshell1->coefficient_unnorm(gc1,i)
|
---|
2700 | * gshell2->coefficient_unnorm(gc2,j);
|
---|
2701 | if (exponent_weighted == 0) tmp *= exp1;
|
---|
2702 | else if (exponent_weighted == 1) tmp *= exp2;
|
---|
2703 | dipole[0] += tmp * comp_prim_dipole(0,i1,j1,k1,i2,j2,k2);
|
---|
2704 | dipole[1] += tmp * comp_prim_dipole(1,i1,j1,k1,i2,j2,k2);
|
---|
2705 | dipole[2] += tmp * comp_prim_dipole(2,i1,j1,k1,i2,j2,k2);
|
---|
2706 | }
|
---|
2707 | }
|
---|
2708 |
|
---|
2709 | }
|
---|
2710 |
|
---|
2711 | double
|
---|
2712 | Int1eV3::comp_prim_dipole(int axis,
|
---|
2713 | int i1, int j1, int k1,
|
---|
2714 | int i2, int j2, int k2)
|
---|
2715 | {
|
---|
2716 | double result;
|
---|
2717 |
|
---|
2718 | if (i1) {
|
---|
2719 | result = PmA[0] * comp_prim_dipole(axis,i1-1,j1,k1,i2,j2,k2);
|
---|
2720 | if (i2)
|
---|
2721 | result += oo2zeta*i2*comp_prim_dipole(axis,i1-1,j1,k1,i2-1,j2,k2);
|
---|
2722 | if (i1>1)
|
---|
2723 | result += oo2zeta*(i1-1)*comp_prim_dipole(axis,i1-2,j1,k1,i2,j2,k2);
|
---|
2724 | if(axis==0) result += oo2zeta*comp_prim_overlap(i1-1,j1,k1,i2,j2,k2);
|
---|
2725 | return result;
|
---|
2726 | }
|
---|
2727 | if (j1) {
|
---|
2728 | result = PmA[1] * comp_prim_dipole(axis,i1,j1-1,k1,i2,j2,k2);
|
---|
2729 | if (j2)
|
---|
2730 | result += oo2zeta*j2*comp_prim_dipole(axis,i1,j1-1,k1,i2,j2-1,k2);
|
---|
2731 | if (j1>1)
|
---|
2732 | result += oo2zeta*(j1-1)*comp_prim_dipole(axis,i1,j1-2,k1,i2,j2,k2);
|
---|
2733 | if(axis==1) result += oo2zeta*comp_prim_overlap(i1,j1-1,k1,i2,j2,k2);
|
---|
2734 | return result;
|
---|
2735 | }
|
---|
2736 | if (k1) {
|
---|
2737 | result = PmA[2] * comp_prim_dipole(axis,i1,j1,k1-1,i2,j2,k2);
|
---|
2738 | if (k2)
|
---|
2739 | result += oo2zeta*k2*comp_prim_dipole(axis,i1,j1,k1-1,i2,j2,k2-1);
|
---|
2740 | if (k1>1)
|
---|
2741 | result += oo2zeta*(k1-1)*comp_prim_dipole(axis,i1,j1,k1-2,i2,j2,k2);
|
---|
2742 | if(axis==2) result += oo2zeta*comp_prim_overlap(i1,j1,k1-1,i2,j2,k2);
|
---|
2743 | return result;
|
---|
2744 | }
|
---|
2745 | if (i2) {
|
---|
2746 | result = PmB[0] * comp_prim_dipole(axis,i1,j1,k1,i2-1,j2,k2);
|
---|
2747 | if (i1)
|
---|
2748 | result += oo2zeta*i1*comp_prim_dipole(axis,i1-1,j1,k1,i2-1,j2,k2);
|
---|
2749 | if (i2>1)
|
---|
2750 | result += oo2zeta*(i2-1)*comp_prim_dipole(axis,i1,j1,k1,i2-2,j2,k2);
|
---|
2751 | if(axis==0) result += oo2zeta*comp_prim_overlap(i1,j1,k1,i2-1,j2,k2);
|
---|
2752 | return result;
|
---|
2753 | }
|
---|
2754 | if (j2) {
|
---|
2755 | result = PmB[1] * comp_prim_dipole(axis,i1,j1,k1,i2,j2-1,k2);
|
---|
2756 | if (j1)
|
---|
2757 | result += oo2zeta*i1*comp_prim_dipole(axis,i1,j1-1,k1,i2,j2-1,k2);
|
---|
2758 | if (j2>1)
|
---|
2759 | result += oo2zeta*(j2-1)*comp_prim_dipole(axis,i1,j1,k1,i2,j2-2,k2);
|
---|
2760 | if(axis==1) result += oo2zeta*comp_prim_overlap(i1,j1,k1,i2,j2-1,k2);
|
---|
2761 | return result;
|
---|
2762 | }
|
---|
2763 | if (k2) {
|
---|
2764 | result = PmB[2] * comp_prim_dipole(axis,i1,j1,k1,i2,j2,k2-1);
|
---|
2765 | if (k1)
|
---|
2766 | result += oo2zeta*i1*comp_prim_dipole(axis,i1,j1,k1-1,i2,j2,k2-1);
|
---|
2767 | if (k2>1)
|
---|
2768 | result += oo2zeta*(k2-1)*comp_prim_dipole(axis,i1,j1,k1,i2,j2,k2-2);
|
---|
2769 | if(axis==2) result += oo2zeta*comp_prim_overlap(i1,j1,k1,i2,j2,k2-1);
|
---|
2770 | return result;
|
---|
2771 | }
|
---|
2772 |
|
---|
2773 | return sMus[axis];
|
---|
2774 | }
|
---|
2775 |
|
---|
2776 | /////////////////////////////////////////////////////////////////////////////
|
---|
2777 |
|
---|
2778 | // Local Variables:
|
---|
2779 | // mode: c++
|
---|
2780 | // c-file-style: "CLJ-CONDENSED"
|
---|
2781 | // End:
|
---|