| 1 | //
 | 
|---|
| 2 | // macros.h
 | 
|---|
| 3 | //
 | 
|---|
| 4 | // Copyright (C) 2001 Edward Valeev
 | 
|---|
| 5 | //
 | 
|---|
| 6 | // Author: Edward Valeev <edward.valeev@chemistry.gatech.edu>
 | 
|---|
| 7 | // Maintainer: EV
 | 
|---|
| 8 | //
 | 
|---|
| 9 | // This file is part of the SC Toolkit.
 | 
|---|
| 10 | //
 | 
|---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
 | 
|---|
| 12 | // it under the terms of the GNU Library General Public License as published by
 | 
|---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
 | 
|---|
| 14 | // any later version.
 | 
|---|
| 15 | //
 | 
|---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
 | 
|---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 19 | // GNU Library General Public License for more details.
 | 
|---|
| 20 | //
 | 
|---|
| 21 | // You should have received a copy of the GNU Library General Public License
 | 
|---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
 | 
|---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
|---|
| 24 | //
 | 
|---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
 | 
|---|
| 26 | //
 | 
|---|
| 27 | 
 | 
|---|
| 28 | /* True if the integral is nonzero. */
 | 
|---|
| 29 | #define INT_NONZERO(x) (((x)< -1.0e-15)||((x)> 1.0e-15))
 | 
|---|
| 30 | 
 | 
|---|
| 31 | /* Computes an index to a Cartesian function within a shell given
 | 
|---|
| 32 |  * am = total angular momentum
 | 
|---|
| 33 |  * i = the exponent of x (i is used twice in the macro--beware side effects)
 | 
|---|
| 34 |  * j = the exponent of y
 | 
|---|
| 35 |  * formula: (am - i + 1)*(am - i)/2 + am - i - j unless i==am, then 0
 | 
|---|
| 36 |  * The following loop will generate indices in the proper order:
 | 
|---|
| 37 |  *  cartindex = 0;
 | 
|---|
| 38 |  *  for (i=am; i>=0; i--) {
 | 
|---|
| 39 |  *    for (j=am-i; j>=0; j--) {
 | 
|---|
| 40 |  *      do_it_with(cartindex);
 | 
|---|
| 41 |  *      cartindex++;
 | 
|---|
| 42 |  *      }
 | 
|---|
| 43 |  *    }
 | 
|---|
| 44 |  */
 | 
|---|
| 45 | #define INT_CARTINDEX(am,i,j) (((i) == (am))? 0 : (((((am) - (i) + 1)*((am) - (i)))>>1) + (am) - (i) - (j)))
 | 
|---|
| 46 | 
 | 
|---|
| 47 | /* This sets up the above loop over cartesian exponents as follows
 | 
|---|
| 48 |  * FOR_CART(i,j,k,am)
 | 
|---|
| 49 |  *   Stuff using i,j,k.
 | 
|---|
| 50 |  *   END_FOR_CART
 | 
|---|
| 51 |  */
 | 
|---|
| 52 | #define FOR_CART(i,j,k,am) for((i)=(am);(i)>=0;(i)--) {\
 | 
|---|
| 53 |                            for((j)=(am)-(i);(j)>=0;(j)--) \
 | 
|---|
| 54 |                            { (k) = (am) - (i) - (j);
 | 
|---|
| 55 | #define END_FOR_CART }}
 | 
|---|
| 56 | 
 | 
|---|
| 57 | /* This sets up a loop over all of the generalized contractions
 | 
|---|
| 58 |  * and all of the cartesian exponents.
 | 
|---|
| 59 |  * gc is the number of the gen con
 | 
|---|
| 60 |  * index is the index within the current gen con.
 | 
|---|
| 61 |  * i,j,k are the angular momentum for x,y,z
 | 
|---|
| 62 |  * sh is the shell pointer
 | 
|---|
| 63 |  */
 | 
|---|
| 64 | #define FOR_GCCART(gc,index,i,j,k,sh)\
 | 
|---|
| 65 |     for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
 | 
|---|
| 66 |     (index)=0;\
 | 
|---|
| 67 |     FOR_CART(i,j,k,(sh)->type[gc].am)
 | 
|---|
| 68 | 
 | 
|---|
| 69 | #define FOR_GCCART_GS(gc,index,i,j,k,sh)\
 | 
|---|
| 70 |     for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\
 | 
|---|
| 71 |     (index)=0;\
 | 
|---|
| 72 |     FOR_CART(i,j,k,(sh)->am(gc))
 | 
|---|
| 73 | 
 | 
|---|
| 74 | #define END_FOR_GCCART(index)\
 | 
|---|
| 75 |     (index)++;\
 | 
|---|
| 76 |     END_FOR_CART\
 | 
|---|
| 77 |     }
 | 
|---|
| 78 | 
 | 
|---|
| 79 | #define END_FOR_GCCART_GS(index)\
 | 
|---|
| 80 |     (index)++;\
 | 
|---|
| 81 |     END_FOR_CART\
 | 
|---|
| 82 |     }
 | 
|---|
| 83 | 
 | 
|---|
| 84 | /* These are like the above except no index is kept track of. */
 | 
|---|
| 85 | #define FOR_GCCART2(gc,i,j,k,sh)\
 | 
|---|
| 86 |     for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
 | 
|---|
| 87 |     FOR_CART(i,j,k,(sh)->type[gc].am)
 | 
|---|
| 88 | 
 | 
|---|
| 89 | #define END_FOR_GCCART2\
 | 
|---|
| 90 |     END_FOR_CART\
 | 
|---|
| 91 |     }
 | 
|---|
| 92 | 
 | 
|---|
| 93 | /* These are used to loop over shells, given the centers structure
 | 
|---|
| 94 |  * and the center index, and shell index. */
 | 
|---|
| 95 | #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\
 | 
|---|
| 96 |                           for((j)=0;(j)<(c)->center[(i)].basis.n;j++) {
 | 
|---|
| 97 | #define END_FOR_SHELLS }}
 | 
|---|
| 98 | 
 | 
|---|
| 99 | /* Computes the number of Cartesian function in a shell given
 | 
|---|
| 100 |  * am = total angular momentum
 | 
|---|
| 101 |  * formula: (am*(am+1))/2 + am+1;
 | 
|---|
| 102 |  */
 | 
|---|
| 103 | #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0)
 | 
|---|
| 104 | 
 | 
|---|
| 105 | /* Like INT_NCART, but only for nonnegative arguments. */
 | 
|---|
| 106 | #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1)
 | 
|---|
| 107 | 
 | 
|---|
| 108 | /* For a given ang. mom., am, with n cartesian functions, compute the
 | 
|---|
| 109 |  * number of cartesian functions for am+1 or am-1
 | 
|---|
| 110 |  */
 | 
|---|
| 111 | #define INT_NCART_DEC(am,n) ((n)-(am)-1)
 | 
|---|
| 112 | #define INT_NCART_INC(am,n) ((n)+(am)+2)
 | 
|---|
| 113 | 
 | 
|---|
| 114 | /* Computes the number of pure angular momentum functions in a shell
 | 
|---|
| 115 |  * given am = total angular momentum
 | 
|---|
| 116 |  */
 | 
|---|
| 117 | #define INT_NPURE(am) (2*(am)+1)
 | 
|---|
| 118 | 
 | 
|---|
| 119 | /* Computes the number of functions in a shell given
 | 
|---|
| 120 |  * pu = pure angular momentum boolean
 | 
|---|
| 121 |  * am = total angular momentum
 | 
|---|
| 122 |  */
 | 
|---|
| 123 | #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))
 | 
|---|
| 124 | 
 | 
|---|
| 125 | /* Given a centers pointer and a shell number, this evaluates the
 | 
|---|
| 126 |  * pointer to that shell. */
 | 
|---|
| 127 | #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]])
 | 
|---|
| 128 | 
 | 
|---|
| 129 | /* Given a centers pointer and a shell number, get the angular momentum
 | 
|---|
| 130 |  * of that shell. */
 | 
|---|
| 131 | #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am)
 | 
|---|
| 132 | 
 | 
|---|
| 133 | /* Given a centers pointer and a shell number, get pure angular momentum
 | 
|---|
| 134 |  * boolean for that shell. */
 | 
|---|
| 135 | #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream)
 | 
|---|
| 136 | 
 | 
|---|
| 137 | /* Given a centers pointer, a center number, and a shell number,
 | 
|---|
| 138 |  * get the angular momentum of that shell. */
 | 
|---|
| 139 | #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am)
 | 
|---|
| 140 | 
 | 
|---|
| 141 | /* Given a centers pointer, a center number, and a shell number,
 | 
|---|
| 142 |  * get pure angular momentum boolean for that shell. */
 | 
|---|
| 143 | #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream)
 | 
|---|
| 144 | 
 | 
|---|
| 145 | /* Given a centers pointer and a shell number, compute the number
 | 
|---|
| 146 |  * of functions in that shell. */
 | 
|---|
| 147 | /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */
 | 
|---|
| 148 | #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc)
 | 
|---|
| 149 | 
 | 
|---|
| 150 | /* These macros assist in looping over the unique integrals
 | 
|---|
| 151 |  * in a shell quartet.  The exy variables are booleans giving
 | 
|---|
| 152 |  * information about the equivalence between shells x and y.  The nx
 | 
|---|
| 153 |  * variables give the number of functions in each shell, x. The
 | 
|---|
| 154 |  * i,j,k are the current values of the looping indices for shells 1, 2, and 3.
 | 
|---|
| 155 |  * The macros return the maximum index to be included in a summation
 | 
|---|
| 156 |  * over indices 1, 2, 3, and 4.
 | 
|---|
| 157 |  * These macros require canonical integrals.  This requirement comes
 | 
|---|
| 158 |  * from the need that integrals of the shells (1 2|2 1) are not
 | 
|---|
| 159 |  * used.  The integrals (1 2|1 2) must be used with these macros to
 | 
|---|
| 160 |  * get the right nonredundant integrals.
 | 
|---|
| 161 |  */
 | 
|---|
| 162 | #define INT_MAX1(n1) ((n1)-1)
 | 
|---|
| 163 | #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1))
 | 
|---|
| 164 | #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1))
 | 
|---|
| 165 | #define INT_MAX4(e13e24,e34,i,j,k,n4) \
 | 
|---|
| 166 |   ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \
 | 
|---|
| 167 |         :((e13e24)&&((k)==(i)))?(j):(n4)-1)
 | 
|---|
| 168 | /* A note on integral symmetries:
 | 
|---|
| 169 |  *  There are 15 ways of having equivalent indices.
 | 
|---|
| 170 |  *  There are 8 of these which are important for determining the
 | 
|---|
| 171 |  *  nonredundant integrals (that is there are only 8 ways of counting
 | 
|---|
| 172 |  *  the number of nonredundant integrals in a shell quartet)
 | 
|---|
| 173 |  * Integral type   Integral    Counting Type
 | 
|---|
| 174 |  *     1           (1 2|3 4)      1
 | 
|---|
| 175 |  *     2           (1 1|3 4)      2
 | 
|---|
| 176 |  *     3           (1 2|1 4)       ->1
 | 
|---|
| 177 |  *     4           (1 2|3 1)       ->1
 | 
|---|
| 178 |  *     5           (1 1|1 4)      3
 | 
|---|
| 179 |  *     6           (1 1|3 1)       ->2
 | 
|---|
| 180 |  *     7           (1 2|1 1)       ->5
 | 
|---|
| 181 |  *     8           (1 1|1 1)      4
 | 
|---|
| 182 |  *     9           (1 2|2 4)       ->1
 | 
|---|
| 183 |  *    10           (1 2|3 2)       ->1
 | 
|---|
| 184 |  *    11           (1 2|3 3)      5
 | 
|---|
| 185 |  *    12           (1 1|3 3)      6
 | 
|---|
| 186 |  *    13           (1 2|1 2)      7
 | 
|---|
| 187 |  *    14           (1 2|2 1)      8    reduces to 7 thru canonicalization
 | 
|---|
| 188 |  *    15           (1 2|2 2)       ->5
 | 
|---|
| 189 |  */
 | 
|---|