1 | //
|
---|
2 | // integrator.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1997 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <util/misc/math.h>
|
---|
33 |
|
---|
34 | #include <util/misc/timer.h>
|
---|
35 | #include <util/misc/formio.h>
|
---|
36 | #include <util/state/stateio.h>
|
---|
37 | #include <util/container/carray.h>
|
---|
38 | #include <chemistry/qc/dft/integrator.h>
|
---|
39 |
|
---|
40 | using namespace std;
|
---|
41 | using namespace sc;
|
---|
42 |
|
---|
43 | namespace sc {
|
---|
44 |
|
---|
45 | #ifdef EXPLICIT_TEMPLATE_INSTANTIATION
|
---|
46 | template void delete_c_array2<Ref<RadialIntegrator> >(Ref<RadialIntegrator>**);
|
---|
47 | template Ref<RadialIntegrator>**
|
---|
48 | new_c_array2<Ref<RadialIntegrator> >(int,int,Ref<RadialIntegrator>);
|
---|
49 | template void delete_c_array3<Ref<RadialIntegrator> >(Ref<RadialIntegrator>***);
|
---|
50 | template Ref<RadialIntegrator>***
|
---|
51 | new_c_array3<Ref<RadialIntegrator> >(int,int,int,Ref<RadialIntegrator>);
|
---|
52 |
|
---|
53 | template void delete_c_array2<Ref<AngularIntegrator> >(Ref<AngularIntegrator>**);
|
---|
54 | template Ref<AngularIntegrator>**
|
---|
55 | new_c_array2<Ref<AngularIntegrator> >(int,int,Ref<AngularIntegrator>);
|
---|
56 | template void delete_c_array3<Ref<AngularIntegrator> >(Ref<AngularIntegrator>***);
|
---|
57 | template Ref<AngularIntegrator>***
|
---|
58 | new_c_array3<Ref<AngularIntegrator> >(int,int,int,Ref<AngularIntegrator>);
|
---|
59 | #endif
|
---|
60 |
|
---|
61 | //#define CHECK_ALIGN(v) if(int(&v)&7)ExEnv::outn()<<"Bad Alignment: "<< ## v <<endl;
|
---|
62 | #define CHECK_ALIGN(v)
|
---|
63 |
|
---|
64 | ///////////////////////////////////////////////////////////////////////////
|
---|
65 | // utility functions
|
---|
66 |
|
---|
67 | inline static double
|
---|
68 | norm(double v[3])
|
---|
69 | {
|
---|
70 | double x,y,z;
|
---|
71 | return sqrt((x=v[0])*x + (y=v[1])*y + (z=v[2])*z);
|
---|
72 | }
|
---|
73 |
|
---|
74 | static double
|
---|
75 | get_radius(const Ref<Molecule> &mol, int iatom)
|
---|
76 | {
|
---|
77 | double r = mol->atominfo()->maxprob_radius(mol->Z(iatom));
|
---|
78 | if (r == 0) {
|
---|
79 | static bool warned = false;
|
---|
80 | if (!warned) {
|
---|
81 | ExEnv::out0()
|
---|
82 | << indent << "WARNING: BeckeIntegrationWeight usually uses the atomic maximum" << std::endl
|
---|
83 | << indent << " probability radius, however this is not available for" << std::endl
|
---|
84 | << indent << " one of the atoms in your system. The Bragg radius will" << std::endl
|
---|
85 | << indent << " be used instead." << std::endl;
|
---|
86 | warned = true;
|
---|
87 | }
|
---|
88 | r = mol->atominfo()->bragg_radius(mol->Z(iatom));
|
---|
89 | }
|
---|
90 | if (r == 0) {
|
---|
91 | ExEnv::out0()
|
---|
92 | << indent << "ERROR: BeckeIntegrationWeight could not find a maximum probability" << std::endl
|
---|
93 | << indent << " or a Bragg radius for an atom" << std::endl;
|
---|
94 | abort();
|
---|
95 | }
|
---|
96 | return r;
|
---|
97 | }
|
---|
98 |
|
---|
99 | ///////////////////////////////////////////////////////////////////////////
|
---|
100 | // DenIntegratorThread
|
---|
101 |
|
---|
102 | //ThreadLock *tlock;
|
---|
103 |
|
---|
104 | class DenIntegratorThread: public Thread {
|
---|
105 | protected:
|
---|
106 | // data common to all threads
|
---|
107 | int nthread_;
|
---|
108 | int nshell_;
|
---|
109 | int nbasis_;
|
---|
110 | int natom_;
|
---|
111 | int n_integration_center_;
|
---|
112 | DenIntegrator *integrator_;
|
---|
113 | int spin_polarized_;
|
---|
114 | int need_hessian_;
|
---|
115 | int need_gradient_;
|
---|
116 | GaussianBasisSet *basis_;
|
---|
117 | bool linear_scaling_;
|
---|
118 | bool use_dmat_bound_;
|
---|
119 | double value_;
|
---|
120 | DenFunctional *func_;
|
---|
121 |
|
---|
122 | double accuracy_;
|
---|
123 | int compute_potential_integrals_;
|
---|
124 |
|
---|
125 | // data local to thread
|
---|
126 | int ithread_;
|
---|
127 | Ref<BatchElectronDensity> den_;
|
---|
128 | double *alpha_vmat_; // lower triangle of xi_i(r) v(r) xi_j(r) integrals
|
---|
129 | double *beta_vmat_; // lower triangle of xi_i(r) v(r) xi_j(r) integrals
|
---|
130 | double *nuclear_gradient_;
|
---|
131 | double *w_gradient_;
|
---|
132 | double *f_gradient_;
|
---|
133 |
|
---|
134 | public:
|
---|
135 | DenIntegratorThread(int ithread, int nthread,
|
---|
136 | DenIntegrator *integrator,
|
---|
137 | DenFunctional *func,
|
---|
138 | const Ref<BatchElectronDensity> &den,
|
---|
139 | int linear_scaling,
|
---|
140 | int use_dmat_bound,
|
---|
141 | double accuracy,
|
---|
142 | int compute_potential_integrals,
|
---|
143 | int need_nuclear_gradient);
|
---|
144 | virtual ~DenIntegratorThread();
|
---|
145 | double do_point(int iatom, const SCVector3 &r,
|
---|
146 | double weight, double multiplier,
|
---|
147 | double *nuclear_gradient,
|
---|
148 | double *f_gradient, double *w_gradient);
|
---|
149 | double *nuclear_gradient() { return nuclear_gradient_; }
|
---|
150 | double *alpha_vmat() { return alpha_vmat_; }
|
---|
151 | double *beta_vmat() { return beta_vmat_; }
|
---|
152 | double value() { return value_; }
|
---|
153 | };
|
---|
154 |
|
---|
155 | DenIntegratorThread::DenIntegratorThread(int ithread, int nthread,
|
---|
156 | DenIntegrator *integrator,
|
---|
157 | DenFunctional *func,
|
---|
158 | const Ref<BatchElectronDensity> &den,
|
---|
159 | int linear_scaling,
|
---|
160 | int use_dmat_bound,
|
---|
161 | double accuracy,
|
---|
162 | int compute_potential_integrals,
|
---|
163 | int need_nuclear_gradient)
|
---|
164 | {
|
---|
165 | value_ = 0.0;
|
---|
166 |
|
---|
167 | den_ = den;
|
---|
168 | ithread_ = ithread;
|
---|
169 | nthread_ = nthread;
|
---|
170 | integrator_ = integrator;
|
---|
171 | spin_polarized_ = integrator->wavefunction()->spin_polarized();
|
---|
172 | nshell_ = integrator->wavefunction()->basis()->nshell();
|
---|
173 | nbasis_ = integrator->wavefunction()->basis()->nbasis();
|
---|
174 | natom_ = integrator->wavefunction()->molecule()->natom();
|
---|
175 | n_integration_center_
|
---|
176 | = integrator->wavefunction()->molecule()->n_non_q_atom();
|
---|
177 | need_gradient_ = func->need_density_gradient();
|
---|
178 | need_hessian_ = func->need_density_hessian();
|
---|
179 | basis_ = integrator->wavefunction()->basis().pointer();
|
---|
180 | linear_scaling_ = linear_scaling;
|
---|
181 | use_dmat_bound_ = use_dmat_bound;
|
---|
182 | func_ = func;
|
---|
183 | accuracy_ = accuracy;
|
---|
184 | compute_potential_integrals_ = compute_potential_integrals;
|
---|
185 | den_->set_accuracy(accuracy);
|
---|
186 |
|
---|
187 | if (need_nuclear_gradient) {
|
---|
188 | nuclear_gradient_ = new double[3*natom_];
|
---|
189 | memset(nuclear_gradient_, 0, 3*natom_*sizeof(double));
|
---|
190 | }
|
---|
191 | else nuclear_gradient_ = 0;
|
---|
192 |
|
---|
193 | alpha_vmat_ = 0;
|
---|
194 | beta_vmat_ = 0;
|
---|
195 | if (compute_potential_integrals_) {
|
---|
196 | int ntri = (nbasis_*(nbasis_+1))/2;
|
---|
197 | alpha_vmat_ = new double[ntri];
|
---|
198 | memset(alpha_vmat_, 0, sizeof(double)*ntri);
|
---|
199 | if (spin_polarized_) {
|
---|
200 | beta_vmat_ = new double[ntri];
|
---|
201 | memset(beta_vmat_, 0, sizeof(double)*ntri);
|
---|
202 | }
|
---|
203 | }
|
---|
204 |
|
---|
205 | w_gradient_ = 0;
|
---|
206 | f_gradient_ = 0;
|
---|
207 | if (nuclear_gradient_) {
|
---|
208 | w_gradient_ = new double[n_integration_center_*3];
|
---|
209 | f_gradient_ = new double[natom_*3];
|
---|
210 | }
|
---|
211 | }
|
---|
212 |
|
---|
213 | DenIntegratorThread::~DenIntegratorThread()
|
---|
214 | {
|
---|
215 | delete[] alpha_vmat_;
|
---|
216 | delete[] beta_vmat_;
|
---|
217 | delete[] nuclear_gradient_;
|
---|
218 | delete[] f_gradient_;
|
---|
219 | delete[] w_gradient_;
|
---|
220 | }
|
---|
221 |
|
---|
222 | ///////////////////////////////////////////////////////////////////////////
|
---|
223 | // DenIntegrator
|
---|
224 |
|
---|
225 | static ClassDesc DenIntegrator_cd(
|
---|
226 | typeid(DenIntegrator),"DenIntegrator",1,"public SavableState",
|
---|
227 | 0, 0, 0);
|
---|
228 |
|
---|
229 | DenIntegrator::DenIntegrator(StateIn& s):
|
---|
230 | SavableState(s)
|
---|
231 | {
|
---|
232 | init_object();
|
---|
233 | s.get(linear_scaling_);
|
---|
234 | s.get(use_dmat_bound_);
|
---|
235 | }
|
---|
236 |
|
---|
237 | DenIntegrator::DenIntegrator()
|
---|
238 | {
|
---|
239 | init_object();
|
---|
240 | }
|
---|
241 |
|
---|
242 | DenIntegrator::DenIntegrator(const Ref<KeyVal>& keyval)
|
---|
243 | {
|
---|
244 | init_object();
|
---|
245 |
|
---|
246 | linear_scaling_ = keyval->booleanvalue("linear_scaling",
|
---|
247 | KeyValValueboolean(linear_scaling_));
|
---|
248 | use_dmat_bound_ = keyval->booleanvalue("use_dmat_bound",
|
---|
249 | KeyValValueboolean(use_dmat_bound_));
|
---|
250 | }
|
---|
251 |
|
---|
252 | DenIntegrator::~DenIntegrator()
|
---|
253 | {
|
---|
254 | }
|
---|
255 |
|
---|
256 | void
|
---|
257 | DenIntegrator::save_data_state(StateOut& s)
|
---|
258 | {
|
---|
259 | s.put(linear_scaling_);
|
---|
260 | s.put(use_dmat_bound_);
|
---|
261 | }
|
---|
262 |
|
---|
263 | void
|
---|
264 | DenIntegrator::init_object()
|
---|
265 | {
|
---|
266 | threadgrp_ = ThreadGrp::get_default_threadgrp();
|
---|
267 | messagegrp_ = MessageGrp::get_default_messagegrp();
|
---|
268 | compute_potential_integrals_ = 0;
|
---|
269 | accuracy_ = DBL_EPSILON;
|
---|
270 | linear_scaling_ = 1;
|
---|
271 | use_dmat_bound_ = 1;
|
---|
272 | alpha_vmat_ = 0;
|
---|
273 | beta_vmat_ = 0;
|
---|
274 | }
|
---|
275 |
|
---|
276 | void
|
---|
277 | DenIntegrator::set_compute_potential_integrals(int i)
|
---|
278 | {
|
---|
279 | compute_potential_integrals_=i;
|
---|
280 | }
|
---|
281 |
|
---|
282 | void
|
---|
283 | DenIntegrator::init(const Ref<Wavefunction> &wfn)
|
---|
284 | {
|
---|
285 | wfn_ = wfn;
|
---|
286 | den_ = new BatchElectronDensity(wfn,accuracy_);
|
---|
287 | den_->set_linear_scaling(linear_scaling_);
|
---|
288 | den_->set_use_dmat_bound(use_dmat_bound_);
|
---|
289 | den_->init(false);
|
---|
290 | }
|
---|
291 |
|
---|
292 | void
|
---|
293 | DenIntegrator::set_accuracy(double a)
|
---|
294 | {
|
---|
295 | accuracy_ = a;
|
---|
296 | if (den_.nonnull()) den_->set_accuracy(a);
|
---|
297 | }
|
---|
298 |
|
---|
299 | void
|
---|
300 | DenIntegrator::done()
|
---|
301 | {
|
---|
302 | wfn_ = 0;
|
---|
303 | den_ = 0;
|
---|
304 | }
|
---|
305 |
|
---|
306 | void
|
---|
307 | DenIntegrator::init_integration(const Ref<DenFunctional> &func,
|
---|
308 | const RefSymmSCMatrix& densa,
|
---|
309 | const RefSymmSCMatrix& densb,
|
---|
310 | double *nuclear_gradient)
|
---|
311 | {
|
---|
312 | int i;
|
---|
313 | value_ = 0.0;
|
---|
314 |
|
---|
315 | func->set_compute_potential(
|
---|
316 | compute_potential_integrals_ || nuclear_gradient != 0);
|
---|
317 |
|
---|
318 | spin_polarized_ = wfn_->spin_polarized();
|
---|
319 | func->set_spin_polarized(spin_polarized_);
|
---|
320 |
|
---|
321 | natom_ = wfn_->molecule()->natom();
|
---|
322 | n_integration_center_
|
---|
323 | = wfn_->molecule()->n_non_q_atom();
|
---|
324 |
|
---|
325 | nshell_ = wfn_->basis()->nshell();
|
---|
326 | nbasis_ = wfn_->basis()->nbasis();
|
---|
327 |
|
---|
328 | den_->set_densities(densa,densb);
|
---|
329 |
|
---|
330 | delete[] alpha_vmat_;
|
---|
331 | delete[] beta_vmat_;
|
---|
332 | alpha_vmat_ = 0;
|
---|
333 | beta_vmat_ = 0;
|
---|
334 | if (compute_potential_integrals_) {
|
---|
335 | int ntri = (nbasis_*(nbasis_+1))/2;
|
---|
336 | alpha_vmat_ = new double[ntri];
|
---|
337 | memset(alpha_vmat_, 0, sizeof(double)*ntri);
|
---|
338 | if (spin_polarized_) {
|
---|
339 | beta_vmat_ = new double[ntri];
|
---|
340 | memset(beta_vmat_, 0, sizeof(double)*ntri);
|
---|
341 | }
|
---|
342 | }
|
---|
343 | }
|
---|
344 |
|
---|
345 | void
|
---|
346 | DenIntegrator::done_integration()
|
---|
347 | {
|
---|
348 | messagegrp_->sum(value_);
|
---|
349 | if (compute_potential_integrals_) {
|
---|
350 | int ntri = (nbasis_*(nbasis_+1))/2;
|
---|
351 | messagegrp_->sum(alpha_vmat_,ntri);
|
---|
352 | if (spin_polarized_) {
|
---|
353 | messagegrp_->sum(beta_vmat_,ntri);
|
---|
354 | }
|
---|
355 | }
|
---|
356 | }
|
---|
357 |
|
---|
358 | double
|
---|
359 | DenIntegratorThread::do_point(int iatom, const SCVector3 &r,
|
---|
360 | double weight, double multiplier,
|
---|
361 | double *nuclear_gradient,
|
---|
362 | double *f_gradient, double *w_gradient)
|
---|
363 | {
|
---|
364 | int i,j;
|
---|
365 | double w_mult = weight * multiplier;
|
---|
366 |
|
---|
367 | CHECK_ALIGN(w_mult);
|
---|
368 |
|
---|
369 | PointInputData id(r);
|
---|
370 |
|
---|
371 | den_->compute_density(r,
|
---|
372 | &id.a.rho,
|
---|
373 | (need_gradient_?id.a.del_rho:0),
|
---|
374 | (need_hessian_?id.a.hes_rho:0),
|
---|
375 | &id.b.rho,
|
---|
376 | (need_gradient_?id.b.del_rho:0),
|
---|
377 | (need_hessian_?id.b.hes_rho:0));
|
---|
378 |
|
---|
379 | id.compute_derived(spin_polarized_, need_gradient_, need_hessian_);
|
---|
380 |
|
---|
381 | int ncontrib = den_->ncontrib();
|
---|
382 | int *contrib = den_->contrib();
|
---|
383 | int ncontrib_bf = den_->ncontrib_bf();
|
---|
384 | int *contrib_bf = den_->contrib_bf();
|
---|
385 | double *bs_values = den_->bs_values();
|
---|
386 | double *bsg_values = den_->bsg_values();
|
---|
387 | double *bsh_values = den_->bsh_values();
|
---|
388 |
|
---|
389 | PointOutputData od;
|
---|
390 | if ( (id.a.rho + id.b.rho) > 1e2*DBL_EPSILON) {
|
---|
391 | if (nuclear_gradient == 0) {
|
---|
392 | func_->point(id, od);
|
---|
393 | }
|
---|
394 | else {
|
---|
395 | func_->gradient(id, od, f_gradient, iatom, basis_,
|
---|
396 | den_->alpha_density_matrix(),
|
---|
397 | den_->beta_density_matrix(),
|
---|
398 | ncontrib, contrib,
|
---|
399 | ncontrib_bf, contrib_bf,
|
---|
400 | bs_values, bsg_values,
|
---|
401 | bsh_values);
|
---|
402 | }
|
---|
403 | }
|
---|
404 | else {
|
---|
405 | return id.a.rho + id.b.rho;
|
---|
406 | }
|
---|
407 |
|
---|
408 | value_ += od.energy * w_mult;
|
---|
409 |
|
---|
410 | if (compute_potential_integrals_) {
|
---|
411 | // the contribution to the potential integrals
|
---|
412 | if (need_gradient_) {
|
---|
413 | double gradsa[3], gradsb[3];
|
---|
414 | gradsa[0] = w_mult*(2.0*od.df_dgamma_aa*id.a.del_rho[0] +
|
---|
415 | od.df_dgamma_ab*id.b.del_rho[0]);
|
---|
416 | gradsa[1] = w_mult*(2.0*od.df_dgamma_aa*id.a.del_rho[1] +
|
---|
417 | od.df_dgamma_ab*id.b.del_rho[1]);
|
---|
418 | gradsa[2] = w_mult*(2.0*od.df_dgamma_aa*id.a.del_rho[2] +
|
---|
419 | od.df_dgamma_ab*id.b.del_rho[2]);
|
---|
420 | double drhoa = w_mult*od.df_drho_a, drhob=0.0;
|
---|
421 | if (spin_polarized_) {
|
---|
422 | drhob = w_mult*od.df_drho_b;
|
---|
423 | gradsb[0] = w_mult*(2.0*od.df_dgamma_bb*id.b.del_rho[0] +
|
---|
424 | od.df_dgamma_ab*id.a.del_rho[0]);
|
---|
425 | gradsb[1] = w_mult*(2.0*od.df_dgamma_bb*id.b.del_rho[1] +
|
---|
426 | od.df_dgamma_ab*id.a.del_rho[1]);
|
---|
427 | gradsb[2] = w_mult*(2.0*od.df_dgamma_bb*id.b.del_rho[2] +
|
---|
428 | od.df_dgamma_ab*id.a.del_rho[2]);
|
---|
429 | }
|
---|
430 |
|
---|
431 | for (int j=0; j<ncontrib_bf; j++) {
|
---|
432 | int jt = contrib_bf[j];
|
---|
433 | double dfdra_phi_m = drhoa*bs_values[j];
|
---|
434 | double dfdga_phi_m = gradsa[0]*bsg_values[j*3+0] +
|
---|
435 | gradsa[1]*bsg_values[j*3+1] +
|
---|
436 | gradsa[2]*bsg_values[j*3+2];
|
---|
437 | double vamu = dfdra_phi_m + dfdga_phi_m, vbmu=0.0;
|
---|
438 | double dfdrb_phi_m, dfdgb_phi_m;
|
---|
439 | if (spin_polarized_) {
|
---|
440 | dfdrb_phi_m = drhob*bs_values[j];
|
---|
441 | dfdgb_phi_m = gradsb[0]*bsg_values[j*3+0] +
|
---|
442 | gradsb[1]*bsg_values[j*3+1] +
|
---|
443 | gradsb[2]*bsg_values[j*3+2];
|
---|
444 | vbmu = dfdrb_phi_m + dfdgb_phi_m;
|
---|
445 | }
|
---|
446 |
|
---|
447 | int jtoff = (jt*(jt+1))>>1;
|
---|
448 |
|
---|
449 | for (int k=0; k <= j; k++) {
|
---|
450 | int kt = contrib_bf[k];
|
---|
451 | int jtkt = jtoff + kt;
|
---|
452 |
|
---|
453 | double dfdga_phi_n = gradsa[0]*bsg_values[k*3+0] +
|
---|
454 | gradsa[1]*bsg_values[k*3+1] +
|
---|
455 | gradsa[2]*bsg_values[k*3+2];
|
---|
456 | alpha_vmat_[jtkt] += vamu * bs_values[k] +
|
---|
457 | dfdga_phi_n * bs_values[j];
|
---|
458 | if (spin_polarized_) {
|
---|
459 | double dfdgb_phi_n = gradsb[0]*bsg_values[k*3+0] +
|
---|
460 | gradsb[1]*bsg_values[k*3+1] +
|
---|
461 | gradsb[2]*bsg_values[k*3+2];
|
---|
462 | beta_vmat_[jtkt] += vbmu * bs_values[k] +
|
---|
463 | dfdgb_phi_n * bs_values[j];
|
---|
464 | }
|
---|
465 | }
|
---|
466 | }
|
---|
467 | }
|
---|
468 | else {
|
---|
469 | double drhoa = w_mult*od.df_drho_a;
|
---|
470 | double drhob = w_mult*od.df_drho_b;
|
---|
471 | for (int j=0; j<ncontrib_bf; j++) {
|
---|
472 | int jt = contrib_bf[j];
|
---|
473 | double bsj = bs_values[j];
|
---|
474 | double dfa_phi_m = drhoa * bsj;
|
---|
475 | double dfb_phi_m = drhob * bsj;
|
---|
476 | int jtoff = (jt*(jt+1))>>1;
|
---|
477 | for (int k=0; k <= j; k++) {
|
---|
478 | int kt = contrib_bf[k];
|
---|
479 | int jtkt = jtoff + kt;
|
---|
480 | double bsk = bs_values[k];
|
---|
481 | alpha_vmat_[jtkt] += dfa_phi_m * bsk;
|
---|
482 | if (spin_polarized_)
|
---|
483 | beta_vmat_[jtkt] += dfb_phi_m * bsk;
|
---|
484 | }
|
---|
485 | }
|
---|
486 | }
|
---|
487 | }
|
---|
488 |
|
---|
489 | if (nuclear_gradient != 0) {
|
---|
490 | // the contribution from f dw/dx
|
---|
491 | if (w_gradient) {
|
---|
492 | for (int icenter = 0; icenter<n_integration_center_; icenter++) {
|
---|
493 | int iatom = basis_->molecule()->non_q_atom(icenter);
|
---|
494 | for (int ixyz=0; ixyz<3; ixyz++) {
|
---|
495 | nuclear_gradient[iatom*3+ixyz]
|
---|
496 | += w_gradient[icenter*3+ixyz] * od.energy * multiplier;
|
---|
497 | }
|
---|
498 | }
|
---|
499 | }
|
---|
500 | // the contribution from (df/dx) w
|
---|
501 | for (i=0; i<natom_*3; i++) {
|
---|
502 | nuclear_gradient[i] += f_gradient[i] * w_mult;
|
---|
503 | }
|
---|
504 | }
|
---|
505 |
|
---|
506 | return id.a.rho + id.b.rho;
|
---|
507 | }
|
---|
508 |
|
---|
509 | ///////////////////////////////////////////////////////////////////////////
|
---|
510 | // IntegrationWeight
|
---|
511 |
|
---|
512 | static ClassDesc IntegrationWeight_cd(
|
---|
513 | typeid(IntegrationWeight),"IntegrationWeight",1,"public SavableState",
|
---|
514 | 0, 0, 0);
|
---|
515 |
|
---|
516 | IntegrationWeight::IntegrationWeight(StateIn& s):
|
---|
517 | SavableState(s)
|
---|
518 | {
|
---|
519 | }
|
---|
520 |
|
---|
521 | IntegrationWeight::IntegrationWeight()
|
---|
522 | {
|
---|
523 | }
|
---|
524 |
|
---|
525 | IntegrationWeight::IntegrationWeight(const Ref<KeyVal>& keyval)
|
---|
526 | {
|
---|
527 | }
|
---|
528 |
|
---|
529 | IntegrationWeight::~IntegrationWeight()
|
---|
530 | {
|
---|
531 | }
|
---|
532 |
|
---|
533 | void
|
---|
534 | IntegrationWeight::save_data_state(StateOut& s)
|
---|
535 | {
|
---|
536 | }
|
---|
537 |
|
---|
538 | void
|
---|
539 | IntegrationWeight::init(const Ref<Molecule> &mol, double tolerance)
|
---|
540 | {
|
---|
541 | mol_ = mol;
|
---|
542 | tol_ = tolerance;
|
---|
543 | }
|
---|
544 |
|
---|
545 | void
|
---|
546 | IntegrationWeight::done()
|
---|
547 | {
|
---|
548 | }
|
---|
549 |
|
---|
550 | void
|
---|
551 | IntegrationWeight::fd_w(int icenter, SCVector3 &point,
|
---|
552 | double *fd_grad_w)
|
---|
553 | {
|
---|
554 | if (!fd_grad_w) return;
|
---|
555 | double delta = 0.001;
|
---|
556 | int natom = mol_->natom();
|
---|
557 | Ref<Molecule> molsav = mol_;
|
---|
558 | Ref<Molecule> dmol = new Molecule(*mol_.pointer());
|
---|
559 | for (int i=0; i<natom; i++) {
|
---|
560 | for (int j=0; j<3; j++) {
|
---|
561 | dmol->r(i,j) += delta;
|
---|
562 | if (icenter == i) point[j] += delta;
|
---|
563 | init(dmol,tol_);
|
---|
564 | double w_plus = w(icenter, point);
|
---|
565 | dmol->r(i,j) -= 2*delta;
|
---|
566 | if (icenter == i) point[j] -= 2*delta;
|
---|
567 | init(dmol,tol_);
|
---|
568 | double w_minus = w(icenter, point);
|
---|
569 | dmol->r(i,j) += delta;
|
---|
570 | if (icenter == i) point[j] += delta;
|
---|
571 | fd_grad_w[i*3+j] = (w_plus-w_minus)/(2.0*delta);
|
---|
572 | // ExEnv::outn() << scprintf("%d,%d %12.10f %12.10f %12.10f",
|
---|
573 | // i,j,w_plus,w_minus,fd_grad_w[i*3+j])
|
---|
574 | // << endl;
|
---|
575 | }
|
---|
576 | }
|
---|
577 | init(molsav, tol_);
|
---|
578 | }
|
---|
579 |
|
---|
580 | void
|
---|
581 | IntegrationWeight::test(int icenter, SCVector3 &point)
|
---|
582 | {
|
---|
583 | int natom = mol_->natom();
|
---|
584 | int natom3 = natom*3;
|
---|
585 |
|
---|
586 | // tests over sums of weights
|
---|
587 | int i;
|
---|
588 | double sum_weight = 0.0;
|
---|
589 | for (i=0; i<natom; i++) {
|
---|
590 | double weight = w(i,point);
|
---|
591 | sum_weight += weight;
|
---|
592 | }
|
---|
593 | if (fabs(1.0 - sum_weight) > DBL_EPSILON) {
|
---|
594 | ExEnv::out0() << "IntegrationWeight::test: failed on weight" << endl;
|
---|
595 | ExEnv::out0() << "sum_w = " << sum_weight << endl;
|
---|
596 | }
|
---|
597 |
|
---|
598 | // finite displacement tests of weight gradients
|
---|
599 | double *fd_grad_w = new double[natom3];
|
---|
600 | double *an_grad_w = new double[natom3];
|
---|
601 | w(icenter, point, an_grad_w);
|
---|
602 | fd_w(icenter, point, fd_grad_w);
|
---|
603 | for (i=0; i<natom3; i++) {
|
---|
604 | double mag = fabs(fd_grad_w[i]);
|
---|
605 | double err = fabs(fd_grad_w[i]-an_grad_w[i]);
|
---|
606 | int bad = 0;
|
---|
607 | if (mag > 0.00001 && err/mag > 0.01) bad = 1;
|
---|
608 | else if (err > 0.00001) bad = 1;
|
---|
609 | if (bad) {
|
---|
610 | ExEnv::out0() << "iatom = " << i/3
|
---|
611 | << " ixyx = " << i%3
|
---|
612 | << " icenter = " << icenter << " point = " << point << endl;
|
---|
613 | ExEnv::out0() << scprintf("dw/dx bad: fd_val=%16.13f an_val=%16.13f err=%16.13f",
|
---|
614 | fd_grad_w[i], an_grad_w[i],
|
---|
615 | fd_grad_w[i]-an_grad_w[i])
|
---|
616 | << endl;
|
---|
617 | }
|
---|
618 | }
|
---|
619 | delete[] fd_grad_w;
|
---|
620 | delete[] an_grad_w;
|
---|
621 | }
|
---|
622 |
|
---|
623 | void
|
---|
624 | IntegrationWeight::test()
|
---|
625 | {
|
---|
626 | SCVector3 point;
|
---|
627 | for (int icenter=0; icenter<mol_->natom(); icenter++) {
|
---|
628 | for (point[0]=-1; point[0]<=1; point[0]++) {
|
---|
629 | for (point[1]=-1; point[1]<=1; point[1]++) {
|
---|
630 | for (point[2]=-1; point[2]<=1; point[2]++) {
|
---|
631 | test(icenter, point);
|
---|
632 | }
|
---|
633 | }
|
---|
634 | }
|
---|
635 | }
|
---|
636 | }
|
---|
637 |
|
---|
638 | ///////////////////////////////////////////////////////////////////////////
|
---|
639 | // BeckeIntegrationWeight
|
---|
640 |
|
---|
641 | // utility functions
|
---|
642 |
|
---|
643 | inline static double
|
---|
644 | calc_s(double m)
|
---|
645 | {
|
---|
646 | double m1 = 1.5*m - 0.5*m*m*m;
|
---|
647 | double m2 = 1.5*m1 - 0.5*m1*m1*m1;
|
---|
648 | double m3 = 1.5*m2 - 0.5*m2*m2*m2;
|
---|
649 | return 0.5*(1.0-m3);
|
---|
650 | }
|
---|
651 |
|
---|
652 | inline static double
|
---|
653 | calc_f3_prime(double m)
|
---|
654 | {
|
---|
655 | double m1 = 1.5*m - 0.5*m*m*m;
|
---|
656 | double m2 = 1.5*m1 - 0.5*m1*m1*m1;
|
---|
657 | double m3 = 1.5 *(1.0 - m2*m2);
|
---|
658 | double n2 = 1.5 *(1.0 - m1*m1);
|
---|
659 | double o1 = 1.5 *(1.0 - m*m);
|
---|
660 | return m3*n2*o1;
|
---|
661 | }
|
---|
662 |
|
---|
663 | static ClassDesc BeckeIntegrationWeight_cd(
|
---|
664 | typeid(BeckeIntegrationWeight),"BeckeIntegrationWeight",1,"public IntegrationWeight",
|
---|
665 | 0, create<BeckeIntegrationWeight>, create<BeckeIntegrationWeight>);
|
---|
666 |
|
---|
667 | BeckeIntegrationWeight::BeckeIntegrationWeight(StateIn& s):
|
---|
668 | SavableState(s),
|
---|
669 | IntegrationWeight(s)
|
---|
670 | {
|
---|
671 | n_integration_centers = 0;
|
---|
672 | atomic_radius = 0;
|
---|
673 | a_mat = 0;
|
---|
674 | oorab = 0;
|
---|
675 | centers = 0;
|
---|
676 | }
|
---|
677 |
|
---|
678 | BeckeIntegrationWeight::BeckeIntegrationWeight()
|
---|
679 | {
|
---|
680 | n_integration_centers = 0;
|
---|
681 | centers = 0;
|
---|
682 | atomic_radius = 0;
|
---|
683 | a_mat = 0;
|
---|
684 | oorab = 0;
|
---|
685 | }
|
---|
686 |
|
---|
687 | BeckeIntegrationWeight::BeckeIntegrationWeight(const Ref<KeyVal>& keyval):
|
---|
688 | IntegrationWeight(keyval)
|
---|
689 | {
|
---|
690 | n_integration_centers = 0;
|
---|
691 | centers = 0;
|
---|
692 | atomic_radius = 0;
|
---|
693 | a_mat = 0;
|
---|
694 | oorab = 0;
|
---|
695 | }
|
---|
696 |
|
---|
697 | BeckeIntegrationWeight::~BeckeIntegrationWeight()
|
---|
698 | {
|
---|
699 | done();
|
---|
700 | }
|
---|
701 |
|
---|
702 | void
|
---|
703 | BeckeIntegrationWeight::save_data_state(StateOut& s)
|
---|
704 | {
|
---|
705 | IntegrationWeight::save_data_state(s);
|
---|
706 | }
|
---|
707 |
|
---|
708 | void
|
---|
709 | BeckeIntegrationWeight::init(const Ref<Molecule> &mol, double tolerance)
|
---|
710 | {
|
---|
711 | done();
|
---|
712 | IntegrationWeight::init(mol, tolerance);
|
---|
713 |
|
---|
714 | // We only want to include to include "atoms" that correspond to nuclei,
|
---|
715 | // not charges.
|
---|
716 | n_integration_centers = mol->n_non_q_atom();
|
---|
717 |
|
---|
718 | double *atomic_radius = new double[n_integration_centers];
|
---|
719 | centers = new SCVector3[n_integration_centers];
|
---|
720 |
|
---|
721 | for (int icenter=0; icenter<n_integration_centers; icenter++) {
|
---|
722 | int iatom = mol->non_q_atom(icenter);
|
---|
723 |
|
---|
724 | atomic_radius[icenter] = get_radius(mol, iatom);
|
---|
725 |
|
---|
726 | centers[icenter].x() = mol->r(iatom,0);
|
---|
727 | centers[icenter].y() = mol->r(iatom,1);
|
---|
728 | centers[icenter].z() = mol->r(iatom,2);
|
---|
729 | }
|
---|
730 |
|
---|
731 | a_mat = new double*[n_integration_centers];
|
---|
732 | a_mat[0] = new double[n_integration_centers*n_integration_centers];
|
---|
733 | oorab = new double*[n_integration_centers];
|
---|
734 | oorab[0] = new double[n_integration_centers*n_integration_centers];
|
---|
735 |
|
---|
736 | for (int icenter=0; icenter<n_integration_centers; icenter++) {
|
---|
737 | if (icenter) {
|
---|
738 | a_mat[icenter] = &a_mat[icenter-1][n_integration_centers];
|
---|
739 | oorab[icenter] = &oorab[icenter-1][n_integration_centers];
|
---|
740 | }
|
---|
741 |
|
---|
742 | double atomic_radius_a = atomic_radius[icenter];
|
---|
743 | for (int jcenter=0; jcenter < n_integration_centers; jcenter++) {
|
---|
744 | double chi=atomic_radius_a/atomic_radius[jcenter];
|
---|
745 | double uab=(chi-1.)/(chi+1.);
|
---|
746 | a_mat[icenter][jcenter] = uab/(uab*uab-1.);
|
---|
747 | if (icenter!=jcenter) {
|
---|
748 | oorab[icenter][jcenter]
|
---|
749 | = 1./centers[icenter].dist(centers[jcenter]);
|
---|
750 | }
|
---|
751 | else {
|
---|
752 | oorab[icenter][jcenter] = 0.0;
|
---|
753 | }
|
---|
754 | }
|
---|
755 | }
|
---|
756 |
|
---|
757 | }
|
---|
758 |
|
---|
759 | void
|
---|
760 | BeckeIntegrationWeight::done()
|
---|
761 | {
|
---|
762 | delete[] atomic_radius;
|
---|
763 | atomic_radius = 0;
|
---|
764 |
|
---|
765 | delete[] centers;
|
---|
766 | centers = 0;
|
---|
767 |
|
---|
768 | if (a_mat) {
|
---|
769 | delete[] a_mat[0];
|
---|
770 | delete[] a_mat;
|
---|
771 | a_mat = 0;
|
---|
772 | }
|
---|
773 |
|
---|
774 | if (oorab) {
|
---|
775 | delete[] oorab[0];
|
---|
776 | delete[] oorab;
|
---|
777 | oorab = 0;
|
---|
778 | }
|
---|
779 |
|
---|
780 | n_integration_centers = 0;
|
---|
781 | }
|
---|
782 |
|
---|
783 | double
|
---|
784 | BeckeIntegrationWeight::compute_p(int icenter, SCVector3&point)
|
---|
785 | {
|
---|
786 | double ra = point.dist(centers[icenter]);
|
---|
787 | double *ooraba = oorab[icenter];
|
---|
788 | double *aa = a_mat[icenter];
|
---|
789 |
|
---|
790 | double p = 1.0;
|
---|
791 | for (int jcenter=0; jcenter < n_integration_centers; jcenter++) {
|
---|
792 | if (icenter != jcenter) {
|
---|
793 | double mu = (ra-point.dist(centers[jcenter]))*ooraba[jcenter];
|
---|
794 |
|
---|
795 | if (mu <= -1.)
|
---|
796 | continue; // s(-1) == 1.0
|
---|
797 | else if (mu >= 1.) {
|
---|
798 | return 0.0; // s(1) == 0.0
|
---|
799 | }
|
---|
800 | else
|
---|
801 | p *= calc_s(mu + aa[jcenter]*(1.-mu*mu));
|
---|
802 | }
|
---|
803 | }
|
---|
804 |
|
---|
805 | return p;
|
---|
806 | }
|
---|
807 |
|
---|
808 | // compute derivative of mu(grad_center,bcenter) wrt grad_center;
|
---|
809 | // NB: the derivative is independent of the (implicit) wcenter
|
---|
810 | // provided that wcenter!=grad_center
|
---|
811 | void
|
---|
812 | BeckeIntegrationWeight::compute_grad_nu(int grad_center, int bcenter,
|
---|
813 | SCVector3 &point, SCVector3 &grad)
|
---|
814 | {
|
---|
815 | SCVector3 r_g = point - centers[grad_center];
|
---|
816 | SCVector3 r_b = point - centers[bcenter];
|
---|
817 | SCVector3 r_gb = centers[grad_center] - centers[bcenter];
|
---|
818 | double mag_r_g = r_g.norm();
|
---|
819 | double mag_r_b = r_b.norm();
|
---|
820 | double oorgb = oorab[grad_center][bcenter];
|
---|
821 | double mu = (mag_r_g-mag_r_b)*oorgb;
|
---|
822 | double a_gb = a_mat[grad_center][bcenter];
|
---|
823 | double coef = 1.0-2.0*a_gb*mu;
|
---|
824 | double r_g_coef;
|
---|
825 |
|
---|
826 | if (mag_r_g < 10.0 * DBL_EPSILON) r_g_coef = 0.0;
|
---|
827 | else r_g_coef = -coef*oorgb/mag_r_g;
|
---|
828 | int ixyz;
|
---|
829 | for (ixyz=0; ixyz<3; ixyz++) grad[ixyz] = r_g_coef * r_g[ixyz];
|
---|
830 | double r_gb_coef = coef*(mag_r_b - mag_r_g)*oorgb*oorgb*oorgb;
|
---|
831 | for (ixyz=0; ixyz<3; ixyz++) grad[ixyz] += r_gb_coef * r_gb[ixyz];
|
---|
832 | }
|
---|
833 |
|
---|
834 | // compute t(nu_ij)
|
---|
835 | double
|
---|
836 | BeckeIntegrationWeight::compute_t(int icenter, int jcenter, SCVector3 &point)
|
---|
837 | {
|
---|
838 | // Cf. Johnson et al., JCP v. 98, p. 5612 (1993) (Appendix B)
|
---|
839 | // NB: t is zero if s is zero
|
---|
840 |
|
---|
841 | SCVector3 r_i = point - centers[icenter];
|
---|
842 | SCVector3 r_j = point - centers[jcenter];
|
---|
843 | SCVector3 r_ij = centers[icenter] - centers[jcenter];
|
---|
844 | double t;
|
---|
845 | double mag_r_j = r_j.norm();
|
---|
846 | double mag_r_i = r_i.norm();
|
---|
847 | double mu = (mag_r_i-mag_r_j)*oorab[icenter][jcenter];
|
---|
848 | if (mu >= 1.0-100*DBL_EPSILON) {
|
---|
849 | t = 0.0;
|
---|
850 | return t;
|
---|
851 | }
|
---|
852 |
|
---|
853 | double a_ij = a_mat[icenter][jcenter];
|
---|
854 | double nu = mu + a_ij*(1.-mu*mu);
|
---|
855 | double s;
|
---|
856 | if (mu <= -1.0) s = 1.0;
|
---|
857 | else s = calc_s(nu);
|
---|
858 | if (fabs(s) < 10*DBL_EPSILON) {
|
---|
859 | t = 0.0;
|
---|
860 | return t;
|
---|
861 | }
|
---|
862 | double p1 = 1.5*nu - 0.5*nu*nu*nu;
|
---|
863 | double p2 = 1.5*p1 - 0.5*p1*p1*p1;
|
---|
864 |
|
---|
865 | t = -(27.0/16.0) * (1 - p2*p2) * (1 - p1*p1) * (1 - nu*nu) / s;
|
---|
866 | return t;
|
---|
867 | }
|
---|
868 |
|
---|
869 | void
|
---|
870 | BeckeIntegrationWeight::compute_grad_p(int grad_center, int bcenter,
|
---|
871 | int wcenter, SCVector3&point,
|
---|
872 | double p, SCVector3&grad)
|
---|
873 | {
|
---|
874 | // the gradient of p is computed using the formulae from
|
---|
875 | // Johnson et al., JCP v. 98, p. 5612 (1993) (Appendix B)
|
---|
876 |
|
---|
877 | if (grad_center == bcenter) {
|
---|
878 | grad = 0.0;
|
---|
879 | for (int dcenter=0; dcenter<n_integration_centers; dcenter++) {
|
---|
880 | if (dcenter == bcenter) continue;
|
---|
881 | SCVector3 grad_nu;
|
---|
882 | compute_grad_nu(grad_center, dcenter, point, grad_nu);
|
---|
883 | double t = compute_t(grad_center,dcenter,point);
|
---|
884 | for (int ixyz=0; ixyz<3; ixyz++) grad[ixyz] += t * grad_nu[ixyz];
|
---|
885 | }
|
---|
886 | }
|
---|
887 | else {
|
---|
888 | SCVector3 grad_nu;
|
---|
889 | compute_grad_nu(grad_center, bcenter, point, grad_nu);
|
---|
890 | double t = compute_t(bcenter,grad_center,point);
|
---|
891 | for (int ixyz=0; ixyz<3; ixyz++) grad[ixyz] = -t * grad_nu[ixyz];
|
---|
892 | }
|
---|
893 | grad *= p;
|
---|
894 | }
|
---|
895 |
|
---|
896 | double
|
---|
897 | BeckeIntegrationWeight::w(int acenter, SCVector3 &point,
|
---|
898 | double *w_gradient)
|
---|
899 | {
|
---|
900 | int icenter;
|
---|
901 | double p_sum=0.0, p_a=0.0;
|
---|
902 |
|
---|
903 | for (icenter=0; icenter<n_integration_centers; icenter++) {
|
---|
904 | double p_tmp = compute_p(icenter, point);
|
---|
905 | if (icenter==acenter) p_a=p_tmp;
|
---|
906 | p_sum += p_tmp;
|
---|
907 | }
|
---|
908 | double w_a = p_a/p_sum;
|
---|
909 |
|
---|
910 | if (w_gradient) {
|
---|
911 | // w_gradient is computed using the formulae from
|
---|
912 | // Johnson et al., JCP v. 98, p. 5612 (1993) (Appendix B)
|
---|
913 | int i,j;
|
---|
914 | for (i=0; i<n_integration_centers*3; i++ ) w_gradient[i] = 0.0;
|
---|
915 | // fd_w(acenter, point, w_gradient); // imbn commented out for debug
|
---|
916 | // ExEnv::outn() << point << " ";
|
---|
917 | // for (int i=0; i<n_integration_centers*3; i++) {
|
---|
918 | // ExEnv::outn() << scprintf(" %10.6f", w_gradient[i]);
|
---|
919 | // }
|
---|
920 | // ExEnv::outn() << endl;
|
---|
921 | // return w_a; // imbn commented out for debug
|
---|
922 | for (int ccenter = 0; ccenter < n_integration_centers; ccenter++) {
|
---|
923 | // NB: for ccenter==acenter, use translational invariance
|
---|
924 | // to get the corresponding component of the gradient
|
---|
925 | if (ccenter != acenter) {
|
---|
926 | SCVector3 grad_c_w_a;
|
---|
927 | SCVector3 grad_c_p_a;
|
---|
928 | compute_grad_p(ccenter, acenter, acenter, point, p_a, grad_c_p_a);
|
---|
929 | for (i=0; i<3; i++) grad_c_w_a[i] = grad_c_p_a[i]/p_sum;
|
---|
930 | for (int bcenter=0; bcenter<n_integration_centers; bcenter++) {
|
---|
931 | SCVector3 grad_c_p_b;
|
---|
932 | double p_b = compute_p(bcenter,point);
|
---|
933 | compute_grad_p(ccenter, bcenter, acenter, point, p_b,
|
---|
934 | grad_c_p_b);
|
---|
935 | for (i=0; i<3; i++) grad_c_w_a[i] -= w_a*grad_c_p_b[i]/p_sum;
|
---|
936 | }
|
---|
937 | for (i=0; i<3; i++) w_gradient[ccenter*3+i] = grad_c_w_a[i];
|
---|
938 | }
|
---|
939 | }
|
---|
940 | // fill in w_gradient for ccenter==acenter
|
---|
941 | for (j=0; j<3; j++) {
|
---|
942 | for (i=0; i<n_integration_centers; i++) {
|
---|
943 | if (i != acenter) {
|
---|
944 | w_gradient[acenter*3+j] -= w_gradient[i*3+j];
|
---|
945 | }
|
---|
946 | }
|
---|
947 | }
|
---|
948 | }
|
---|
949 |
|
---|
950 | return w_a;
|
---|
951 | }
|
---|
952 |
|
---|
953 | ///////////////////////////////////////////////////
|
---|
954 | // RadialIntegrator
|
---|
955 | static ClassDesc RadialIntegrator_cd(
|
---|
956 | typeid(RadialIntegrator),"RadialIntegrator",1,"public SavableState",
|
---|
957 | 0, 0, 0);
|
---|
958 |
|
---|
959 | RadialIntegrator::RadialIntegrator(StateIn& s):
|
---|
960 | SavableState(s)
|
---|
961 | {
|
---|
962 | }
|
---|
963 |
|
---|
964 | RadialIntegrator::RadialIntegrator()
|
---|
965 | {
|
---|
966 | }
|
---|
967 |
|
---|
968 | RadialIntegrator::RadialIntegrator(const Ref<KeyVal>& keyval)
|
---|
969 | {
|
---|
970 | }
|
---|
971 |
|
---|
972 | RadialIntegrator::~RadialIntegrator()
|
---|
973 | {
|
---|
974 | }
|
---|
975 |
|
---|
976 | void
|
---|
977 | RadialIntegrator::save_data_state(StateOut& s)
|
---|
978 | {
|
---|
979 | }
|
---|
980 |
|
---|
981 | ///////////////////////////////////////
|
---|
982 | // AngularIntegrator
|
---|
983 |
|
---|
984 | static ClassDesc AngularIntegrator_cd(
|
---|
985 | typeid(AngularIntegrator),"AngularIntegrator",1,"public SavableState",
|
---|
986 | 0, 0, 0);
|
---|
987 |
|
---|
988 | AngularIntegrator::AngularIntegrator(StateIn& s):
|
---|
989 | SavableState(s)
|
---|
990 | {
|
---|
991 | }
|
---|
992 |
|
---|
993 | AngularIntegrator::AngularIntegrator()
|
---|
994 | {
|
---|
995 | }
|
---|
996 |
|
---|
997 | AngularIntegrator::AngularIntegrator(const Ref<KeyVal>& keyval)
|
---|
998 | {
|
---|
999 | }
|
---|
1000 |
|
---|
1001 | AngularIntegrator::~AngularIntegrator()
|
---|
1002 | {
|
---|
1003 | }
|
---|
1004 |
|
---|
1005 | void
|
---|
1006 | AngularIntegrator::save_data_state(StateOut& s)
|
---|
1007 | {
|
---|
1008 | }
|
---|
1009 |
|
---|
1010 | ///////////////////////////////////////
|
---|
1011 | // EulerMaclaurinRadialIntegrator
|
---|
1012 |
|
---|
1013 | static ClassDesc EulerMaclaurinRadialIntegrator_cd(
|
---|
1014 | typeid(EulerMaclaurinRadialIntegrator),"EulerMaclaurinRadialIntegrator",1,"public RadialIntegrator",
|
---|
1015 | 0, create<EulerMaclaurinRadialIntegrator>, create<EulerMaclaurinRadialIntegrator>);
|
---|
1016 |
|
---|
1017 | EulerMaclaurinRadialIntegrator::EulerMaclaurinRadialIntegrator(StateIn& s):
|
---|
1018 | SavableState(s),
|
---|
1019 | RadialIntegrator(s)
|
---|
1020 | {
|
---|
1021 | s.get(nr_);
|
---|
1022 | }
|
---|
1023 |
|
---|
1024 | EulerMaclaurinRadialIntegrator::EulerMaclaurinRadialIntegrator()
|
---|
1025 | {
|
---|
1026 | nr_ = 75;
|
---|
1027 | }
|
---|
1028 |
|
---|
1029 | EulerMaclaurinRadialIntegrator::EulerMaclaurinRadialIntegrator(int nr_points)
|
---|
1030 | {
|
---|
1031 | nr_ = nr_points;
|
---|
1032 | }
|
---|
1033 |
|
---|
1034 | EulerMaclaurinRadialIntegrator::EulerMaclaurinRadialIntegrator(const Ref<KeyVal>& keyval):
|
---|
1035 | RadialIntegrator(keyval)
|
---|
1036 | {
|
---|
1037 | nr_ = keyval->intvalue("nr", KeyValValueint(75));
|
---|
1038 | }
|
---|
1039 |
|
---|
1040 | EulerMaclaurinRadialIntegrator::~EulerMaclaurinRadialIntegrator()
|
---|
1041 | {
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 | void
|
---|
1045 | EulerMaclaurinRadialIntegrator::save_data_state(StateOut& s)
|
---|
1046 | {
|
---|
1047 | RadialIntegrator::save_data_state(s);
|
---|
1048 | s.put(nr_);
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 | int
|
---|
1052 | EulerMaclaurinRadialIntegrator::nr() const
|
---|
1053 | {
|
---|
1054 | return nr_;
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 | double
|
---|
1058 | EulerMaclaurinRadialIntegrator::radial_value(int ir, int nr, double radii,
|
---|
1059 | double &multiplier)
|
---|
1060 | {
|
---|
1061 | double q = (double)ir/(double)nr;
|
---|
1062 | double value = q/(1.-q);
|
---|
1063 | double r = radii*value*value;
|
---|
1064 | double dr_dq = 2.*radii*q*pow(1.-q,-3.);
|
---|
1065 | double dr_dqr2 = dr_dq*r*r;
|
---|
1066 | multiplier = dr_dqr2/nr;
|
---|
1067 | return r;
|
---|
1068 | }
|
---|
1069 |
|
---|
1070 | void
|
---|
1071 | EulerMaclaurinRadialIntegrator::print(ostream &o) const
|
---|
1072 | {
|
---|
1073 | o << indent
|
---|
1074 | << scprintf("%s: nr = %d", class_name(), nr()) << endl;
|
---|
1075 | }
|
---|
1076 |
|
---|
1077 | //////////////////////////////////////////////////////////////////////////
|
---|
1078 | // LebedevLaikovIntegrator
|
---|
1079 |
|
---|
1080 | static ClassDesc LebedevLaikovIntegrator_cd(
|
---|
1081 | typeid(LebedevLaikovIntegrator),"LebedevLaikovIntegrator",1,"public AngularIntegrator",
|
---|
1082 | 0, create<LebedevLaikovIntegrator>, create<LebedevLaikovIntegrator>);
|
---|
1083 |
|
---|
1084 | LebedevLaikovIntegrator::LebedevLaikovIntegrator(StateIn& s):
|
---|
1085 | SavableState(s),
|
---|
1086 | AngularIntegrator(s)
|
---|
1087 | {
|
---|
1088 | s.get(npoint_);
|
---|
1089 | init(npoint_);
|
---|
1090 | }
|
---|
1091 |
|
---|
1092 | LebedevLaikovIntegrator::LebedevLaikovIntegrator()
|
---|
1093 | {
|
---|
1094 | init(302);
|
---|
1095 | }
|
---|
1096 |
|
---|
1097 | LebedevLaikovIntegrator::LebedevLaikovIntegrator(int npoint)
|
---|
1098 | {
|
---|
1099 | init(npoint);
|
---|
1100 | }
|
---|
1101 |
|
---|
1102 | LebedevLaikovIntegrator::LebedevLaikovIntegrator(const Ref<KeyVal>& keyval)
|
---|
1103 | {
|
---|
1104 | KeyValValueint defnpoint(302);
|
---|
1105 |
|
---|
1106 | init(keyval->intvalue("n", defnpoint));
|
---|
1107 | }
|
---|
1108 |
|
---|
1109 | LebedevLaikovIntegrator::~LebedevLaikovIntegrator()
|
---|
1110 | {
|
---|
1111 | delete [] x_;
|
---|
1112 | delete [] y_;
|
---|
1113 | delete [] z_;
|
---|
1114 | delete [] w_;
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 | void
|
---|
1118 | LebedevLaikovIntegrator::save_data_state(StateOut& s)
|
---|
1119 | {
|
---|
1120 | AngularIntegrator::save_data_state(s);
|
---|
1121 | s.put(npoint_);
|
---|
1122 | }
|
---|
1123 |
|
---|
1124 | extern "C" {
|
---|
1125 | int Lebedev_Laikov_sphere (int N, double *X, double *Y, double *Z,
|
---|
1126 | double *W);
|
---|
1127 | int Lebedev_Laikov_npoint (int lvalue);
|
---|
1128 | }
|
---|
1129 |
|
---|
1130 | int
|
---|
1131 | LebedevLaikovIntegrator::nw(void) const
|
---|
1132 | {
|
---|
1133 | return npoint_;
|
---|
1134 | }
|
---|
1135 |
|
---|
1136 | void
|
---|
1137 | LebedevLaikovIntegrator::init(int n)
|
---|
1138 | {
|
---|
1139 | // ExEnv::outn() << " LebedevLaikovIntegrator::init -> before x_, y_, z_, and w_ malloc's " << endl;
|
---|
1140 | // ExEnv::outn() << " n = " << n << endl;
|
---|
1141 |
|
---|
1142 | x_ = new double[n];
|
---|
1143 | y_ = new double[n];
|
---|
1144 | z_ = new double[n];
|
---|
1145 | w_ = new double[n];
|
---|
1146 |
|
---|
1147 | // ExEnv::outn() << " LebedevLaikovIntegrator::init -> nw_points = " << n << endl;
|
---|
1148 |
|
---|
1149 | npoint_ = Lebedev_Laikov_sphere(n, x_, y_, z_, w_);
|
---|
1150 | if (npoint_ != n) {
|
---|
1151 | ExEnv::outn() << class_name() << ": bad number of points given: " << n << endl;
|
---|
1152 | abort();
|
---|
1153 | }
|
---|
1154 | }
|
---|
1155 |
|
---|
1156 | int
|
---|
1157 | LebedevLaikovIntegrator::num_angular_points(double r_value, int ir)
|
---|
1158 | {
|
---|
1159 | if (ir == 0) return 1;
|
---|
1160 | return npoint_;
|
---|
1161 | }
|
---|
1162 |
|
---|
1163 | double
|
---|
1164 | LebedevLaikovIntegrator
|
---|
1165 | ::angular_point_cartesian(int iangular, double r,
|
---|
1166 | SCVector3 &integration_point) const
|
---|
1167 | {
|
---|
1168 | integration_point.x() = r*x_[iangular];
|
---|
1169 | integration_point.y() = r*y_[iangular];
|
---|
1170 | integration_point.z() = r*z_[iangular];
|
---|
1171 |
|
---|
1172 | return 4.0*M_PI*w_[iangular];
|
---|
1173 | }
|
---|
1174 |
|
---|
1175 | void
|
---|
1176 | LebedevLaikovIntegrator::print(ostream &o) const
|
---|
1177 | {
|
---|
1178 | o << indent
|
---|
1179 | << scprintf("%s: n = %d", class_name(), npoint_) << endl;
|
---|
1180 | }
|
---|
1181 |
|
---|
1182 | /////////////////////////////////
|
---|
1183 | // GaussLegendreAngularIntegrator
|
---|
1184 |
|
---|
1185 | static ClassDesc GaussLegendreAngularIntegrator_cd(
|
---|
1186 | typeid(GaussLegendreAngularIntegrator),"GaussLegendreAngularIntegrator",1,"public AngularIntegrator",
|
---|
1187 | 0, create<GaussLegendreAngularIntegrator>, create<GaussLegendreAngularIntegrator>);
|
---|
1188 |
|
---|
1189 | GaussLegendreAngularIntegrator::GaussLegendreAngularIntegrator(StateIn& s):
|
---|
1190 | SavableState(s),
|
---|
1191 | AngularIntegrator(s)
|
---|
1192 | {
|
---|
1193 | s.get(ntheta_);
|
---|
1194 | s.get(nphi_);
|
---|
1195 | s.get(Ktheta_);
|
---|
1196 | theta_quad_weights_ = new double[ntheta_];
|
---|
1197 | theta_quad_points_ = new double[ntheta_];
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 | GaussLegendreAngularIntegrator::GaussLegendreAngularIntegrator()
|
---|
1201 | {
|
---|
1202 | set_ntheta(16);
|
---|
1203 | set_nphi(32);
|
---|
1204 | set_Ktheta(5);
|
---|
1205 | int ntheta = get_ntheta();
|
---|
1206 | theta_quad_weights_ = new double [ntheta];
|
---|
1207 | theta_quad_points_ = new double [ntheta];
|
---|
1208 | }
|
---|
1209 |
|
---|
1210 | GaussLegendreAngularIntegrator::GaussLegendreAngularIntegrator(const Ref<KeyVal>& keyval)
|
---|
1211 | {
|
---|
1212 | set_ntheta( keyval->intvalue("ntheta") );
|
---|
1213 | if (keyval->error() != KeyVal::OK) set_ntheta(16);
|
---|
1214 | set_nphi( keyval->intvalue("nphi") );
|
---|
1215 | if (keyval->error() != KeyVal::OK) set_nphi(2*get_ntheta());
|
---|
1216 | set_Ktheta( keyval->intvalue("Ktheta") );
|
---|
1217 | if (keyval->error() != KeyVal::OK) set_Ktheta(5);
|
---|
1218 |
|
---|
1219 | int ntheta = get_ntheta();
|
---|
1220 | theta_quad_weights_ = new double [ntheta];
|
---|
1221 | theta_quad_points_ = new double [ntheta];
|
---|
1222 | }
|
---|
1223 |
|
---|
1224 | GaussLegendreAngularIntegrator::~GaussLegendreAngularIntegrator()
|
---|
1225 | {
|
---|
1226 | delete [] theta_quad_points_;
|
---|
1227 | delete [] theta_quad_weights_;
|
---|
1228 | }
|
---|
1229 |
|
---|
1230 | void
|
---|
1231 | GaussLegendreAngularIntegrator::save_data_state(StateOut& s)
|
---|
1232 | {
|
---|
1233 | AngularIntegrator::save_data_state(s);
|
---|
1234 | s.put(ntheta_);
|
---|
1235 | s.put(nphi_);
|
---|
1236 | s.put(Ktheta_);
|
---|
1237 | }
|
---|
1238 |
|
---|
1239 | int
|
---|
1240 | GaussLegendreAngularIntegrator::get_ntheta(void) const
|
---|
1241 | {
|
---|
1242 | return ntheta_;
|
---|
1243 | }
|
---|
1244 |
|
---|
1245 | void
|
---|
1246 | GaussLegendreAngularIntegrator::set_ntheta(int i)
|
---|
1247 | {
|
---|
1248 | ntheta_ = i;
|
---|
1249 | }
|
---|
1250 |
|
---|
1251 | int
|
---|
1252 | GaussLegendreAngularIntegrator::get_nphi(void) const
|
---|
1253 | {
|
---|
1254 | return nphi_;
|
---|
1255 | }
|
---|
1256 |
|
---|
1257 | void
|
---|
1258 | GaussLegendreAngularIntegrator::set_nphi(int i)
|
---|
1259 | {
|
---|
1260 | nphi_ = i;
|
---|
1261 | }
|
---|
1262 |
|
---|
1263 | int
|
---|
1264 | GaussLegendreAngularIntegrator::get_Ktheta(void) const
|
---|
1265 | {
|
---|
1266 | return Ktheta_;
|
---|
1267 | }
|
---|
1268 |
|
---|
1269 | void
|
---|
1270 | GaussLegendreAngularIntegrator::set_Ktheta(int i)
|
---|
1271 | {
|
---|
1272 | Ktheta_ = i;
|
---|
1273 | }
|
---|
1274 |
|
---|
1275 | int
|
---|
1276 | GaussLegendreAngularIntegrator::get_ntheta_r(void) const
|
---|
1277 | {
|
---|
1278 | return ntheta_r_;
|
---|
1279 | }
|
---|
1280 |
|
---|
1281 | void
|
---|
1282 | GaussLegendreAngularIntegrator::set_ntheta_r(int i)
|
---|
1283 | {
|
---|
1284 | ntheta_r_ = i;
|
---|
1285 | }
|
---|
1286 |
|
---|
1287 | int
|
---|
1288 | GaussLegendreAngularIntegrator::get_nphi_r(void) const
|
---|
1289 | {
|
---|
1290 | return nphi_r_;
|
---|
1291 | }
|
---|
1292 |
|
---|
1293 | void
|
---|
1294 | GaussLegendreAngularIntegrator::set_nphi_r(int i)
|
---|
1295 | {
|
---|
1296 | nphi_r_ = i;
|
---|
1297 | }
|
---|
1298 |
|
---|
1299 | int
|
---|
1300 | GaussLegendreAngularIntegrator::get_Ktheta_r(void) const
|
---|
1301 | {
|
---|
1302 | return Ktheta_r_;
|
---|
1303 | }
|
---|
1304 |
|
---|
1305 | void
|
---|
1306 | GaussLegendreAngularIntegrator::set_Ktheta_r(int i)
|
---|
1307 | {
|
---|
1308 | Ktheta_r_ = i;
|
---|
1309 | }
|
---|
1310 |
|
---|
1311 | int
|
---|
1312 | GaussLegendreAngularIntegrator::nw(void) const
|
---|
1313 | {
|
---|
1314 | return nphi_*ntheta_;
|
---|
1315 | }
|
---|
1316 |
|
---|
1317 | double
|
---|
1318 | GaussLegendreAngularIntegrator::sin_theta(SCVector3 &point) const
|
---|
1319 | {
|
---|
1320 | return sin(point.theta());
|
---|
1321 | }
|
---|
1322 |
|
---|
1323 | int
|
---|
1324 | GaussLegendreAngularIntegrator::num_angular_points(double r_value,
|
---|
1325 | int ir)
|
---|
1326 | {
|
---|
1327 | int Ktheta, ntheta, ntheta_r;
|
---|
1328 |
|
---|
1329 | if (ir == 0) {
|
---|
1330 | set_ntheta_r(1);
|
---|
1331 | set_nphi_r(1);
|
---|
1332 | }
|
---|
1333 | else {
|
---|
1334 | Ktheta = get_Ktheta();
|
---|
1335 | ntheta = get_ntheta();
|
---|
1336 | ntheta_r= (int) (r_value*Ktheta*ntheta);
|
---|
1337 | set_ntheta_r(ntheta_r);
|
---|
1338 | if (ntheta_r > ntheta) set_ntheta_r(ntheta);
|
---|
1339 | if (ntheta_r < 6) set_ntheta_r(6);
|
---|
1340 | set_nphi_r(2*get_ntheta_r());
|
---|
1341 | }
|
---|
1342 |
|
---|
1343 | gauleg(0.0, M_PI, get_ntheta_r());
|
---|
1344 |
|
---|
1345 | return get_ntheta_r()*get_nphi_r();
|
---|
1346 | }
|
---|
1347 |
|
---|
1348 | void
|
---|
1349 | GaussLegendreAngularIntegrator::gauleg(double x1, double x2, int n)
|
---|
1350 | {
|
---|
1351 | int m,j,i;
|
---|
1352 | double z1,z,xm,xl,pp,p3,p2,p1;
|
---|
1353 | const double EPS = 10.0 * DBL_EPSILON;
|
---|
1354 |
|
---|
1355 | m=(n+1)/2;
|
---|
1356 | xm=0.5*(x2+x1);
|
---|
1357 | xl=0.5*(x2-x1);
|
---|
1358 | for (i=1;i<=m;i++) {
|
---|
1359 | z=cos(M_PI*(i-0.25)/(n+0.5));
|
---|
1360 | do {
|
---|
1361 | p1=1.0;
|
---|
1362 | p2=0.0;
|
---|
1363 | for (j=1;j<=n;j++) {
|
---|
1364 | p3=p2;
|
---|
1365 | p2=p1;
|
---|
1366 | p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j;
|
---|
1367 | }
|
---|
1368 | pp=n*(z*p1-p2)/(z*z-1.0);
|
---|
1369 | z1=z;
|
---|
1370 | z=z1-p1/pp;
|
---|
1371 | } while (fabs(z-z1) > EPS);
|
---|
1372 | theta_quad_points_[i-1]=xm-xl*z;
|
---|
1373 | theta_quad_points_[n-i]=xm+xl*z;
|
---|
1374 | theta_quad_weights_[i-1]=2.0*xl/((1.0-z*z)*pp*pp);
|
---|
1375 | theta_quad_weights_[n-i]=theta_quad_weights_[i-1];
|
---|
1376 | }
|
---|
1377 | }
|
---|
1378 |
|
---|
1379 | double
|
---|
1380 | GaussLegendreAngularIntegrator
|
---|
1381 | ::angular_point_cartesian(int iangular, double r,
|
---|
1382 | SCVector3 &integration_point) const
|
---|
1383 | {
|
---|
1384 | int itheta, iphi, nphi_r;
|
---|
1385 |
|
---|
1386 | nphi_r = get_nphi_r();
|
---|
1387 | itheta = iangular/nphi_r;
|
---|
1388 | iphi = iangular - itheta*nphi_r;
|
---|
1389 | SCVector3 point;
|
---|
1390 | point.theta() = theta_quad_points_[itheta];
|
---|
1391 | point.phi() = (double) iphi/ (double) nphi_r * 2.0 * M_PI;
|
---|
1392 | point.r() = r;
|
---|
1393 | point.spherical_to_cartesian(integration_point);
|
---|
1394 | return ( sin_theta(point)*theta_quad_weights_[itheta]*2.0*M_PI/(double)nphi_r );
|
---|
1395 | }
|
---|
1396 |
|
---|
1397 | void
|
---|
1398 | GaussLegendreAngularIntegrator::print(ostream &o) const
|
---|
1399 | {
|
---|
1400 | o << indent << class_name() << ":" << endl;
|
---|
1401 | o << incindent;
|
---|
1402 | o << indent << scprintf("ntheta = %5d", get_ntheta()) << endl;
|
---|
1403 | o << indent << scprintf("nphi = %5d", get_nphi()) << endl;
|
---|
1404 | o << indent << scprintf("Ktheta = %5d", get_Ktheta()) << endl;
|
---|
1405 | o << decindent;
|
---|
1406 | }
|
---|
1407 |
|
---|
1408 | //////////////////////////////////////////////
|
---|
1409 | // RadialAngularIntegratorThread
|
---|
1410 |
|
---|
1411 | class RadialAngularIntegratorThread: public DenIntegratorThread {
|
---|
1412 | protected:
|
---|
1413 | SCVector3 *centers_;
|
---|
1414 | int *nr_;
|
---|
1415 | double *atomic_radius_;
|
---|
1416 | Molecule *mol_;
|
---|
1417 | RadialAngularIntegrator *ra_integrator_;
|
---|
1418 | IntegrationWeight *weight_;
|
---|
1419 | int point_count_total_;
|
---|
1420 | double total_density_;
|
---|
1421 | public:
|
---|
1422 | RadialAngularIntegratorThread(int ithread, int nthread,
|
---|
1423 | RadialAngularIntegrator *integrator,
|
---|
1424 | DenFunctional *func,
|
---|
1425 | const Ref<BatchElectronDensity> &den,
|
---|
1426 | int linear_scaling, int use_dmat_bound,
|
---|
1427 | double accuracy,
|
---|
1428 | int compute_potential_integrals,
|
---|
1429 | int need_nuclear_gradient);
|
---|
1430 | ~RadialAngularIntegratorThread();
|
---|
1431 | void run();
|
---|
1432 | double total_density() { return total_density_; }
|
---|
1433 | int point_count() { return point_count_total_; }
|
---|
1434 | };
|
---|
1435 |
|
---|
1436 | RadialAngularIntegratorThread
|
---|
1437 | ::RadialAngularIntegratorThread(int ithread, int nthread,
|
---|
1438 | RadialAngularIntegrator *integrator,
|
---|
1439 | DenFunctional *func,
|
---|
1440 | const Ref<BatchElectronDensity> &den,
|
---|
1441 | int linear_scaling, int use_dmat_bound,
|
---|
1442 | double accuracy,
|
---|
1443 | int compute_potential_integrals,
|
---|
1444 | int need_nuclear_gradient):
|
---|
1445 | DenIntegratorThread(ithread,nthread,
|
---|
1446 | integrator, func,
|
---|
1447 | den,
|
---|
1448 | linear_scaling, use_dmat_bound,
|
---|
1449 | accuracy,
|
---|
1450 | compute_potential_integrals,
|
---|
1451 | need_nuclear_gradient)
|
---|
1452 | {
|
---|
1453 | int icenter;
|
---|
1454 | ra_integrator_ = integrator;
|
---|
1455 | int deriv_order = (need_nuclear_gradient==0?0:1);
|
---|
1456 |
|
---|
1457 | mol_ = integrator_->wavefunction()->molecule().pointer();
|
---|
1458 |
|
---|
1459 | weight_ = ra_integrator_->weight().pointer();
|
---|
1460 |
|
---|
1461 | nr_ = new int[n_integration_center_];
|
---|
1462 |
|
---|
1463 | for (icenter=0; icenter<n_integration_center_; icenter++) {
|
---|
1464 | int iatom = mol_->non_q_atom(icenter);
|
---|
1465 | nr_[icenter]
|
---|
1466 | = ra_integrator_->get_radial_grid(mol_->Z(iatom),deriv_order)->nr();
|
---|
1467 | }
|
---|
1468 |
|
---|
1469 | centers_ = new SCVector3[n_integration_center_];
|
---|
1470 | for (icenter=0; icenter<n_integration_center_; icenter++) {
|
---|
1471 | int iatom = mol_->non_q_atom(icenter);
|
---|
1472 | centers_[icenter].x() = mol_->r(iatom,0);
|
---|
1473 | centers_[icenter].y() = mol_->r(iatom,1);
|
---|
1474 | centers_[icenter].z() = mol_->r(iatom,2);
|
---|
1475 | }
|
---|
1476 |
|
---|
1477 | atomic_radius_ = new double[n_integration_center_];
|
---|
1478 | for (icenter=0; icenter<n_integration_center_; icenter++) {
|
---|
1479 | int iatom = mol_->non_q_atom(icenter);
|
---|
1480 | atomic_radius_[icenter] = get_radius(mol_, iatom);
|
---|
1481 | }
|
---|
1482 |
|
---|
1483 | point_count_total_ = 0;
|
---|
1484 | total_density_ = 0.0;
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 | RadialAngularIntegratorThread::~RadialAngularIntegratorThread()
|
---|
1488 | {
|
---|
1489 | delete[] centers_;
|
---|
1490 | delete[] atomic_radius_;
|
---|
1491 | delete[] nr_;
|
---|
1492 | }
|
---|
1493 |
|
---|
1494 | void
|
---|
1495 | RadialAngularIntegratorThread::run()
|
---|
1496 | {
|
---|
1497 | int icenter;
|
---|
1498 | int nangular;
|
---|
1499 | int ir, iangular; // Loop indices for diff. integration dim
|
---|
1500 | int point_count; // Counter for # integration points per center
|
---|
1501 | int nr;
|
---|
1502 |
|
---|
1503 | SCVector3 center; // Cartesian position of center
|
---|
1504 | SCVector3 integration_point;
|
---|
1505 |
|
---|
1506 | double w,radial_multiplier,angular_multiplier;
|
---|
1507 | int deriv_order = (nuclear_gradient_==0?0:1);
|
---|
1508 |
|
---|
1509 | int parallel_counter = 0;
|
---|
1510 |
|
---|
1511 | for (icenter=0; icenter < n_integration_center_; icenter++) {
|
---|
1512 | int iatom = mol_->non_q_atom(icenter);
|
---|
1513 | point_count=0;
|
---|
1514 | center = centers_[icenter];
|
---|
1515 | // get current radial grid: depends on convergence threshold
|
---|
1516 | RadialIntegrator *radial
|
---|
1517 | = ra_integrator_->get_radial_grid(mol_->Z(iatom), deriv_order);
|
---|
1518 | nr = radial->nr();
|
---|
1519 | for (ir=0; ir < nr; ir++) {
|
---|
1520 | if (! (parallel_counter++%nthread_ == ithread_)) continue;
|
---|
1521 | double r = radial->radial_value(ir, nr, atomic_radius_[icenter],
|
---|
1522 | radial_multiplier);
|
---|
1523 | // get current angular grid: depends on radial point and threshold
|
---|
1524 | AngularIntegrator *angular
|
---|
1525 | = ra_integrator_->get_angular_grid(r, atomic_radius_[icenter],
|
---|
1526 | mol_->Z(iatom),
|
---|
1527 | deriv_order);
|
---|
1528 | nangular = angular->num_angular_points(r/atomic_radius_[icenter],ir);
|
---|
1529 | for (iangular=0; iangular<nangular; iangular++) {
|
---|
1530 | angular_multiplier
|
---|
1531 | = angular->angular_point_cartesian(iangular,r,
|
---|
1532 | integration_point);
|
---|
1533 | integration_point += center;
|
---|
1534 | w=weight_->w(icenter, integration_point, w_gradient_);
|
---|
1535 | point_count++;
|
---|
1536 | double multiplier = angular_multiplier * radial_multiplier;
|
---|
1537 | total_density_
|
---|
1538 | += w * multiplier
|
---|
1539 | * do_point(iatom, integration_point,
|
---|
1540 | w, multiplier,
|
---|
1541 | nuclear_gradient_, f_gradient_, w_gradient_);
|
---|
1542 | }
|
---|
1543 | }
|
---|
1544 | point_count_total_ += point_count;
|
---|
1545 | }
|
---|
1546 | }
|
---|
1547 |
|
---|
1548 | //////////////////////////////////////////////
|
---|
1549 | // RadialAngularIntegrator
|
---|
1550 |
|
---|
1551 | static ClassDesc RadialAngularIntegrator_cd(
|
---|
1552 | typeid(RadialAngularIntegrator),"RadialAngularIntegrator",1,"public DenIntegrator",
|
---|
1553 | 0, create<RadialAngularIntegrator>, create<RadialAngularIntegrator>);
|
---|
1554 |
|
---|
1555 | RadialAngularIntegrator::RadialAngularIntegrator(StateIn& s):
|
---|
1556 | SavableState(s),
|
---|
1557 | DenIntegrator(s)
|
---|
1558 | {
|
---|
1559 | s.get(natomic_rows_);
|
---|
1560 | s.get(max_gridtype_);
|
---|
1561 | s.get(prune_grid_);
|
---|
1562 | s.get(gridtype_);
|
---|
1563 | s.get(npruned_partitions_);
|
---|
1564 | s.get(dynamic_grids_);
|
---|
1565 |
|
---|
1566 | // ExEnv::outn() << "natomic_rows_ = " << natomic_rows_ << endl;
|
---|
1567 | // ExEnv::outn() << "max_gridtype_ = " << max_gridtype_ << endl;
|
---|
1568 | // ExEnv::outn() << "prune_grid_ = " << prune_grid_ << endl;
|
---|
1569 | // ExEnv::outn() << "gridtype_ = " << gridtype_ << endl;
|
---|
1570 | // ExEnv::outn() << "npruned_partitions_ = " << npruned_partitions_ << endl;
|
---|
1571 | // ExEnv::outn() << "dynamic_grids_ = " << dynamic_grids_ << endl;
|
---|
1572 |
|
---|
1573 |
|
---|
1574 | // ExEnv::outn() << "In StateIn Constructor!" << endl;
|
---|
1575 | weight_ = new BeckeIntegrationWeight;
|
---|
1576 |
|
---|
1577 | int i;
|
---|
1578 | grid_accuracy_ = new double[max_gridtype_];
|
---|
1579 | grid_accuracy_[0] = 1e-4;
|
---|
1580 | for (i=1; i<max_gridtype_; i++) grid_accuracy_[i] = grid_accuracy_[i-1]*1e-1;
|
---|
1581 |
|
---|
1582 | Alpha_coeffs_ = new_c_array2(natomic_rows_,npruned_partitions_-1,
|
---|
1583 | double(0));
|
---|
1584 | s.get_array_double(Alpha_coeffs_[0], natomic_rows_*(npruned_partitions_-1));
|
---|
1585 |
|
---|
1586 | radial_user_ << SavableState::restore_state(s);
|
---|
1587 | angular_user_ << SavableState::restore_state(s);
|
---|
1588 |
|
---|
1589 | init_default_grids();
|
---|
1590 | set_grids();
|
---|
1591 |
|
---|
1592 | }
|
---|
1593 |
|
---|
1594 | RadialAngularIntegrator::RadialAngularIntegrator()
|
---|
1595 | {
|
---|
1596 | weight_ = new BeckeIntegrationWeight;
|
---|
1597 |
|
---|
1598 | init_parameters();
|
---|
1599 | init_default_grids();
|
---|
1600 | set_grids();
|
---|
1601 |
|
---|
1602 | }
|
---|
1603 |
|
---|
1604 | RadialAngularIntegrator::RadialAngularIntegrator(const Ref<KeyVal>& keyval):
|
---|
1605 | DenIntegrator(keyval)
|
---|
1606 | {
|
---|
1607 |
|
---|
1608 | radial_user_ << keyval->describedclassvalue("radial");
|
---|
1609 | angular_user_ << keyval->describedclassvalue("angular");
|
---|
1610 |
|
---|
1611 | weight_ << keyval->describedclassvalue("weight");
|
---|
1612 | if (weight_.null()) weight_ = new BeckeIntegrationWeight;
|
---|
1613 | // ExEnv::outn() << "In Ref<KeyVal> Constructor" << endl;
|
---|
1614 |
|
---|
1615 | init_parameters(keyval);
|
---|
1616 | init_default_grids();
|
---|
1617 | set_grids();
|
---|
1618 |
|
---|
1619 | }
|
---|
1620 |
|
---|
1621 | RadialAngularIntegrator::~RadialAngularIntegrator()
|
---|
1622 | {
|
---|
1623 | delete_c_array2(Alpha_coeffs_);
|
---|
1624 | delete_c_array2(radial_grid_);
|
---|
1625 | delete_c_array3(angular_grid_);
|
---|
1626 | delete_c_array2(nr_points_);
|
---|
1627 | delete[] xcoarse_l_;
|
---|
1628 | delete[] grid_accuracy_;
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 | void
|
---|
1632 | RadialAngularIntegrator::save_data_state(StateOut& s)
|
---|
1633 | {
|
---|
1634 | DenIntegrator::save_data_state(s);
|
---|
1635 | s.put(natomic_rows_);
|
---|
1636 | s.put(max_gridtype_);
|
---|
1637 | s.put(prune_grid_);
|
---|
1638 | s.put(gridtype_);
|
---|
1639 | // s.put(nr_points_[0], natomic_rows_*max_gridtype_);
|
---|
1640 | // s.put(xcoarse_l_, natomic_rows_);
|
---|
1641 | s.put(npruned_partitions_);
|
---|
1642 | s.put(dynamic_grids_);
|
---|
1643 | s.put_array_double(Alpha_coeffs_[0],natomic_rows_*(npruned_partitions_-1));
|
---|
1644 |
|
---|
1645 | // ExEnv::outn() << "natomic_rows_ = " << natomic_rows_ << endl;
|
---|
1646 | // ExEnv::outn() << "max_gridtype_ = " << max_gridtype_ << endl;
|
---|
1647 | // ExEnv::outn() << "prune_grid_ = " << prune_grid_ << endl;
|
---|
1648 | // ExEnv::outn() << "gridtype_ = " << gridtype_ << endl;
|
---|
1649 | // ExEnv::outn() << "npruned_partitions_ = " << npruned_partitions_ << endl;
|
---|
1650 | // ExEnv::outn() << "dynamic_grids_ = " << dynamic_grids_ << endl;
|
---|
1651 |
|
---|
1652 | SavableState::save_state(radial_user_.pointer(),s);
|
---|
1653 | SavableState::save_state(angular_user_.pointer(),s);
|
---|
1654 | }
|
---|
1655 |
|
---|
1656 | void
|
---|
1657 | RadialAngularIntegrator::init_parameters(void)
|
---|
1658 | {
|
---|
1659 |
|
---|
1660 | prune_grid_ = 1;
|
---|
1661 | gridtype_ = 3;
|
---|
1662 | npruned_partitions_ = 5;
|
---|
1663 | dynamic_grids_ = 1;
|
---|
1664 | max_gridtype_ = 6;
|
---|
1665 | natomic_rows_ = 5;
|
---|
1666 | grid_accuracy_ = new double[max_gridtype_];
|
---|
1667 |
|
---|
1668 | int i;
|
---|
1669 | grid_accuracy_[0] = 1e-4;
|
---|
1670 | for (i=1; i<max_gridtype_; i++) grid_accuracy_[i] = grid_accuracy_[i-1]*1e-1;
|
---|
1671 |
|
---|
1672 | init_pruning_coefficients();
|
---|
1673 |
|
---|
1674 | // ExEnv::outn() << "gridtype_ = " << gridtype_ << endl;
|
---|
1675 |
|
---|
1676 | }
|
---|
1677 |
|
---|
1678 | void
|
---|
1679 | RadialAngularIntegrator::init_parameters(const Ref<KeyVal>& keyval)
|
---|
1680 | {
|
---|
1681 | char *grid = 0;
|
---|
1682 |
|
---|
1683 | max_gridtype_ = 6;
|
---|
1684 | natomic_rows_ = 5;
|
---|
1685 |
|
---|
1686 | grid = keyval->pcharvalue("grid");
|
---|
1687 |
|
---|
1688 | if (grid) {
|
---|
1689 | if (!strcmp(grid,"xcoarse")) gridtype_ = 0;
|
---|
1690 | else if (!strcmp(grid,"coarse")) gridtype_ = 1;
|
---|
1691 | else if (!strcmp(grid,"medium")) gridtype_ = 2;
|
---|
1692 | else if (!strcmp(grid,"fine")) gridtype_ = 3;
|
---|
1693 | else if (!strcmp(grid,"xfine")) gridtype_ = 4;
|
---|
1694 | else if (!strcmp(grid,"ultrafine")) gridtype_ = 5;
|
---|
1695 | else {
|
---|
1696 | ExEnv::out0()
|
---|
1697 | << indent
|
---|
1698 | << "ERROR: grid = \"" << grid << "\" not recognized."
|
---|
1699 | << endl
|
---|
1700 | << indent
|
---|
1701 | << "Choices are: xcoarse, coarse, medium, fine, xfine."
|
---|
1702 | << endl
|
---|
1703 | << indent
|
---|
1704 | << "The default is grid = fine."
|
---|
1705 | << endl;
|
---|
1706 | abort();
|
---|
1707 | }
|
---|
1708 |
|
---|
1709 | }
|
---|
1710 | else {
|
---|
1711 | gridtype_ = 3;
|
---|
1712 | }
|
---|
1713 |
|
---|
1714 |
|
---|
1715 |
|
---|
1716 | //ExEnv::outn() << " gridtype = " << gridtype_ << endl;
|
---|
1717 | //ExEnv::outn() << " max_gridtype = " << max_gridtype_ << endl;
|
---|
1718 | dynamic_grids_ = keyval->intvalue("dynamic");
|
---|
1719 | if (keyval->error() != KeyVal::OK) dynamic_grids_ = 1;
|
---|
1720 | grid_accuracy_ = new double[max_gridtype_];
|
---|
1721 | //ExEnv::outn() << "init_parameters:: max_gridtype_ = " << max_gridtype_;
|
---|
1722 |
|
---|
1723 | int i;
|
---|
1724 | grid_accuracy_[0] = 1e-4;
|
---|
1725 | for (i=1; i<max_gridtype_; i++) grid_accuracy_[i] = grid_accuracy_[i-1]*1e-1;
|
---|
1726 |
|
---|
1727 | init_pruning_coefficients(keyval);
|
---|
1728 |
|
---|
1729 | delete[] grid;
|
---|
1730 | }
|
---|
1731 |
|
---|
1732 |
|
---|
1733 | void
|
---|
1734 | RadialAngularIntegrator::set_grids(void)
|
---|
1735 | {
|
---|
1736 | int i, j, k;
|
---|
1737 |
|
---|
1738 | radial_grid_ = new_c_array2(natomic_rows_,gridtype_+1,
|
---|
1739 | Ref<RadialIntegrator>());
|
---|
1740 | angular_grid_ = new_c_array3(natomic_rows_, npruned_partitions_,
|
---|
1741 | gridtype_+1, Ref<AngularIntegrator>());
|
---|
1742 |
|
---|
1743 | int prune_formula_1[5] = {26, 18, 12, 0, 12}; // for H to Ne
|
---|
1744 | int prune_formula_2[5] = {36, 24, 12, 0, 12}; // for Na and up
|
---|
1745 |
|
---|
1746 | double prune_factor[5] = {0.1, 0.4, 0.6, 1.0, 0.6};
|
---|
1747 |
|
---|
1748 | if (npruned_partitions_ == 1) {
|
---|
1749 | prune_factor[0] = 1.0;
|
---|
1750 | prune_formula_1[0] = 0;
|
---|
1751 | prune_formula_2[0] = 0;
|
---|
1752 | }
|
---|
1753 | else if (npruned_partitions_ != 5) {
|
---|
1754 | ExEnv::errn() << "RadialAngularIntegrator::set_grids: "
|
---|
1755 | << "npruned_partitations must be 1 or 5" << endl;
|
---|
1756 | abort();
|
---|
1757 | }
|
---|
1758 |
|
---|
1759 | for (i=0; i<natomic_rows_; i++) {
|
---|
1760 | for (j=0; j<=gridtype_; j++)
|
---|
1761 | radial_grid_[i][j]
|
---|
1762 | = new EulerMaclaurinRadialIntegrator(nr_points_[i][j]);
|
---|
1763 |
|
---|
1764 | for (j=0; j<npruned_partitions_; j++) {
|
---|
1765 | for (k=0; k<=gridtype_; k++) {
|
---|
1766 | int grid_l = xcoarse_l_[i] + angular_grid_offset(k);
|
---|
1767 | int use_l;
|
---|
1768 |
|
---|
1769 | // the constant shift depends on the row and the partition
|
---|
1770 | int prune_formula;
|
---|
1771 | if (i<=1) prune_formula = prune_formula_1[j]; // H to Ne
|
---|
1772 | else prune_formula = prune_formula_2[j]; // Na and up
|
---|
1773 |
|
---|
1774 | // Compute the l to be used from both the constant shift and
|
---|
1775 | // the multiplicative factor method. Use the method giving
|
---|
1776 | // the highest l.
|
---|
1777 | int use_l_formula = grid_l - prune_formula;
|
---|
1778 | int use_l_factor = int(grid_l*prune_factor[j] + 0.5);
|
---|
1779 | if (use_l_formula > use_l_factor) use_l = use_l_formula;
|
---|
1780 | else use_l = use_l_factor;
|
---|
1781 |
|
---|
1782 | angular_grid_[i][j][k]
|
---|
1783 | = new LebedevLaikovIntegrator(Lebedev_Laikov_npoint(use_l));
|
---|
1784 | // ExEnv::outn() << " angular_grid_["
|
---|
1785 | // << i << "]["
|
---|
1786 | // << j << "]["
|
---|
1787 | // << k
|
---|
1788 | // << "]->nw = " << angular_grid_[i][j][k]->nw()
|
---|
1789 | // << " xc_l = " << xcoarse_l_[i]
|
---|
1790 | // << " off = " << angular_grid_offset(k)
|
---|
1791 | // << " grid_l = " << grid_l
|
---|
1792 | // << " use_l = " << use_l
|
---|
1793 | // << endl;
|
---|
1794 | }
|
---|
1795 | }
|
---|
1796 | }
|
---|
1797 | }
|
---|
1798 |
|
---|
1799 | void
|
---|
1800 | RadialAngularIntegrator::init_pruning_coefficients(void)
|
---|
1801 | {
|
---|
1802 | // Set up Alpha arrays for pruning
|
---|
1803 | //ExEnv::outn() << "npruned_partitions = " << npruned_partitions_ << endl;
|
---|
1804 | //ExEnv::outn() << "natomic_rows = " << natomic_rows_ << endl;
|
---|
1805 | int num_boundaries = npruned_partitions_-1;
|
---|
1806 | Alpha_coeffs_ = new_zero_c_array2(natomic_rows_, num_boundaries,
|
---|
1807 | double(0));
|
---|
1808 |
|
---|
1809 | // set pruning cutoff variables - Alpha -> radial shell cutoffs
|
---|
1810 | init_alpha_coefficients();
|
---|
1811 |
|
---|
1812 | }
|
---|
1813 |
|
---|
1814 | void
|
---|
1815 | RadialAngularIntegrator::init_pruning_coefficients(const Ref<KeyVal>& keyval)
|
---|
1816 | {
|
---|
1817 | int i, j;
|
---|
1818 |
|
---|
1819 | prune_grid_ = keyval->booleanvalue("prune_grid");
|
---|
1820 | if (keyval->error() != KeyVal::OK) prune_grid_ = 1;
|
---|
1821 |
|
---|
1822 | // ExEnv::outn() << "prune_grid = " << prune_grid_ << endl;
|
---|
1823 |
|
---|
1824 | // Need to generalize this to parse input for any number of grids
|
---|
1825 | if (prune_grid_) {
|
---|
1826 | npruned_partitions_ = keyval->count("angular_points");
|
---|
1827 | if (keyval->error() != KeyVal::OK) npruned_partitions_ = 5;
|
---|
1828 |
|
---|
1829 | // set pruning cutoff variables - Alpha -> radial shell cutoffs
|
---|
1830 | int num_boundaries = npruned_partitions_-1;
|
---|
1831 | Alpha_coeffs_ = new_zero_c_array2(natomic_rows_, num_boundaries,
|
---|
1832 | double(0));
|
---|
1833 | int alpha_rows = keyval->count("alpha_coeffs");
|
---|
1834 | if (keyval->error() != KeyVal::OK) {
|
---|
1835 | if (npruned_partitions_ != 5) {
|
---|
1836 | ExEnv::outn() << " RadialAngularIntegrator:: Need to supply alpha coefficients "
|
---|
1837 | << "for the " << num_boundaries << " partition boundaries " << endl;
|
---|
1838 | abort();
|
---|
1839 | }
|
---|
1840 | init_alpha_coefficients();
|
---|
1841 | }
|
---|
1842 | else { // alpha coefficients defined in input
|
---|
1843 | int check;
|
---|
1844 | for (i=0; i<alpha_rows; i++) {
|
---|
1845 | check = keyval->count("alpha_coeffs", i);
|
---|
1846 | if (check != num_boundaries) {
|
---|
1847 | ExEnv::outn() << "RadialAngularIntegrator:: Number of alpha coefficients does "
|
---|
1848 | << "not match the number of boundaries (" << check << " != "
|
---|
1849 | << num_boundaries << ")" << endl;
|
---|
1850 | abort();
|
---|
1851 | }
|
---|
1852 | for (j=0; j<num_boundaries; j++)
|
---|
1853 | Alpha_coeffs_[i][j] = keyval->doublevalue("alpha_coeffs", i, j);
|
---|
1854 | }
|
---|
1855 | }
|
---|
1856 | }
|
---|
1857 | else {
|
---|
1858 | npruned_partitions_ = 1;
|
---|
1859 | Alpha_coeffs_ = new_zero_c_array2(natomic_rows_,0,
|
---|
1860 | double(0));
|
---|
1861 | }
|
---|
1862 | }
|
---|
1863 |
|
---|
1864 | void
|
---|
1865 | RadialAngularIntegrator::init_alpha_coefficients(void)
|
---|
1866 | {
|
---|
1867 | // assumes Alpha_coeffs_ is allocated and zeroed.
|
---|
1868 |
|
---|
1869 | Alpha_coeffs_[0][0] = 0.25; Alpha_coeffs_[0][1] = 0.5;
|
---|
1870 | Alpha_coeffs_[0][2] = 0.9; Alpha_coeffs_[0][3] = 4.5;
|
---|
1871 | Alpha_coeffs_[1][0] = 0.1667; Alpha_coeffs_[1][1] = 0.5;
|
---|
1872 | Alpha_coeffs_[1][2] = 0.8; Alpha_coeffs_[1][3] = 4.5;
|
---|
1873 | Alpha_coeffs_[2][0] = 0.1; Alpha_coeffs_[2][1] = 0.4;
|
---|
1874 | Alpha_coeffs_[2][2] = 0.7; Alpha_coeffs_[2][3] = 2.5;
|
---|
1875 |
|
---|
1876 | // No pruning for atoms past second row
|
---|
1877 | int i;
|
---|
1878 | for (i=3; i<natomic_rows_; i++) Alpha_coeffs_[i][2] = DBL_MAX;
|
---|
1879 |
|
---|
1880 | }
|
---|
1881 |
|
---|
1882 | void
|
---|
1883 | RadialAngularIntegrator::init_default_grids(void)
|
---|
1884 | {
|
---|
1885 | xcoarse_l_ = new int[natomic_rows_];
|
---|
1886 |
|
---|
1887 | nr_points_ = new_c_array2(natomic_rows_,max_gridtype_,int(0));
|
---|
1888 |
|
---|
1889 | // Set angular momentum level of reference xcoarse grids for each atomic row
|
---|
1890 | xcoarse_l_[0] = 17; xcoarse_l_[1] = 17; xcoarse_l_[2] = 21;
|
---|
1891 | xcoarse_l_[3] = 25; xcoarse_l_[4] = 31;
|
---|
1892 |
|
---|
1893 | // Set number of radial points for each atomic row and grid type
|
---|
1894 | nr_points_[0][0] = 30; nr_points_[0][1] = 50; nr_points_[0][2] = 75;
|
---|
1895 | nr_points_[0][3] = 85; nr_points_[0][4] = 100; nr_points_[0][5] = 140;
|
---|
1896 |
|
---|
1897 | nr_points_[1][0] = 30; nr_points_[1][1] = 50; nr_points_[1][2] = 75;
|
---|
1898 | nr_points_[1][3] = 85; nr_points_[1][4] = 100; nr_points_[1][5] = 140;
|
---|
1899 |
|
---|
1900 | nr_points_[2][0] = 45; nr_points_[2][1] = 75; nr_points_[2][2] = 95;
|
---|
1901 | nr_points_[2][3] = 110; nr_points_[2][4] = 125; nr_points_[2][5] = 175;
|
---|
1902 |
|
---|
1903 | nr_points_[3][0] = 75; nr_points_[3][1] = 95; nr_points_[3][2] = 110;
|
---|
1904 | nr_points_[3][3] = 130; nr_points_[3][4] = 160; nr_points_[3][5] = 210;
|
---|
1905 |
|
---|
1906 | nr_points_[4][0] = 105; nr_points_[4][1] = 130; nr_points_[4][2] = 155;
|
---|
1907 | nr_points_[4][3] = 180; nr_points_[4][4] = 205; nr_points_[4][5] = 235;
|
---|
1908 |
|
---|
1909 | // prune_grid_ = 1; npruned_partitions_ = 5; gridtype_ = 2;
|
---|
1910 | }
|
---|
1911 |
|
---|
1912 | int
|
---|
1913 | RadialAngularIntegrator::angular_grid_offset(int gridtype)
|
---|
1914 | {
|
---|
1915 | switch (gridtype) {
|
---|
1916 | case 0: return 0;
|
---|
1917 | case 1: return 6;
|
---|
1918 | case 2: return 12;
|
---|
1919 | case 3: return 18;
|
---|
1920 | case 4: return 30;
|
---|
1921 | case 5: return 42;
|
---|
1922 | default: abort();
|
---|
1923 | }
|
---|
1924 | return 0;
|
---|
1925 | }
|
---|
1926 |
|
---|
1927 | RadialIntegrator *
|
---|
1928 | RadialAngularIntegrator::get_radial_grid(int charge, int deriv_order)
|
---|
1929 | {
|
---|
1930 | if (radial_user_.null()) {
|
---|
1931 |
|
---|
1932 | int select_grid;
|
---|
1933 |
|
---|
1934 | if (dynamic_grids_ && deriv_order == 0)
|
---|
1935 | select_grid = select_dynamic_grid();
|
---|
1936 | else select_grid = gridtype_;
|
---|
1937 | //ExEnv::out << "RAI::get_radial_grid -> select_grid = " << select_grid;
|
---|
1938 |
|
---|
1939 | if (charge<3) return radial_grid_[0][select_grid].pointer();
|
---|
1940 | else if (charge<11) return radial_grid_[1][select_grid].pointer();
|
---|
1941 | else if (charge<19) return radial_grid_[2][select_grid].pointer();
|
---|
1942 | else if (charge<37) return radial_grid_[3][select_grid].pointer();
|
---|
1943 | else if (charge<55) return radial_grid_[4][select_grid].pointer();
|
---|
1944 | else {
|
---|
1945 | ExEnv::outn() << " No default radial grids for atomic charge " << charge << endl;
|
---|
1946 | abort();
|
---|
1947 | }
|
---|
1948 | }
|
---|
1949 |
|
---|
1950 | return radial_user_.pointer();
|
---|
1951 |
|
---|
1952 | }
|
---|
1953 |
|
---|
1954 | int
|
---|
1955 | RadialAngularIntegrator::select_dynamic_grid(void)
|
---|
1956 | {
|
---|
1957 | double accuracy = get_accuracy();
|
---|
1958 | // accurate_grid = gridtype_ to get original non-dynamic version
|
---|
1959 | // ExEnv::out << " accuracy = " << accuracy << endl;
|
---|
1960 | int select_grid;
|
---|
1961 | int i;
|
---|
1962 |
|
---|
1963 | if (accuracy >= grid_accuracy_[0]) select_grid=0;
|
---|
1964 | else if (accuracy <= grid_accuracy_[gridtype_]) select_grid=gridtype_;
|
---|
1965 | else {
|
---|
1966 | for (i=gridtype_; i>=0; i--)
|
---|
1967 | if (accuracy >= grid_accuracy_[i]) select_grid=i;
|
---|
1968 | }
|
---|
1969 |
|
---|
1970 | // ExEnv::out << " select_grid = " << select_grid << endl;
|
---|
1971 | return select_grid;
|
---|
1972 | }
|
---|
1973 |
|
---|
1974 | int
|
---|
1975 | RadialAngularIntegrator::get_atomic_row(int i)
|
---|
1976 | {
|
---|
1977 | if (i<3) return 0;
|
---|
1978 | else if (i<11) return 1;
|
---|
1979 | else if (i<19) return 2;
|
---|
1980 | else if (i<37) return 3;
|
---|
1981 | else if (i<55) return 4;
|
---|
1982 | else if (i<87) return 5;
|
---|
1983 |
|
---|
1984 | ExEnv::outn() << " RadialAngularIntegrator::get_atomic_row: Z too large: "
|
---|
1985 | << i << endl;
|
---|
1986 | abort();
|
---|
1987 | return 0;
|
---|
1988 | }
|
---|
1989 |
|
---|
1990 | AngularIntegrator *
|
---|
1991 | RadialAngularIntegrator::get_angular_grid(double radius, double atomic_radius,
|
---|
1992 | int Z, int deriv_order)
|
---|
1993 | {
|
---|
1994 | int atomic_row, i;
|
---|
1995 |
|
---|
1996 | int select_grid;
|
---|
1997 | if (dynamic_grids_ && deriv_order == 0) select_grid = select_dynamic_grid();
|
---|
1998 | else select_grid = gridtype_;
|
---|
1999 |
|
---|
2000 | //ExEnv::out << "RAI::get_angular_grid -> select_grid = " << select_grid;
|
---|
2001 | //ExEnv::out << " prune_grid_ = " << prune_grid_ << endl;
|
---|
2002 | atomic_row = get_atomic_row(Z);
|
---|
2003 | if (angular_user_.null()) {
|
---|
2004 | // Seleted Alpha's
|
---|
2005 | double *Alpha = Alpha_coeffs_[atomic_row];
|
---|
2006 | // gridtype_ will need to be adjusted for dynamic grids
|
---|
2007 | for (i=0; i<npruned_partitions_-1; i++) {
|
---|
2008 | if (radius/atomic_radius < Alpha[i]) {
|
---|
2009 | return angular_grid_[atomic_row][i][select_grid].pointer();
|
---|
2010 | }
|
---|
2011 | }
|
---|
2012 | return angular_grid_[atomic_row][npruned_partitions_-1][select_grid]
|
---|
2013 | .pointer();
|
---|
2014 | }
|
---|
2015 | else {
|
---|
2016 | return angular_user_.pointer();
|
---|
2017 | }
|
---|
2018 | }
|
---|
2019 |
|
---|
2020 | void
|
---|
2021 | RadialAngularIntegrator::integrate(const Ref<DenFunctional> &denfunc,
|
---|
2022 | const RefSymmSCMatrix& densa,
|
---|
2023 | const RefSymmSCMatrix& densb,
|
---|
2024 | double *nuclear_gradient)
|
---|
2025 | {
|
---|
2026 | int i;
|
---|
2027 |
|
---|
2028 | tim_enter("integrate");
|
---|
2029 |
|
---|
2030 | init_integration(denfunc, densa, densb, nuclear_gradient);
|
---|
2031 |
|
---|
2032 | weight_->init(wavefunction()->molecule(), DBL_EPSILON);
|
---|
2033 |
|
---|
2034 | int me = messagegrp_->me();
|
---|
2035 | int nthread = threadgrp_->nthread();
|
---|
2036 | int nthread_overall = nthread;
|
---|
2037 | messagegrp_->sum(nthread_overall);
|
---|
2038 | int ithread_overall = 0;
|
---|
2039 | if (me > 0) {
|
---|
2040 | messagegrp_->recv(me - 1,ithread_overall);
|
---|
2041 | }
|
---|
2042 | if (me < messagegrp_->n() - 1) {
|
---|
2043 | int ithread_overall_next = ithread_overall + nthread;
|
---|
2044 | messagegrp_->send(me + 1, ithread_overall_next);
|
---|
2045 | }
|
---|
2046 |
|
---|
2047 | // create threads
|
---|
2048 | //cout << "creating test lock" << endl;
|
---|
2049 | //Ref<ThreadLock> reflock = threadgrp_->new_lock();
|
---|
2050 | //tlock = reflock.pointer();
|
---|
2051 | RadialAngularIntegratorThread **threads =
|
---|
2052 | new RadialAngularIntegratorThread*[nthread];
|
---|
2053 | for (i=0; i<nthread; i++) {
|
---|
2054 | Ref<BatchElectronDensity> bed = new BatchElectronDensity(den_, true);
|
---|
2055 | if (nuclear_gradient != 0) {
|
---|
2056 | bed->set_need_basis_gradient(true);
|
---|
2057 | if (denfunc->need_density_gradient()) bed->set_need_basis_hessian(true);
|
---|
2058 | }
|
---|
2059 | threads[i] = new RadialAngularIntegratorThread(
|
---|
2060 | i + ithread_overall, nthread_overall,
|
---|
2061 | this, denfunc.pointer(),
|
---|
2062 | bed,
|
---|
2063 | linear_scaling_, use_dmat_bound_,
|
---|
2064 | accuracy_, compute_potential_integrals_,
|
---|
2065 | nuclear_gradient != 0);
|
---|
2066 | threadgrp_->add_thread(i, threads[i]);
|
---|
2067 | }
|
---|
2068 |
|
---|
2069 | //for (i=0; i<nthread; i++) {
|
---|
2070 | // ExEnv::outn() << "Intial Thread " << i
|
---|
2071 | // << ": point count = " << threads[i]->point_count()
|
---|
2072 | // << " total density = " << threads[i]->total_density()
|
---|
2073 | // << " value = " << threads[i]->value()
|
---|
2074 | // << endl;
|
---|
2075 | //}
|
---|
2076 |
|
---|
2077 | // run threads
|
---|
2078 | threadgrp_->start_threads();
|
---|
2079 | threadgrp_->wait_threads();
|
---|
2080 | //for (i=0; i<nthread; i++) {
|
---|
2081 | // cout << "Running thread " << i << endl;
|
---|
2082 | // threads[i]->run();
|
---|
2083 | // }
|
---|
2084 |
|
---|
2085 | // sum results
|
---|
2086 | int point_count_total = 0;
|
---|
2087 | double total_density = 0.0;
|
---|
2088 | value_ = 0.0;
|
---|
2089 | for (i=0; i<nthread; i++) {
|
---|
2090 | //ExEnv::outn() << "Thread " << i
|
---|
2091 | // << ": point count = " << threads[i]->point_count()
|
---|
2092 | // << " total density = " << threads[i]->total_density()
|
---|
2093 | // << " value = " << threads[i]->value()
|
---|
2094 | // << endl;
|
---|
2095 | point_count_total += threads[i]->point_count();
|
---|
2096 | total_density += threads[i]->total_density();
|
---|
2097 | value_ += threads[i]->value();
|
---|
2098 | if (compute_potential_integrals_) {
|
---|
2099 | int ntri = (nbasis_*(nbasis_+1))/2;
|
---|
2100 | double *alpha_vmat_i = threads[i]->alpha_vmat();
|
---|
2101 | for (int j=0; j<ntri; j++) alpha_vmat_[j] += alpha_vmat_i[j];
|
---|
2102 | if (spin_polarized_) {
|
---|
2103 | double *beta_vmat_i = threads[i]->beta_vmat();
|
---|
2104 | for (int j=0; j<ntri; j++) beta_vmat_[j] += beta_vmat_i[j];
|
---|
2105 | }
|
---|
2106 | }
|
---|
2107 | if (nuclear_gradient != 0) {
|
---|
2108 | int natom3 = 3 * wavefunction()->molecule()->natom();
|
---|
2109 | double *th_nuclear_gradient = threads[i]->nuclear_gradient();
|
---|
2110 | for (int j=0; j<natom3; j++) {
|
---|
2111 | nuclear_gradient[j] += th_nuclear_gradient[j];
|
---|
2112 | }
|
---|
2113 | }
|
---|
2114 | }
|
---|
2115 |
|
---|
2116 | threadgrp_->delete_threads();
|
---|
2117 | delete[] threads;
|
---|
2118 |
|
---|
2119 | messagegrp_->sum(point_count_total);
|
---|
2120 | messagegrp_->sum(total_density);
|
---|
2121 | done_integration();
|
---|
2122 | weight_->done();
|
---|
2123 |
|
---|
2124 | ExEnv::out0() << indent
|
---|
2125 | << "Total integration points = " << point_count_total << endl;
|
---|
2126 | ExEnv::out0() << indent
|
---|
2127 | << "Integrated electron density error = "
|
---|
2128 | << scprintf("%14.12f", total_density-wfn_->nelectron())
|
---|
2129 | << endl;
|
---|
2130 |
|
---|
2131 | tim_exit("integrate");
|
---|
2132 | }
|
---|
2133 |
|
---|
2134 | void
|
---|
2135 | RadialAngularIntegrator::print(ostream &o) const
|
---|
2136 | {
|
---|
2137 | o << indent << class_name() << ":" << endl;
|
---|
2138 | o << incindent;
|
---|
2139 | if (radial_user_.nonnull()) {
|
---|
2140 | o << indent << "User defined radial grid:" << endl;
|
---|
2141 | o << incindent;
|
---|
2142 | radial_user_->print(o);
|
---|
2143 | o << decindent;
|
---|
2144 | }
|
---|
2145 | if (angular_user_.nonnull()) {
|
---|
2146 | o << indent << "User defined angular grid:" << endl;
|
---|
2147 | o << incindent;
|
---|
2148 | angular_user_->print(o);
|
---|
2149 | o << decindent;
|
---|
2150 | }
|
---|
2151 | if (angular_user_.null() || radial_user_.null()) {
|
---|
2152 | if (prune_grid_) o << indent << "Pruned ";
|
---|
2153 | switch (gridtype_) {
|
---|
2154 | case 0: o << "xcoarse"; break;
|
---|
2155 | case 1: o << "coarse"; break;
|
---|
2156 | case 2: o << "medium"; break;
|
---|
2157 | case 3: o << "fine"; break;
|
---|
2158 | case 4: o << "xfine"; break;
|
---|
2159 | case 5: o << "ultrafine"; break;
|
---|
2160 | default: o << "unknown"; break;
|
---|
2161 | }
|
---|
2162 | o << " grid employed" << endl;
|
---|
2163 | }
|
---|
2164 |
|
---|
2165 | o << decindent;
|
---|
2166 | }
|
---|
2167 |
|
---|
2168 | /////////////////////////////////////////////////////////////////////////////
|
---|
2169 |
|
---|
2170 | }
|
---|
2171 |
|
---|
2172 | // Local Variables:
|
---|
2173 | // mode: c++
|
---|
2174 | // c-file-style: "CLJ"
|
---|
2175 | // End:
|
---|
2176 |
|
---|