source: ThirdParty/mpqc_open/src/lib/chemistry/qc/dft/clks.cc@ 47b463

Action_Thermostats Add_AtomRandomPerturbation Add_RotateAroundBondAction Add_SelectAtomByNameAction Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_StructOpt_integration_tests AutomationFragmentation_failures Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_ChronosMutex Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion GeometryObjects Gui_displays_atomic_force_velocity IndependentFragmentGrids_IntegrationTest JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks RotateToPrincipalAxisSystem_UndoRedo StoppableMakroAction Subpackage_levmar Subpackage_vmg ThirdParty_MPQC_rebuilt_buildsystem TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps Ubuntu_1604_changes stable
Last change on this file since 47b463 was 860145, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '0b990dfaa8c6007a996d030163a25f7f5fc8a7e7' as 'ThirdParty/mpqc_open'

  • Property mode set to 100644
File size: 10.9 KB
Line 
1//
2// clks.cc --- implementation of the closed shell Kohn-Sham SCF class
3//
4// Copyright (C) 1997 Limit Point Systems, Inc.
5//
6// Author: Edward Seidl <seidl@janed.com>
7// Maintainer: LPS
8//
9// This file is part of the SC Toolkit.
10//
11// The SC Toolkit is free software; you can redistribute it and/or modify
12// it under the terms of the GNU Library General Public License as published by
13// the Free Software Foundation; either version 2, or (at your option)
14// any later version.
15//
16// The SC Toolkit is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU Library General Public License for more details.
20//
21// You should have received a copy of the GNU Library General Public License
22// along with the SC Toolkit; see the file COPYING.LIB. If not, write to
23// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24//
25// The U.S. Government is granted a limited license as per AL 91-7.
26//
27
28#ifdef __GNUC__
29#pragma implementation
30#endif
31
32#include <math.h>
33
34#include <util/misc/timer.h>
35#include <util/misc/formio.h>
36#include <util/state/stateio.h>
37
38#include <math/optimize/scextrapmat.h>
39
40#include <chemistry/qc/basis/petite.h>
41
42#include <chemistry/qc/dft/clks.h>
43#include <chemistry/qc/scf/lgbuild.h>
44#include <chemistry/qc/scf/ltbgrad.h>
45
46#include <chemistry/qc/dft/clkstmpl.h>
47
48using namespace std;
49using namespace sc;
50
51///////////////////////////////////////////////////////////////////////////
52// CLKS
53
54static ClassDesc CLKS_cd(
55 typeid(CLKS),"CLKS",1,"public CLSCF",
56 0, create<CLKS>, create<CLKS>);
57
58CLKS::CLKS(StateIn& s) :
59 SavableState(s),
60 CLSCF(s)
61{
62 exc_=0;
63 integrator_ << SavableState::restore_state(s);
64 functional_ << SavableState::restore_state(s);
65 vxc_ = basis_matrixkit()->symmmatrix(so_dimension());
66 vxc_.restore(s);
67}
68
69CLKS::CLKS(const Ref<KeyVal>& keyval) :
70 CLSCF(keyval)
71{
72 exc_=0;
73 integrator_ << keyval->describedclassvalue("integrator");
74 if (integrator_.null()) integrator_ = new RadialAngularIntegrator();
75
76 functional_ << keyval->describedclassvalue("functional");
77 if (functional_.null()) {
78 ExEnv::outn() << "ERROR: " << class_name() << ": no \"functional\" given" << endl;
79 abort();
80 }
81}
82
83CLKS::~CLKS()
84{
85}
86
87void
88CLKS::save_data_state(StateOut& s)
89{
90 CLSCF::save_data_state(s);
91 SavableState::save_state(integrator_.pointer(),s);
92 SavableState::save_state(functional_.pointer(),s);
93 vxc_.save(s);
94}
95
96int
97CLKS::value_implemented() const
98{
99 return 1;
100}
101
102int
103CLKS::gradient_implemented() const
104{
105 return 1;
106}
107
108void
109CLKS::print(ostream&o) const
110{
111 o << indent << "Closed Shell Kohn-Sham (CLKS) Parameters:" << endl;
112 o << incindent;
113 CLSCF::print(o);
114 o << indent << "Functional:" << endl;
115 o << incindent;
116 functional_->print(o);
117 o << decindent;
118 o << indent << "Integrator:" << endl;
119 o << incindent;
120 integrator_->print(o);
121 o << decindent;
122 o << decindent;
123}
124
125RefSymmSCMatrix
126CLKS::density()
127{
128 RefSymmSCMatrix dens(so_dimension(), basis_matrixkit());
129 so_density(dens, 2.0);
130 dens.scale(2.0);
131 return dens;
132}
133
134double
135CLKS::scf_energy()
136{
137 double ehf = CLSCF::scf_energy();
138 return ehf+exc_;
139}
140
141RefSymmSCMatrix
142CLKS::effective_fock()
143{
144 RefSymmSCMatrix fa = fock(0) + vxc_;
145
146 RefSymmSCMatrix mofock(oso_dimension(), basis_matrixkit());
147 mofock.assign(0.0);
148
149 // use eigenvectors if scf_vector_ is null
150 if (oso_scf_vector_.null())
151 mofock.accumulate_transform(eigenvectors(), fa,
152 SCMatrix::TransposeTransform);
153 else
154 mofock.accumulate_transform(so_to_orthog_so().t() * oso_scf_vector_, fa,
155 SCMatrix::TransposeTransform);
156
157 return mofock;
158}
159
160Ref<SCExtrapData>
161CLKS::extrap_data()
162{
163 Ref<SCExtrapData> data =
164 new SymmSCMatrix2SCExtrapData(cl_fock_.result_noupdate(), vxc_);
165 return data;
166}
167
168//////////////////////////////////////////////////////////////////////////////
169
170void
171CLKS::ao_fock(double accuracy)
172{
173 Ref<PetiteList> pl = integral()->petite_list(basis());
174
175 // calculate G. First transform cl_dens_diff_ to the AO basis, then
176 // scale the off-diagonal elements by 2.0
177 tim_enter("setup");
178 RefSymmSCMatrix dd = cl_dens_diff_;
179 cl_dens_diff_ = pl->to_AO_basis(dd);
180 cl_dens_diff_->scale(2.0);
181 cl_dens_diff_->scale_diagonal(0.5);
182 tim_exit("setup");
183
184 // now try to figure out the matrix specialization we're dealing with
185 // if we're using Local matrices, then there's just one subblock, or
186 // see if we can convert G and P to local matrices
187
188 if (local_ || local_dens_) {
189 // grab the data pointers from the G and P matrices
190 double *gmat, *pmat;
191 tim_enter("local data");
192 RefSymmSCMatrix gtmp = get_local_data(cl_gmat_, gmat, SCF::Accum);
193 RefSymmSCMatrix ptmp = get_local_data(cl_dens_diff_, pmat, SCF::Read);
194 tim_exit("local data");
195
196 tim_enter("init pmax");
197 signed char * pmax = init_pmax(pmat);
198 tim_exit("init pmax");
199
200// LocalCLKSContribution lclc(gmat, pmat, functional_->a0());
201// LocalGBuild<LocalCLKSContribution>
202// gb(lclc, tbi_, pl, basis(), scf_grp_, pmax, desired_value_accuracy()/100.0);
203// gb.run();
204 int i;
205 int nthread = threadgrp_->nthread();
206 LocalGBuild<LocalCLKSContribution> **gblds =
207 new LocalGBuild<LocalCLKSContribution>*[nthread];
208 LocalCLKSContribution **conts = new LocalCLKSContribution*[nthread];
209
210 double **gmats = new double*[nthread];
211 gmats[0] = gmat;
212
213 Ref<GaussianBasisSet> bs = basis();
214 int ntri = i_offset(bs->nbasis());
215
216 double gmat_accuracy = accuracy;
217 if (min_orthog_res() < 1.0) { gmat_accuracy *= min_orthog_res(); }
218
219 for (i=0; i < nthread; i++) {
220 if (i) {
221 gmats[i] = new double[ntri];
222 memset(gmats[i], 0, sizeof(double)*ntri);
223 }
224 conts[i] = new LocalCLKSContribution(gmats[i], pmat, functional_->a0());
225 gblds[i] = new LocalGBuild<LocalCLKSContribution>(*conts[i], tbis_[i],
226 pl, bs, scf_grp_, pmax, gmat_accuracy, nthread, i
227 );
228
229 threadgrp_->add_thread(i, gblds[i]);
230 }
231
232 tim_enter("start thread");
233 if (threadgrp_->start_threads() < 0) {
234 ExEnv::err0() << indent
235 << "CLKS: error starting threads" << endl;
236 abort();
237 }
238 tim_exit("start thread");
239
240 tim_enter("stop thread");
241 if (threadgrp_->wait_threads() < 0) {
242 ExEnv::err0() << indent
243 << "CLKS: error waiting for threads" << endl;
244 abort();
245 }
246 tim_exit("stop thread");
247
248 double tnint=0;
249 for (i=0; i < nthread; i++) {
250 tnint += gblds[i]->tnint;
251
252 if (i) {
253 for (int j=0; j < ntri; j++)
254 gmat[j] += gmats[i][j];
255 delete[] gmats[i];
256 }
257 delete gblds[i];
258 delete conts[i];
259 }
260
261 delete[] gmats;
262 delete[] gblds;
263 delete[] conts;
264
265 delete[] pmax;
266
267 scf_grp_->sum(&tnint, 1, 0, 0);
268 ExEnv::out0() << indent << scprintf("%20.0f integrals\n", tnint);
269
270 // if we're running on multiple processors, then sum the G matrix
271 tim_enter("sum");
272 if (scf_grp_->n() > 1)
273 scf_grp_->sum(gmat, i_offset(basis()->nbasis()));
274 tim_exit("sum");
275
276 // if we're running on multiple processors, or we don't have local
277 // matrices, then accumulate gtmp back into G
278 tim_enter("accum");
279 if (!local_ || scf_grp_->n() > 1)
280 cl_gmat_->convert_accumulate(gtmp);
281 tim_exit("accum");
282 }
283
284 // for now quit
285 else {
286 ExEnv::out0() << indent << "Cannot yet use anything but Local matrices\n";
287 abort();
288 }
289
290 cl_dens_diff_ = pl->to_AO_basis(cl_dens_);
291 cl_dens_diff_.scale(0.5);
292 integrator_->set_compute_potential_integrals(1);
293 integrator_->set_accuracy(accuracy);
294 integrator_->integrate(functional_, cl_dens_diff_, cl_dens_diff_);
295 exc_ = integrator_->value();
296 RefSymmSCMatrix vxa = cl_gmat_.clone();
297 vxa->assign((double*)integrator_->alpha_vmat());
298 vxa = pl->to_SO_basis(vxa);
299 vxc_ = vxa;
300
301 tim_enter("symm");
302 // get rid of AO delta P
303 cl_dens_diff_ = dd;
304 dd = cl_dens_diff_.clone();
305
306 // now symmetrize the skeleton G matrix, placing the result in dd
307 RefSymmSCMatrix skel_gmat = cl_gmat_.copy();
308 skel_gmat.scale(1.0/(double)pl->order());
309 pl->symmetrize(skel_gmat,dd);
310 tim_exit("symm");
311
312
313 // F = H+G
314 cl_fock_.result_noupdate().assign(hcore_);
315 cl_fock_.result_noupdate().accumulate(dd);
316 accumddh_->accum(cl_fock_.result_noupdate());
317 cl_fock_.computed()=1;
318}
319
320/////////////////////////////////////////////////////////////////////////////
321
322void
323CLKS::two_body_energy(double &ec, double &ex)
324{
325 tim_enter("clks e2");
326 ec = 0.0;
327 ex = 0.0;
328
329 if (local_ || local_dens_) {
330 // grab the data pointers from the G and P matrices
331 double *pmat;
332 tim_enter("local data");
333 RefSymmSCMatrix dens = ao_density();
334 dens->scale(2.0);
335 dens->scale_diagonal(0.5);
336 RefSymmSCMatrix ptmp = get_local_data(dens, pmat, SCF::Read);
337 tim_exit("local data");
338
339 // initialize the two electron integral classes
340 Ref<TwoBodyInt> tbi = integral()->electron_repulsion();
341 tbi->set_integral_storage(0);
342
343 tim_enter("init pmax");
344 signed char * pmax = init_pmax(pmat);
345 tim_exit("init pmax");
346
347 LocalCLKSEnergyContribution lclc(pmat, functional_->a0());
348 Ref<PetiteList> pl = integral()->petite_list();
349 LocalGBuild<LocalCLKSEnergyContribution>
350 gb(lclc, tbi, pl, basis(), scf_grp_, pmax,
351 desired_value_accuracy()/100.0);
352 gb.run();
353
354 delete[] pmax;
355
356 ec = lclc.ec;
357 ex = lclc.ex;
358 }
359 else {
360 ExEnv::out0() << indent << "Cannot yet use anything but Local matrices\n";
361 abort();
362 }
363 tim_exit("clks e2");
364}
365
366/////////////////////////////////////////////////////////////////////////////
367
368void
369CLKS::two_body_deriv(double * tbgrad)
370{
371 tim_enter("grad");
372
373 int natom3 = 3*molecule()->natom();
374
375 tim_enter("two-body");
376 double *hfgrad = new double[natom3];
377 memset(hfgrad,0,sizeof(double)*natom3);
378 two_body_deriv_hf(hfgrad,functional_->a0());
379 //print_natom_3(hfgrad, "Two-body contribution to DFT gradient");
380 tim_exit("two-body");
381
382 double *dftgrad = new double[natom3];
383 memset(dftgrad,0,sizeof(double)*natom3);
384 Ref<PetiteList> pl = integral()->petite_list(basis());
385 RefSymmSCMatrix aodens = gradient_density();
386 aodens.scale(0.5);
387 integrator_->set_compute_potential_integrals(0);
388 integrator_->init(this);
389 integrator_->set_accuracy(desired_gradient_accuracy());
390 integrator_->integrate(functional_, aodens, aodens, dftgrad);
391 integrator_->done();
392 //print_natom_3(dftgrad, "E-X contribution to DFT gradient");
393
394 scf_grp_->sum(dftgrad, natom3);
395
396 for (int i=0; i<natom3; i++) tbgrad[i] += dftgrad[i] + hfgrad[i];
397 delete[] dftgrad;
398 delete[] hfgrad;
399
400 tim_exit("grad");
401}
402
403/////////////////////////////////////////////////////////////////////////////
404
405void
406CLKS::init_vector()
407{
408 integrator_->init(this);
409 CLSCF::init_vector();
410}
411
412void
413CLKS::done_vector()
414{
415 integrator_->done();
416 CLSCF::done_vector();
417}
418
419/////////////////////////////////////////////////////////////////////////////
420
421// Local Variables:
422// mode: c++
423// c-file-style: "ETS"
424// End:
Note: See TracBrowser for help on using the repository browser.