// // macros.h // // Copyright (C) 2001 Edward Valeev // // Author: Edward Valeev // Maintainer: EV // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // /* True if the integral is nonzero. */ #define INT_NONZERO(x) (((x)< -1.0e-15)||((x)> 1.0e-15)) /* Computes an index to a Cartesian function within a shell given * am = total angular momentum * i = the exponent of x (i is used twice in the macro--beware side effects) * j = the exponent of y * formula: (am - i + 1)*(am - i)/2 + am - i - j unless i==am, then 0 * The following loop will generate indices in the proper order: * cartindex = 0; * for (i=am; i>=0; i--) { * for (j=am-i; j>=0; j--) { * do_it_with(cartindex); * cartindex++; * } * } */ #define INT_CARTINDEX(am,i,j) (((i) == (am))? 0 : (((((am) - (i) + 1)*((am) - (i)))>>1) + (am) - (i) - (j))) /* This sets up the above loop over cartesian exponents as follows * FOR_CART(i,j,k,am) * Stuff using i,j,k. * END_FOR_CART */ #define FOR_CART(i,j,k,am) for((i)=(am);(i)>=0;(i)--) {\ for((j)=(am)-(i);(j)>=0;(j)--) \ { (k) = (am) - (i) - (j); #define END_FOR_CART }} /* This sets up a loop over all of the generalized contractions * and all of the cartesian exponents. * gc is the number of the gen con * index is the index within the current gen con. * i,j,k are the angular momentum for x,y,z * sh is the shell pointer */ #define FOR_GCCART(gc,index,i,j,k,sh)\ for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\ (index)=0;\ FOR_CART(i,j,k,(sh)->type[gc].am) #define FOR_GCCART_GS(gc,index,i,j,k,sh)\ for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\ (index)=0;\ FOR_CART(i,j,k,(sh)->am(gc)) #define END_FOR_GCCART(index)\ (index)++;\ END_FOR_CART\ } #define END_FOR_GCCART_GS(index)\ (index)++;\ END_FOR_CART\ } /* These are like the above except no index is kept track of. */ #define FOR_GCCART2(gc,i,j,k,sh)\ for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\ FOR_CART(i,j,k,(sh)->type[gc].am) #define END_FOR_GCCART2\ END_FOR_CART\ } /* These are used to loop over shells, given the centers structure * and the center index, and shell index. */ #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\ for((j)=0;(j)<(c)->center[(i)].basis.n;j++) { #define END_FOR_SHELLS }} /* Computes the number of Cartesian function in a shell given * am = total angular momentum * formula: (am*(am+1))/2 + am+1; */ #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0) /* Like INT_NCART, but only for nonnegative arguments. */ #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1) /* For a given ang. mom., am, with n cartesian functions, compute the * number of cartesian functions for am+1 or am-1 */ #define INT_NCART_DEC(am,n) ((n)-(am)-1) #define INT_NCART_INC(am,n) ((n)+(am)+2) /* Computes the number of pure angular momentum functions in a shell * given am = total angular momentum */ #define INT_NPURE(am) (2*(am)+1) /* Computes the number of functions in a shell given * pu = pure angular momentum boolean * am = total angular momentum */ #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am)) /* Given a centers pointer and a shell number, this evaluates the * pointer to that shell. */ #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]]) /* Given a centers pointer and a shell number, get the angular momentum * of that shell. */ #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am) /* Given a centers pointer and a shell number, get pure angular momentum * boolean for that shell. */ #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream) /* Given a centers pointer, a center number, and a shell number, * get the angular momentum of that shell. */ #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am) /* Given a centers pointer, a center number, and a shell number, * get pure angular momentum boolean for that shell. */ #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream) /* Given a centers pointer and a shell number, compute the number * of functions in that shell. */ /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */ #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc) /* These macros assist in looping over the unique integrals * in a shell quartet. The exy variables are booleans giving * information about the equivalence between shells x and y. The nx * variables give the number of functions in each shell, x. The * i,j,k are the current values of the looping indices for shells 1, 2, and 3. * The macros return the maximum index to be included in a summation * over indices 1, 2, 3, and 4. * These macros require canonical integrals. This requirement comes * from the need that integrals of the shells (1 2|2 1) are not * used. The integrals (1 2|1 2) must be used with these macros to * get the right nonredundant integrals. */ #define INT_MAX1(n1) ((n1)-1) #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1)) #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1)) #define INT_MAX4(e13e24,e34,i,j,k,n4) \ ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \ :((e13e24)&&((k)==(i)))?(j):(n4)-1) /* A note on integral symmetries: * There are 15 ways of having equivalent indices. * There are 8 of these which are important for determining the * nonredundant integrals (that is there are only 8 ways of counting * the number of nonredundant integrals in a shell quartet) * Integral type Integral Counting Type * 1 (1 2|3 4) 1 * 2 (1 1|3 4) 2 * 3 (1 2|1 4) ->1 * 4 (1 2|3 1) ->1 * 5 (1 1|1 4) 3 * 6 (1 1|3 1) ->2 * 7 (1 2|1 1) ->5 * 8 (1 1|1 1) 4 * 9 (1 2|2 4) ->1 * 10 (1 2|3 2) ->1 * 11 (1 2|3 3) 5 * 12 (1 1|3 3) 6 * 13 (1 2|1 2) 7 * 14 (1 2|2 1) 8 reduces to 7 thru canonicalization * 15 (1 2|2 2) ->5 */