source: ThirdParty/mpqc_open/src/lib/chemistry/qc/cints/fjt.cc@ 47b463

Action_Thermostats Add_AtomRandomPerturbation Add_RotateAroundBondAction Add_SelectAtomByNameAction Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_StructOpt_integration_tests AutomationFragmentation_failures Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_ChronosMutex Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion GeometryObjects Gui_displays_atomic_force_velocity IndependentFragmentGrids_IntegrationTest JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks RotateToPrincipalAxisSystem_UndoRedo StoppableMakroAction Subpackage_levmar Subpackage_vmg ThirdParty_MPQC_rebuilt_buildsystem TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps Ubuntu_1604_changes stable
Last change on this file since 47b463 was 860145, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '0b990dfaa8c6007a996d030163a25f7f5fc8a7e7' as 'ThirdParty/mpqc_open'

  • Property mode set to 100644
File size: 5.8 KB
Line 
1//
2// fjt.cc
3//
4// Copyright (C) 2001 Edward Valeev
5//
6// Author: Edward Valeev <edward.valeev@chemistry.gatech.edu>
7// Maintainer: EV
8//
9// This file is part of the SC Toolkit.
10//
11// The SC Toolkit is free software; you can redistribute it and/or modify
12// it under the terms of the GNU Library General Public License as published by
13// the Free Software Foundation; either version 2, or (at your option)
14// any later version.
15//
16// The SC Toolkit is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU Library General Public License for more details.
20//
21// You should have received a copy of the GNU Library General Public License
22// along with the SC Toolkit; see the file COPYING.LIB. If not, write to
23// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24//
25// The U.S. Government is granted a limited license as per AL 91-7.
26//
27
28#ifdef __GNUG__
29#pragma implementation
30#endif
31
32/* These routines are based on the gamfun program of
33 * Trygve Ulf Helgaker (fall 1984)
34 * and calculates the incomplete gamma function as
35 * described by McMurchie & Davidson, J. Comp. Phys. 26 (1978) 218.
36 * The original routine computed the function for maximum j = 20.
37 */
38
39#include <stdlib.h>
40#include <util/misc/math.h>
41
42#include <iostream>
43#include <chemistry/qc/cints/fjt.h>
44
45using namespace std;
46
47/*------------------------------------------------------
48 Initialize Taylor_Fm_Eval object (computes incomplete
49 gamma function via Taylor interpolation)
50 ------------------------------------------------------*/
51Taylor_Fjt_Eval::Taylor_Fjt_Eval(unsigned int mmax, double accuracy)
52{
53 int i, m;
54 int T_idx;
55 double T, T_new;
56 double egamma, func, dfuncdT;
57 double term, sum, denom, rel_error;
58
59 cutoff = epsilon;
60 /*---------------------------------------
61 We are doing Taylor interpolation with
62 n=TAYLOR_ORDER terms here:
63 error <= delT^n/(n+1)!
64 ---------------------------------------*/
65 order_interp = TAYLOR_ORDER;
66 delT = 2.0*pow(cutoff*fac[order_interp+1],
67 1.0/order_interp);
68 max_m = mmax + order_interp - 1;
69
70 /*------------------------------------------------
71 Check if Taylor_Fm_Eval has been initialized with
72 the same mmax before:
73 2) yes - re-initialize again
74 3) no - initialize
75 ------------------------------------------------*/
76 if (grid != NULL || T_crit != NULL) {
77 free_Taylor_Fm_Eval();
78 }
79
80 T_crit = new double[max_m + 1]; /*--- m=0 is included! ---*/
81 max_T = 0;
82 /*--- Figure out T_crit for each m and put into the T_crit ---*/
83 for(m=max_m;m>=0;m--) {
84 /*------------------------------------------
85 Newton-Raphson method to solve
86 T^{m-0.5}*exp(-T) = epsilon*Gamma(m+0.5)
87 The solution is the max T for which to do
88 the interpolation
89 ------------------------------------------*/
90 T = -log(epsilon);
91 egamma = epsilon*sqrt(M_PI)*df[2*m]/pow(2,m);
92 T_new = T;
93 do {
94 T = T_new;
95 func = pow(T,m-0.5) * exp(-T) - egamma;
96 dfuncdT = ((m-0.5) * pow(T,m-1.5) - pow(T,m-0.5)) * exp(-T);
97 if (dfuncdT >= 0.0) {
98 T_new *= 2.5;
99 continue;
100 }
101 T_new = T - func/dfuncdT;
102 if ( T_new <= 0.0 ) {
103 T_new = T / 2.0;
104 }
105 } while (fabs(func/egamma) >= SOFT_ZERO);
106 T_crit[m] = T_new;
107 T_idx = floor(T_new/delT);
108 if (T_idx > max_T)
109 max_T = T_idx;
110 }
111
112 /*-------------------------------------------------------
113 Tabulate the gamma function from t=delT to T_crit[m]:
114 1) include T=0 though the table is empty for T=0 since
115 Fm(0) is simple to compute
116 2) modified MacLaurin series converges fastest for
117 the largest m -> use it to compute Fmmax(T)
118 see JPC 94, 5564 (1990).
119 3) then either use the series to compute the rest
120 of the row or maybe use downward recursion
121 -------------------------------------------------------*/
122 grid = block_matrix(max_T+1,max_m+1);
123 /*--- do the mmax first ---*/
124 for(m=0;m<=max_m;m++)
125 for(T_idx = max_T;
126 T_idx >= 0;
127 T_idx--) {
128 T = T_idx*delT;
129 denom = (m+0.5);
130 term = 0.5*exp(-T)/denom;
131 sum = term;
132 do {
133 denom += 1.0;
134 term *= T/denom;
135 sum += term;
136 rel_error = term/sum;
137 } while (rel_error >= cutoff);
138
139 grid[T_idx][m] = sum;
140 }
141
142}
143
144Taylor_Fjt_Eval::~Taylor_Fm_Eval()
145{
146 delete[] T_crit;
147 T_crit = NULL;
148 free_block(grid);
149 grid = NULL;
150}
151
152/* Using the tabulated incomplete gamma function in gtable, compute
153 * the incomplete gamma function for a particular wval for all 0<=j<=J.
154 * The result is placed in the global intermediate int_fjttable.
155 */
156double *
157Taylor_Fjt_Eval::compute_Fjt(double T, unsigned int l)
158{
159
160 int m;
161 unsigned int T_ind;
162 double T_crit, two_T, exp_mT, h, F_m, F_mp1;
163 double *F_row;
164
165#define STATIC_OO2NP1
166#define STATIC_OON
167#include "static.h"
168
169 T_crit = Taylor_Fm_Eval.T_crit[l];
170 two_T = 2.0*T;
171
172 /*------------------------
173 First compute Fl(T) ...
174 ------------------------*/
175 if (T > T_crit) {
176 /*--- Asymptotic formula ---*/
177 F[l] = df[2*l]*sqrt(M_PI/2)/pow(two_T,l+0.5);
178 }
179 else {
180 /*--- Taylor interpolation ---*/
181 T_ind = floor(0.5+T/Taylor_Fm_Eval.delT);
182 h = T_ind*Taylor_Fm_Eval.delT - T;
183 F_row = Taylor_Fm_Eval.grid[T_ind] + l;
184 F[l] = F_row[0] +
185 h*(F_row[1] +
186 oon[2]*h*(F_row[2] +
187 oon[3]*h*(F_row[3] +
188 oon[4]*h*(F_row[4] +
189 oon[5]*h*(F_row[5])))));
190 }
191
192 /*------------------------------------
193 And then do downward recursion in m
194 ------------------------------------*/
195 if (l > 0) {
196 F_mp1 = F[l];
197 exp_mT = exp(-T);
198 for(m=l-1;m>=0;m--) {
199 F_m = (exp_mT + two_T*F_mp1)*oo2np1[m];
200 F[m] = F_m;
201 F_mp1 = F_m;
202 }
203 }
204
205 return Fjt_buffer;
206}
207
208/////////////////////////////////////////////////////////////////////////////
209
210// Local Variables:
211// mode: c++
212// c-file-style: "CLJ-CONDENSED"
213// End:
Note: See TracBrowser for help on using the repository browser.