1 | //
|
---|
2 | // fjt.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 2001 Edward Valeev
|
---|
5 | //
|
---|
6 | // Author: Edward Valeev <edward.valeev@chemistry.gatech.edu>
|
---|
7 | // Maintainer: EV
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUG__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | /* These routines are based on the gamfun program of
|
---|
33 | * Trygve Ulf Helgaker (fall 1984)
|
---|
34 | * and calculates the incomplete gamma function as
|
---|
35 | * described by McMurchie & Davidson, J. Comp. Phys. 26 (1978) 218.
|
---|
36 | * The original routine computed the function for maximum j = 20.
|
---|
37 | */
|
---|
38 |
|
---|
39 | #include <stdlib.h>
|
---|
40 | #include <util/misc/math.h>
|
---|
41 |
|
---|
42 | #include <iostream>
|
---|
43 | #include <chemistry/qc/cints/fjt.h>
|
---|
44 |
|
---|
45 | using namespace std;
|
---|
46 |
|
---|
47 | /*------------------------------------------------------
|
---|
48 | Initialize Taylor_Fm_Eval object (computes incomplete
|
---|
49 | gamma function via Taylor interpolation)
|
---|
50 | ------------------------------------------------------*/
|
---|
51 | Taylor_Fjt_Eval::Taylor_Fjt_Eval(unsigned int mmax, double accuracy)
|
---|
52 | {
|
---|
53 | int i, m;
|
---|
54 | int T_idx;
|
---|
55 | double T, T_new;
|
---|
56 | double egamma, func, dfuncdT;
|
---|
57 | double term, sum, denom, rel_error;
|
---|
58 |
|
---|
59 | cutoff = epsilon;
|
---|
60 | /*---------------------------------------
|
---|
61 | We are doing Taylor interpolation with
|
---|
62 | n=TAYLOR_ORDER terms here:
|
---|
63 | error <= delT^n/(n+1)!
|
---|
64 | ---------------------------------------*/
|
---|
65 | order_interp = TAYLOR_ORDER;
|
---|
66 | delT = 2.0*pow(cutoff*fac[order_interp+1],
|
---|
67 | 1.0/order_interp);
|
---|
68 | max_m = mmax + order_interp - 1;
|
---|
69 |
|
---|
70 | /*------------------------------------------------
|
---|
71 | Check if Taylor_Fm_Eval has been initialized with
|
---|
72 | the same mmax before:
|
---|
73 | 2) yes - re-initialize again
|
---|
74 | 3) no - initialize
|
---|
75 | ------------------------------------------------*/
|
---|
76 | if (grid != NULL || T_crit != NULL) {
|
---|
77 | free_Taylor_Fm_Eval();
|
---|
78 | }
|
---|
79 |
|
---|
80 | T_crit = new double[max_m + 1]; /*--- m=0 is included! ---*/
|
---|
81 | max_T = 0;
|
---|
82 | /*--- Figure out T_crit for each m and put into the T_crit ---*/
|
---|
83 | for(m=max_m;m>=0;m--) {
|
---|
84 | /*------------------------------------------
|
---|
85 | Newton-Raphson method to solve
|
---|
86 | T^{m-0.5}*exp(-T) = epsilon*Gamma(m+0.5)
|
---|
87 | The solution is the max T for which to do
|
---|
88 | the interpolation
|
---|
89 | ------------------------------------------*/
|
---|
90 | T = -log(epsilon);
|
---|
91 | egamma = epsilon*sqrt(M_PI)*df[2*m]/pow(2,m);
|
---|
92 | T_new = T;
|
---|
93 | do {
|
---|
94 | T = T_new;
|
---|
95 | func = pow(T,m-0.5) * exp(-T) - egamma;
|
---|
96 | dfuncdT = ((m-0.5) * pow(T,m-1.5) - pow(T,m-0.5)) * exp(-T);
|
---|
97 | if (dfuncdT >= 0.0) {
|
---|
98 | T_new *= 2.5;
|
---|
99 | continue;
|
---|
100 | }
|
---|
101 | T_new = T - func/dfuncdT;
|
---|
102 | if ( T_new <= 0.0 ) {
|
---|
103 | T_new = T / 2.0;
|
---|
104 | }
|
---|
105 | } while (fabs(func/egamma) >= SOFT_ZERO);
|
---|
106 | T_crit[m] = T_new;
|
---|
107 | T_idx = floor(T_new/delT);
|
---|
108 | if (T_idx > max_T)
|
---|
109 | max_T = T_idx;
|
---|
110 | }
|
---|
111 |
|
---|
112 | /*-------------------------------------------------------
|
---|
113 | Tabulate the gamma function from t=delT to T_crit[m]:
|
---|
114 | 1) include T=0 though the table is empty for T=0 since
|
---|
115 | Fm(0) is simple to compute
|
---|
116 | 2) modified MacLaurin series converges fastest for
|
---|
117 | the largest m -> use it to compute Fmmax(T)
|
---|
118 | see JPC 94, 5564 (1990).
|
---|
119 | 3) then either use the series to compute the rest
|
---|
120 | of the row or maybe use downward recursion
|
---|
121 | -------------------------------------------------------*/
|
---|
122 | grid = block_matrix(max_T+1,max_m+1);
|
---|
123 | /*--- do the mmax first ---*/
|
---|
124 | for(m=0;m<=max_m;m++)
|
---|
125 | for(T_idx = max_T;
|
---|
126 | T_idx >= 0;
|
---|
127 | T_idx--) {
|
---|
128 | T = T_idx*delT;
|
---|
129 | denom = (m+0.5);
|
---|
130 | term = 0.5*exp(-T)/denom;
|
---|
131 | sum = term;
|
---|
132 | do {
|
---|
133 | denom += 1.0;
|
---|
134 | term *= T/denom;
|
---|
135 | sum += term;
|
---|
136 | rel_error = term/sum;
|
---|
137 | } while (rel_error >= cutoff);
|
---|
138 |
|
---|
139 | grid[T_idx][m] = sum;
|
---|
140 | }
|
---|
141 |
|
---|
142 | }
|
---|
143 |
|
---|
144 | Taylor_Fjt_Eval::~Taylor_Fm_Eval()
|
---|
145 | {
|
---|
146 | delete[] T_crit;
|
---|
147 | T_crit = NULL;
|
---|
148 | free_block(grid);
|
---|
149 | grid = NULL;
|
---|
150 | }
|
---|
151 |
|
---|
152 | /* Using the tabulated incomplete gamma function in gtable, compute
|
---|
153 | * the incomplete gamma function for a particular wval for all 0<=j<=J.
|
---|
154 | * The result is placed in the global intermediate int_fjttable.
|
---|
155 | */
|
---|
156 | double *
|
---|
157 | Taylor_Fjt_Eval::compute_Fjt(double T, unsigned int l)
|
---|
158 | {
|
---|
159 |
|
---|
160 | int m;
|
---|
161 | unsigned int T_ind;
|
---|
162 | double T_crit, two_T, exp_mT, h, F_m, F_mp1;
|
---|
163 | double *F_row;
|
---|
164 |
|
---|
165 | #define STATIC_OO2NP1
|
---|
166 | #define STATIC_OON
|
---|
167 | #include "static.h"
|
---|
168 |
|
---|
169 | T_crit = Taylor_Fm_Eval.T_crit[l];
|
---|
170 | two_T = 2.0*T;
|
---|
171 |
|
---|
172 | /*------------------------
|
---|
173 | First compute Fl(T) ...
|
---|
174 | ------------------------*/
|
---|
175 | if (T > T_crit) {
|
---|
176 | /*--- Asymptotic formula ---*/
|
---|
177 | F[l] = df[2*l]*sqrt(M_PI/2)/pow(two_T,l+0.5);
|
---|
178 | }
|
---|
179 | else {
|
---|
180 | /*--- Taylor interpolation ---*/
|
---|
181 | T_ind = floor(0.5+T/Taylor_Fm_Eval.delT);
|
---|
182 | h = T_ind*Taylor_Fm_Eval.delT - T;
|
---|
183 | F_row = Taylor_Fm_Eval.grid[T_ind] + l;
|
---|
184 | F[l] = F_row[0] +
|
---|
185 | h*(F_row[1] +
|
---|
186 | oon[2]*h*(F_row[2] +
|
---|
187 | oon[3]*h*(F_row[3] +
|
---|
188 | oon[4]*h*(F_row[4] +
|
---|
189 | oon[5]*h*(F_row[5])))));
|
---|
190 | }
|
---|
191 |
|
---|
192 | /*------------------------------------
|
---|
193 | And then do downward recursion in m
|
---|
194 | ------------------------------------*/
|
---|
195 | if (l > 0) {
|
---|
196 | F_mp1 = F[l];
|
---|
197 | exp_mT = exp(-T);
|
---|
198 | for(m=l-1;m>=0;m--) {
|
---|
199 | F_m = (exp_mT + two_T*F_mp1)*oo2np1[m];
|
---|
200 | F[m] = F_m;
|
---|
201 | F_mp1 = F_m;
|
---|
202 | }
|
---|
203 | }
|
---|
204 |
|
---|
205 | return Fjt_buffer;
|
---|
206 | }
|
---|
207 |
|
---|
208 | /////////////////////////////////////////////////////////////////////////////
|
---|
209 |
|
---|
210 | // Local Variables:
|
---|
211 | // mode: c++
|
---|
212 | // c-file-style: "CLJ-CONDENSED"
|
---|
213 | // End:
|
---|